Радиометрическая и радиохимическая экспертиза объектов ветеринарного надзора. Система и методы радиационного контроля

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФГБОУ ВПО «МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ И БИОТЕХНОЛОГИИ

имени К. И. СКРЯБИНА»

СИСТЕМА И МЕТОДЫ РАДИОЛОГИЧЕСКОГО

КОНТРОЛЯ ОБЪЕКТОВ ВЕТЕРИНАРНОГО

НАДЗОРА И ПИЩЕВЫХ ПРОДУКТОВ

Учебно-методическое пособие для студентов

всех факультетов и слушателей ФПК

Москва 2012

УДК 619:53.16

, . «Система и методы радиологического контроля объектов ветеринарного надзора и пищевых продуктов». Учебно-методическое пособие. М.: МГАВМиБ имени, 2012

Предназначено для студентов всех факультетов и слушателей ФПК.

Изложены цели и задачи ветеринарного радиологического контроля, порядок измерения гамма-фона, определения уровня радиоактивной загрязненности местности, тела животных и других объектов по мощности дозы гамма-излучения. Приведен порядок приготовления счетных образцов и проведения измерений активности 137Сs и 90Sr с помощью спектрометрического комплекса «Прогресс», а также сертификационных измерений. Изложены методы и порядок проведения радиологического контроля рыночной продукции, мясного сырья и крупного скота на предприятиях перерабатывающей промышленности и в хозяйствах.

Рецензент: доктор биологических наук, засл. деятель науки РФ,

профессор

Утверждено учебно-методической комиссией ветеринарно-биологического факультета (протокол от 23 января 2012 г.)

Сплошной оперативный радиологический контроль осуществляют при исследовании мясного сырья и скота, произведенных на территориях, подвергшихся радиоактивному загрязнению или подозреваемых в радиоактивном загрязнении. Выборочный контроль осуществляют при исследовании мясного сырья и скота, произведенных на территориях, не подвергшихся радиоактивному загрязнению и не подозреваемых в радиоактивном загрязнении с целью подтверждения радиационной безопасности и однородности партий мясного сырья и скота (при этом выборка составляет до 30 % объема контролируемой партии).

При выявлении мясного сырья или скота с содержанием радионуклидов выше контрольных уровней (КУ) переходят к сплошному оперативному или полному лабораторному радиологическому контролю.

Радиационный контроль мясного сырья и скота осуществляется путем оценки соответствия результатов измерения удельной активности цезия-137 в контролируемом объекте «Контрольным уровням», не превышение которых позволяет гарантировать соответствие контролируемой продукции требованиям радиационной безопасности без измерения стронция-90:

(Q/H)Cs-137 + (Q/H)Sr-90 ≤ 1, где

Q – удельная активность цезия-137 и стронция-90 в контролируемом объекте;

Н - нормативы удельной активности цезия-137 и стронция-90, установленные действующими правилами и нормами для мясного сырья.

Если измеренные величины удельной активности цезия-137 превышают значения КУ, то:

Для получения окончательно заключения мясное сырье направляют в государственные лаборатории, где проводят полное радиологическое исследование радиохимическими и спектрометрическими методами;

Животных возвращают на дополнительный откорм с использованием «чистых кормов» и (или) препаратов, снижающих переход радионуклидов в организм животных.

Для всех видов мясного сырья и скота, произведенных на «чистых» и пострадавших от радиоактивного загрязнения территориях и подлежащих радиационному контролю на мясоперерабатывающих предприятиях и в хозяйствах введены четыре значения контрольных уровней:

- КУ1 = 100 Бк/кг – для сельскохозяйственных животных и мясного сырья с костной тканью;

- КУ2 = 150 Бк/кг – для мясного сырья, без костной ткани и субпродуктов;

- КУ3 = 160 Бк/кг – для крупного рогатого скота, выращенного на территории Брянской области , наиболее пострадавшей от аварии на ЧАЭС (после убоя эти животных костная ткань подлежит обязательному лабораторному контролю на содержание стронция-90).

- КУ4 = 180 Бк/кг – для промысловых и других видов животных.

Оценку соответствия результатов измерений удельной активности цезия-137 требованиям радиационной безопасности проводят по критерию не превышения величины допустимого предела.

Результатом измерения удельной активности Q радионуклида цезия-137 является измеренное значение Qизм. и интервал погрешности ∆Q.

Если оказывается, что Qизм. < ∆Q, то принимается, что Qизм.= 0, и область возможных значений Q характеризуется соотношением Q ≤ ∆Q.

Сырье отвечает требованиям радиационной безопасности, если по критерию не превышения величины допустимого предела удовлетворяет требованию: (Q ± ∆Q) ≤ КУ. Такое сырье поступает в производство без ограничения.

Сырье не соответствует требованиям радиационной безопасности, если (Q + ∆Q) > КУ. Сырье можно признать не соответствующим требованиям радиационной безопасности по критерию не превышения КУ, если ∆Q ≤ КУ/2. В этом случае следует провести испытания в лаборатории радиационного контроля в соответствии с требованиями МУК 2.6.717-98 для пищевых продуктов.

Средства измерения. Для определения удельной активности цезия-137 в мясном сырье и организме животных допускается использование приборов, отвечающих требованиям, предъявляемым к средствам радиационного контроля, внесенных в Госреестр и табель оснащения государственных ветеринарных лабораторий.

Необходимым условием пригодности средств измерений для оперативного контроля удельной активности цезия-137 являются:

Возможность измерения удельной активности цезия-137 в мясном сырье или в организме животных без подготовки счетных образцов;

Обеспечение значения погрешности измерения пробы «нулевой активности» не более ∆Q ≤ КУ/3 за время измерения 100 сек при мощности эквивалентной дозы гамма-излучения в месте измерения до 0,2 мкЗв/час.

Для измерений удельной активности радионуклида цезия-137 созданы новые модификации портативных приборов СКС-99 «Спутник» и РСУ-01 «Сигнал-М» со сцинтилляционным детектором, снабженным свинцовым коллиматором с крышкой, что дает возможность проводить измерения в таких объектах как туши, полутуши и т. п., подвешенных на крюках, а также прижизненное определение активности цезия-137 в мышечной ткани крупного рогатого скота перед забоем.

Специфичность измеряемых объектов контроля обуславливает особые требования к выбору геометрии измерения и к безопасности.

Измерение туш, полутуш, четвертин или мясных блоков, сформированных из мышечных тканей одного животного, проводят путем прямого контакта детектора с измеряемым объектом без отбора проб. Для исключения загрязнения детектора его помещают в защитный полиэтиленовый чехол. Использование одного и того же чехла допускается при проведении измерений только одной партии сырья. При измерении отрубов, субпродуктов и птицы измеряемые объекты располагают в поддонах, коробках или других видах тары для создания мясных блоков глубиной ≈ 30 см. Соответственно при измерении туш свиней или мелкого рогатого скота измеряемые объекты следует располагать в виде стоп с суммарной глубиной «по мясу» ≈ 30 см. Таким же образом обеспечивают необходимую глубину при измерении четвертин КРС.

При измерении живого крупного рогатого скота, полутуш и задних четвертин детектор располагают в области заднебедренной группы мышц на уровне коленного сустава между бедренной и берцовой костями; при измерении передних четвертин детектор располагают в области лопатки; при измерении туш, полутуш и задних четвертин детектор располагают в области ягодичной группы мышц слева или справа от позвоночника, между позвоночником, бедренной костью и крестцом.

3.1. Порядок проведения измерений в геометрии

«2Пи» с коллиматором.

Измерение удельной активности цезия-137 в мясосырье и скоте проводят путем прямого контакта детектора с измеряемым объектом без отбора проб. Программное обеспечение данных измерений имеет ряд отличий от стандартного универсального программного обеспечения прибора СКС-99 «Спутник» с учетом специфики измеряемых объектов.

Подготовка прибора к работе:

1. При работе от сети :

Перед включением прибора в сеть тумблер «Вкл/Выкл» поставить в положение «Выкл»;

Соединить детектор со спектроанализатором, вставив разъем детектора в гнездо «детектор»;

Измерение активности . Приступая к измерению активности контролируемого объекта необходимо выполнить следующие операции:

Нажать клавишу «С». На экране появится меню «Время. Пуск. Обработка»;

Нажать клавишу «Ввод». На экране появится меню

Выбрать режим «Норма» 3-х кратным нажатием клавиши «Þ»

Нажать клавишу «Ввод». На экране появится сообщение: «Норма 120 Бк/кг»;

Нажимая клавиш (Þ), (Ü), (Ý), (ß), выставить значение КУ , установленное в ветеринарных правилах для данного объекта;

Нажать клавишу «Ввод». На экране появится меню: «Время. Пуск. Обработка»;

Нажать клавишу «Ввод». На экране появится меню: «Калибровка. Фон. Измерение»;

Нажатием клавиши «Þ» выбрать режим «Измерение»;

Нажать клавишу «Ввод» и выполнить появившуюся на экране команду: «Установите детектор на позицию измерения» .

Нажать клавишу «Ввод». Через некоторое время на экране появится сообщение:

Бк/кг А ± ΔА

неопределенный результат

при Кф = 0,25

Появление прерывистого звукового сигнала означает, что получен один из результатов:

1. Результат меньше нормы

2. Результат больше нормы.

В первом случае на экране появится сообщение:

Бк/кг: Аизм. ± ∆А

меньше нормы

при Кф = 0,25

Н: КУ, Бк/кг

Измерение можно закончить.

Нажать клавишу «Ввод». На экране появится меню «Время. Пуск. Обработка». Можно приступить к измерению следующего объекта. Для этого необходимо:

Нажать клавишу «Ввод». На экране появится меню «Калибровка. Фон. Измерение»;

Выбрать режим «Измерение» нажатием клавиши « Þ»;

Нажать клавишу «Ввод» и выполнить команду «Установите детектор на позицию измерения»;

Нажать «Ввод». Прозвучит короткий звуковой сигнал и на экране появится сообщение «Включен набор спектра. Ждите».

Если получен результат больше нормы , то на экране появится сообщение:

Бк/кг: Аизм. ± ∆А

больше нормы

при Кф = 0,25

Н: КУ, Бк/кг

В данном случае также после появления прерывистого звукового сигнала измерение можно закончить.

Достаточно часто звуковой сигнал не появляется потому, что результаты измерений не позволяют дать определенный ответ, поскольку находятся в соотношении:

Аизм. - ∆А < КУ ≤ Аизм. + ∆А

С увеличением продолжительности измерения погрешность уменьшается, поэтому следует продолжить измерение до получения определенного результата, т. е. до появления звукового сигнала.

Если по истечении разумного времени определенного результата добиться не удалось (т. е. звуковой сигнал не появился), то значение удельной активности цезия-137 в данном объекте нельзя признать соответствующим КУ.

Раздел 4. Радиологический контроль продукции животного и растительного происхождения на продовольственных рынках.

Радиационная ветеринарно-санитарная экспертиза на продовольственных рынках является частью ветеринарно-санитарной экспертизы, призвана обеспечить недопущение реализации на продовольственных рынках продукции животного и растительного происхождения не отвечающей требованиям радиационной безопасности, и осуществляется в соответствии с действующими правилами ветеринарно-санитарной и радиационной экспертизы.

Определение содержания радионуклидов производится в соответствии с действующими нормативными документами, регламентирующими порядок отбора проб, общими правилами первичной подготовки проб к измерениям, методиками приготовления счетных образцов и основными методиками выполнения измерений.

Радиационный контроль – одно из основных направлений обеспечения радиационной безопасности населения в условиях аварий, повлекших радиоактивное загрязнение обширных сельскохозяйственных угодий Первоочередная задача радиационного контроля – обеспечение не превышения дозовых пределов, установленных «Нормами радиационной безопасности» - НРБ-99 (табл. 2).

Таблица 2

Критерии для принятия решений об отселении и ограничении потребления загрязненных пищевых продуктов (НРБ-99, табл. 6.4)

Меры защиты

Предотвращаемая эффективная доза, мЗв

Ограничение потребления загрязненных продуктов питания и питьевой воды

Уровень А

Уровень Б

5 за первый год, 1/год последующие годы

50 за первый год, 10/год последующие годы

Отселение

50 за первый год

500 за первый год

1000 за все время отселения

В требованиях по ограничению облучения населения (НРБ-99, раздел 6) установлены предельно допустимые значения (нормативы) удельной активности радионуклидов в продовольствии (табл.3), соответствующие дозовым пределам приведенным в таблице 1 для первого года после аварии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Радиометрическая и радиохимическая экспертиза объектов ветеринарного надзора

  • Введение
  • 1. Задачи радиационного контроля
  • 2. Система и методы радиационного контроля
  • Список литературы

Введение

Емкость биосферы -- величина постоянная. Даже если сброс радиоактивных отходов атомного производства не превышает допустимых пределов, может произойти локальное и глобальное накопление радиоактивных загрязнений в биосфере, главным образом за счет долгоживущих радионуклидов. Таким образом, радиоактивное загрязнение окружающей среды, как и загрязнение ее отходами современной промышленности и цивилизации,-- неизбежный фактор атомного века.

Единственное, что необходимо делать, -- это контролировать уровень радиоактивной загрязненности внешней среды и принимать меры к его ограничению, а также предотвращать попадание радиоактивных веществ в продукты питания.

Все это вызвало необходимость создания во многих странах службы радиационной безопасности. В различных странах она организована по-разному, но везде подразделяется на ряд сфер (геофизическую, медицинскую, сельскохозяйственную и т. д.).

В нашей стране для осуществления радиационного контроля объектов ветеринарного надзора созданы радиологические отделы в республиканских, краевых, областных ветеринарных лабораториях, а радиологические группы -- в районных (межрайонных) ветеринарных лабораториях, лабораториях ветеринарно-санитарной экспертизы на рынках, в производственных лабораториях предприятий мясной и молочной промышленности. Радиологические подразделения в вопросах санитарной безопасности руководствуются действующими "Основными санитарными правилами работы с радиоактивными веществами и другими источниками излучений".

1. Задачи радиационного контроля

радиологический контроль надзор ветеринарный

Основная задача радиологических отделов и групп -- контроль за радиоактивной загрязненностью объектов ветеринарного надзора и продуктов питания, выпускаемых предприятиями мясной и молочной промышленности, а также продукции животноводства и растениеводства, поступающей на рынки.

В целях выполнения задач по контролю за радиоактивной загрязненностью объектов ветеринарного надзора радиологические отделы выполняют следующие функции: организуют отбор проб объектов ветеринарного надзора и проводят исследования на наличие радиоактивных веществ; проводят по единым методикам радиометрические, радиохимические, спектрометрические исследования основных компонентов рациона сельскохозяйственных животных, в том числе птицы (грубые, сочные, концентрированные корма, корнеклубнеплоды), воды, используемой для поения животных, продуктов животноводства, животноводческого сырья в хозяйствах и других учреждениях на территории республики, края, области, района; обобщают и анализируют результаты радиометрических и радиохимических исследований и на основе их принимают решения или дают предложения о возможности использования продуктов животноводства; осуществляют контроль за уровнем радиоактивности объектов ветеринарного надзора, ввозимых из-за рубежа и вывозимых за рубеж, и выдают рекомендации о возможности их использования; анализируют радиационную обстановку животноводства республики, края, области, района; информируют органы ветеринарной службы, а также здравоохранения о всех случаях обнаружения повышенной радиоактивности исследуемых объектов.

Специализированные радиологические группы осуществляют контроль: за гамма-фоном на территории ветеринарных лабораторий, рынков, предприятий мясной и молочной промышленности; за загрязненностью радиоактивными веществами производственных и складских помещений, технологического оборудования, транспорта, тароупаковочных материалов.

Радиационный контроль обеспечивают радиологические отделы ветеринарных лабораторий. Его осуществляют в двух формах: текущий и предупредительный. Текущему радиационному контролю подлежит продукция, поступающая от сельскохозяйственных предприятий и населения на хранение, переработку или реализацию через рыночную торговлю. В систему предупредительного радиационного контроля входят контрольные проверки на местах:

во время вегетации растений для подтверждения правильности прогноза содержания радионуклидов в ожидаемом урожае;

для определения содержания радионуклидов в пастбищной растительности и зеленой подкормке в летний период, а также в кормах, заготовленных на стойловый период.

Подходы к организации текущего контроля могут быть различными, в зависимости от масштабов распространения радиоактивных веществ и характера загрязнений окружающей среды.

В зависимости от поставленных задач текущий контроль осуществляют в масштабах страны (при стратосферных выпадениях), отдельных регионов (при авариях с выбросом в окружающую среду большого количества радиоактивных веществ) или в пределах ограниченных участков местности. Подходы к организации системы радиологического контроля в каждом случае различны, хотя цель одна.

При глобальных выпадениях контроль за радиационной обстановкой проводят с целью получения усредненных данных, характеризующих уровни загрязнения объектов ветеринарного надзора и дозы излучения, получаемой животными на загрязненной территории (области, республике или стране). Поэтому систему контроля строят на организации и проведении длительных систематических наблюдений, имея в виду получение данных, характерных для достаточно обширных зон. Объекты контроля -- радиоактивные осадки, атмосферный воздух, почва, водоемы, растительность и продукты животноводства. Определяют уровень загрязнения объектов ветеринарного надзора радиоактивными веществами, дозы ионизирующей радиации на местности, а также проводят сбор материалов, позволяющих выявить особенности, установить закономерности и оценить значимость влияния различных факторов на процессы миграции наиболее опасных для биосферы радионуклидов из атмосферы, почвы в растения и организм сельскохозяйственных животных и получаемую продукцию.

Объем и характер наблюдений изменяются во времени в связи с изменением плотности и состава выпадений, удельной значимости различных путей миграции радиоактивных веществ.

При авариях система контроля направлена на оперативное выявление уровня и масштабов загрязнений и принятие срочных мер для ликвидации последствий аварии.

При аварийной ситуации вследствие выброса радионуклидов из атомной электростанции проводят экстренное дозиметрическое обследование по аварийному плану.

Загрязнение внешней среды радиоактивными отходами обычно носит локальный характер, что определяет систему расположения контрольных пунктов.

При радиоактивном загрязнении сельскохозяйственных объектов в результате незапланированных (аварийных) выбросов радиоактивных веществ на предприятиях ядерно-энергетического цикла усиливают радиационный контроль за объектами ветеринарного надзора.

В период интенсивного поверхностного загрязнения (первый год после аварии) сельскохозяйственных угодий главное направление в работе радиологических отделов -- контроль за уровнем загрязнения кормов, пищевого сырья и продукции животного и растительного происхождения радиоактивными веществами и определение их радионуклидного состава.

Один раз в год радиологические отделы проводят детальное исследование концентраций 137 Cs и 90 Sr в молоке и траве (июнь) или в молоке и сене (январь--февраль) всех районов области для сравнительной оценки степени радиоактивной загрязненности.

На загрязненных территориях контроль за водоемами в полном объеме предусматривает наблюдение за источниками загрязнения, содержанием радиоактивных веществ в воде водоемов, в донных отложениях и гидробионтах. Если возможно затопление прибрежной территории в паводковый период или при использовании воды для орошения, предусматривают наблюдение за уровнями загрязнения сельскохозяйственных растений, некоторых пищевых продуктов и за величиной гамма-фона на прибрежной и орошаемой территориях. Указанный объем контроля определяют республиканские радиологические отделы по согласованию с вышестоящими органами радиационного контроля в зависимости от уровня загрязнения водоема радионуклидами.

2. Система и методы радиационного контроля

Принятая система радиационного контроля включает ряд последовательно выполняемых этапов: измерение уровня радиации на местности (полевая радиометрия и дозиметрия), отбор проб и подготовка проб к исследованию, прямое определение радиоактивности экспрессными методами, радиохимическое разделение радионуклидов, радиометрия выделенных радионуклидов, расчет активности и составление заключения.

Методы радиационного контроля можно разделить на радиометрические, радиохимические и спектрометрические.

Радиометрические методы включают полевую радиометрию и дозиметрию, экспрессное определение радиоактивности, радиометрию зольных остатков и радиохимических препаратов.

Полевая радиометрия и дозиметрия -- один из первых этапов радиационного контроля внешней среды и объектов сельскохозяйственного производства, который преследует многие цели. Если полевую радиометрию и дозиметрию проводят в обычных ситуациях (при отсутствии радиоактивного загрязнения), то можно получить ценные сведения об уровнях естественной радиоактивности, с которыми в последующем сравнивают данные о радиоактивных загрязнениях, образовавшихся в результате радиационных аварий или испытаний ядерного оружия. Этот метод позволяет своевременно выявить случаи повышенного уровня радиации и принять экстренные решения о мерах защиты населения и сельскохозяйственных животных. Полевая радиометрия и дозиметрия -- ведущий метод контроля за радиоактивным загрязнением продуктов растениеводства и животноводства не только на территориях радиоактивного загрязнения, но и за их пределами, куда сельскохозяйственная продукция поступает в результате хозяйственной деятельности.

Методы полевой радиометрии и дозиметрии самые различные и зависят от абсолютных величин радиации, подлежащей измерению, и размеров площади, которую надо обследовать. Если площадь обследования невелика, измерения могут проводить пешие дозиметристы. В случае обследования обширных территорий используют специальные автомобили, на которых смонтированы необходимые приборы (автогамма-съемка). При необходимости может быть использована воздушная гамма-съемка. Для измерения уровня радиации на местности используют приборы, предусмотренные табельным оснащением радиологических подразделений ветеринарной службы: ДП-5В, СРП-68-01, ДРГ-01Т1, ДБГ-01Н, МКС-01 и др. При ведении радиационной разведки на обширных территориях желательно иметь передвижную радиометрическую лабораторию и специальную укладку (чемодан), в котором должны быть перечисленные выше приборы -- измерители мощности дозы, индивидуальные дозиметры, средства защиты органов дыхания (противогазы, респираторы) и кожи, препараты йода, некоторое количество дезактивирующих средств, средства отбора и транспортировки проб, аспираторы для отбора проб аэрозолей. Обязательно должны быть методики проведения радиационного контроля. Например, "Инструкция по наземному обследованию загрязненных территорий", "Методические рекомендации по оценке радиационной обстановки в населенных пунктах" и т. п.

Экспрессные методы радиационного контроля используют для получения оперативной информации о степени радиоактивной загрязненности объектов внешней среды и сельскохозяйственного производства. Разновидности экспрессных методов -- измерение суммарной радиоактивности бета- и гамма-излучающих нуклидов, экспресс-методы измерения 137 Cs и 90 Sr, экспресс-методы радиационного контроля рыночной продукции, прижизненный радиационный контроль.

Экспресс-метод определения удельной и объемной активности гам ма-излучающихрадионуклидов в воде, продуктах питания, продукции растениеводства и животноводства основан на измерении с помощью прибора СРП-68-01 мощности дозы излучения от чисто вымытых и измельченных проб массойО,7 кг (для большинства проб), размещенных в литровой банке или сосуде Маринелли, и пересчете ее в единицы активности по формуле

q = N 0 K ,

где q -- удельная активность пробы, Бк/кг; N 0 -- мощность дозы излучения пробы без фона, мкР/ч; К-- коэффициент пересчета (прилагается к методике).

Методика применима при уровне радиоактивного загрязнения в пределах 2-10 3 ...4-10 4 Бк/л (кг).

Экспресс-метод определения удельной и объемной активности бета- излучающих радионуклидов основан на измерении скорости счета частиц от "толстослойных" препаратов с последующим расчетом активности по формуле

q = (N - N ф )/ P ,

где q -- удельная активность пробы, Бк/кг (л); N -- скорость счета частиц от пробы с фоном, имп/с; N ф -- скорость счета частиц фона, имп/с; Р -- чувствительность радиометра (коэффициент пересчета) к смеси продуктов деления в измеряемой пробе.

Предел погрешности измерения в обоих случаях составляет 50 %. Для проведения измерений используют радиометры КРК-1, РУБ-01П, "Бета". Измельченной пробой заполняют кювету, прилагаемую к прибору, и измеряют скорость счета за время не более 1000 с. Методика применима при содержании радиоактивных веществ в пробах не менее 37 Бк/кг (1 * 10 9 Ки/кг).

При малой концентрации радионуклидов в пробах суммарную бета-активность определяют по зольному остатку. Чтобы увеличить концентрацию радионуклидов в пробах, их подвергают сжиганию и озолению; полученную золу растирают в мелкий порошок, наносят на стандартную, подложку 200...300 мг золы, равномерно распределяют и измеряют скорость счета на стационарном радиометре в течение времени, необходимого для получения результатов с заданной точностью.

Удельную активность рассчитывают по формуле

A = N 0 K c в K оз / m ,

где А -- удельная активность исследуемой пробы, Ки/кг (л), Бк/кг (л); N 0 -- скорость счета пробы без фона, имп/мин; К св -- коэффициент пересчета от импульсов в минуту к активности, выражаемой в Кюри (коэффициент связи); К оз -- коэффициент озоления, равный массе золы в граммах, полученной при озолении 1 кг пробы; т -- масса золы, взятая для радиометрии, г.

Для определения коэффициента связи готовят 4...5 препаратов массой 200...300 мг из высушенного КС 1 (эквивалентной массе препарата), измеряют скорость счета в тех же условиях, в которых проводили измерение препарата.

Коэффициент связи рассчитывают по формуле

где А эт -- активность эталона КСl, расп./мин (для навески 300 мг А эт = 228 расп/мин); N 0эт -- скорость счета эталона без фона, имп/мин; 2·22·10 12 -- коэффициент пересчета распадов в Кюри.

Для экспрессных измерений удельной активности 137 Cs используют двухканальный радиометр РУБ-01П6, который позволяет учитывать вклад калия в суммарную активность пробы. Это важно для регионов, которые подвергались радиоактивному загрязнению, и при измерении цезия есть небольшое превышение временно допустимых уровней (ВДУ) за счет 40 К. Этот прибор дает возможность определить вклад калия в радиоактивное загрязнение. Аналогичные задачи при измерении цезия могут решать радиометр РКГ-05, РУГ-91, спектрометр "Прогресс-спектр" и др.

В последнее время разработан экспресс-метод определения 90 Sr в зольном остатке с помощью радиометра РУБ-91 (Адани) или универсального спектрометрического комплекса "Гамма плюс".

Экспресс-методы радиационного контроля рыночной продукции особенно актуальны на территориях радиоактивного загрязнения, а также за их пределами, куда сельскохозяйственная продукция поступает в результате хозяйственной деятельности. Для контроля рыночной продукции используют дозиметры СРП-68-01 при определении объемной и удельной активности гамма-излучающих нуклидов и радиометр "Бета" или его аналоги при определении активности бета-излучающих нуклидов в воде, продуктах питания, продукции растениеводства и животноводства. Для экспресс-анализа рыночной продукции удобно использовать спектрометр РСУ-01 "Сигнал", радиометры РУБ-01П6 или РКГ-05. При поступлении продукции на рынки прибором СРП-68-01 устанавливают однородность партии продукта по измеренным уровням гамма-излучения. Продукцию считают однородной по уровню загрязнения, если измерения, проведенные в разных точках упаковки, контейнера, емкости и т. п., различаются не более чем в 2 раза. Если установлена неоднородность партии продукции, проводят сортировку продуктов на 3 группы по степени их радиоактивной загрязненности (высокая, средняя и низкая), от каждой из которых берут дополнительные пробы и делают заключение об их уровне активности.

Прижизненный радиационный контроль актуален для регионов, которые подвергались радиоактивному загрязнению. Если хозяйство сдает животных на мясокомбинат, то надо перед их отправкой проверить концентрацию радионуклидов в мышцах и решить вопрос о возможности их убоя на мясо.

В таких случаях предварительно определяют радиоактивную загрязненность поверхности тела животных и наличие радиоактивных веществ внутри организма с помощью прибора ДП-5В. Для этого проводят 2 измерения с закрытым и открытым окном детектора. Если показания прибора с закрытым и открытым окном детектора одинаковые, обследуемая поверхность не загрязнена радиоактивными веществами. Если при открытом окне детектора показания больше, чем при закрытом, поверхность тела загрязнена радиоактивными веществами. Для прижизненного определения концентрации гамма-излучающих нуклидов в организме животных предложен экспресс-метод, который базируется на корреляции между мощностью дозы гамма-излучения, измеренной в надлопаточной области и в области ягодичных мышц животного, и содержанием радионуклидов в мышцах крупного рогатого скота. Метод может быть использован в условиях хозяйств, на скотоприемных пунктах, убойных площадках и мясокомбинатах. Для снижения фона и повышения точности измерения на чувствительную часть детектора (с торца) закрепляют конический свинцовый коллиматор длиной 140 мм при толщине свинца 5 мм. Погрешность прижизненного определения радионуклидов в мышцах в пределах 3,7·10 2 ...3,7·10 3 Бк/кг (10 -8 ...10 -7 Ки/кг±50%).

По результатам проведенных измерений и расчетов проводят сортировку животных или мясных туш на 2 группы ("а" и "б") при следующих условиях:

крупный рогатый скот принадлежит к группе "а", если мощность дозы равна или меньше 170нГр/ч, мышечная ткань "чистая", и к группе "б", если мощность дозы больше 170 нГр/ч, мышечная ткань "грязная";

свиньи принадлежат к группе "а", если мощность дозы равна или меньше 70 нГр/ч, мышечная ткань "чистая", и к группе "б", если мощность дозы больше 70 нГр/ч, мышечная ткань "грязная".

Экспрессные методы радиационной экспертизы позволяют получить оперативные данные об уровне и масштабах радиоактивной загрязненности объектов сельскохозяйственного производства, своевременно выявить источники радиоактивного загрязнения и принять экстренные меры по ликвидации радиационных аварий или их последствий. Однако для полной и объективной характеристики радиационной обстановки и разработки системы защитных мероприятий в агропромышленном комплексе в различные периоды развития радиационной ситуации после радиационной аварии необходимо иметь данные о радионуклидном составе объектов сельскохозяйственного производства. Для получения таких сведений используют радиохимический анализ, который является основным методом определения концентрации отдельных радионуклидов в различных объектах.

Радиохимический метод состоит из нескольких неразрывно связанных стадий: отбор и подготовка проб исследуемых объектов; внесение носителей и минерализация проб; выделение радионуклидов из проб; очистка выделенных радионуклидов от посторонних нуклидов и сопутствующих макроэлементов; идентификация и проверка радиохимической чистоты; радиометрия выделенных радионуклидов; расчет активности и составление заключения.

Отбор проб проводят сотрудники радиологических отделов, другие лица (специалисты районных лабораторий) только после подробного инструктажа о правилах отбора и транспортировки проб с последующим периодическим их контролем. Для отбора проб за каждым радиологическим отделом закрепляется не менее 6 контрольных пунктов (колхоз, совхоз и другие хозяйства), типичных для данной области, с учетом их географического расположения, местных природных условий (рельеф, тип почв, характер растительного покрова, количество выпадающих осадков, роза ветров) и экономики.

Образец пробы должен быть типичным для исследуемого объекта, а масса (объем) достаточной, чтобы после концентрирования получить массу золы, необходимую для проведения радиохимического анализа (20--40 г). Нормы и сроки отбора проб приведены в таблице 1.

При отборе проб в контрольных пунктах измеряют гамма-фон прибором типа СРП-68-01 на расстоянии 0,7... 1 м от почвы и 1...1,5 см от скирды, бурта, туши животных, рыбы и шерсти. Данные гамма-фона записывают в сопроводительном документе.

1. Сроки и нормы отбора проб объектов ветнадзора для исследования радиоактивность

Сроки отбора проб

Число проб

Масса (объем) проб

Весна, лето, осень

Грубые корма

Силос, сенаж

В период скармливания животным

Корнеклубнеплоды

Концентрированные корма

Ежеквартально

Весна, осень

Рыба свежая

По мере поступления

По мере поступления

Весна, осень

Исследования взятых проб проводят прежде всего на наличие радионуклидов 134 Cs, 137 Cs, 131 1, 89 Sr, 90 Sr, U, Pu, 140 Ba, 91 Y, 141 Ce, 144 Ce, 103 Ru, l 06 Ru, 95 Zr, которые определяют во всех объектах ветнадзора: 131 I -- в течение 2...3 мес после выпадения радиоактивных осадков; 140 Ва - 3...4 мес; 91 Y, 89 Sr, 141 Ce, 95 Zr - 2 лет; 144 Се, 106 Ru - 5 лет; 90 Sr, 134 Cs, 137 Cs, U, Pu, Pb -- постоянно.

Все лаборатории для получения оперативной информации о степени загрязненности объектов ветеринарного надзора определяют суммарную бета-активность экспресс-методом в толстом слое при удельной активности проб? 3,7·10 3 Бк/кг (л) и в зольном остатке при удельной активности? 3,7*10 2 Бк/кг (л) .

При радиоактивном загрязнении сельскохозяйственных угодий в результате незапланированных выбросов (аварий) на предприятиях ядерно-энергетического цикла усиливают радиационный контроль за объектами ветеринарного надзора. Массу (объем) отбираемых для исследований проб уменьшают в 2...3 раза, а частоту отбора увеличивают.

Пробы травы (1...2 кг) отбирают 2 раза в месяц в первый год радиоактивного загрязнения и 1 раз в месяц в последующие годы. Пробы сена, соломы, сенажа (1...2кг), корнеклубнеплодов (1...2кг) и концентрированных кормов (1...2 кг) отбирают при закладке их на зиму и при исследовании рационов. Зернофураж и солому отбирают одновременно в одних и тех же отделениях хозяйств. Силос исследуют только при поступлении его в рацион животным. Пробы воды (2..3 л) изрек, озер, прудов и других источников берут в местах водопоев 1 раз в месяц только в весенний, летний и осенний периоды. Молоко (1 ...2 л) берут не реже 2 раз в месяц в первый год радиоактивного загрязнения территорий, а в последующие годы -- 1 раз в месяц.

Мясо (1...2 кг), внутренние органы (0,5...1 кг), кости (0,5 кг) животных разных возрастов и видов отбирают непосредственно в контрольных хозяйствах в период убоя, но не реже 4 раз в год (зимой, весной -- перед выгоном животных на пастбища или началом дачи зеленых кормов, в середине лета и осенью -- перед переходом на зимний рацион). Отбор проб на мясокомбинатах проводят только от партий скота контролируемого района. Пробы мяса птиц (1 тушка) и яиц (10 штук) берут ежемесячно в период массового убоя и сдачи в торговую сеть. Рыбу (1...2 кг) отбирают целыми экземплярами одновременно с пробами воды (2...3 л) в период массового отлова, мед (0,2...0,3 кг) -- перед сдачей на заготовительные базы или в торговую сеть.

Компоненты рационов кормления животных, в том числе птицы, отбирают одновременно с продукцией животноводства в первый год ежемесячно, а в дальнейшем -- 1 раз в 2 месяца.

В контрольных пунктах одновременно с отбором проб измеряют мощность дозы естественного гамма- фона радиации в данной местности. Создается он в приземном слое атмосферы за счет космического излучения и радиоактивности верхних слоев Земли. Величина мощности дозы естественного фона на земной поверхности при отсутствии дополнительного загрязнения искусственными радионуклидами составляет 30...250нГр/ч. Средний уровень 100нГр/ч. На него ориентируются при отборе проб. Такие измерения нужны для радиационной характеристики данного района и своевременного выявления случайных радиоактивных загрязнений.

Места измерения мощности дозы гамма-фона определяют не ближе 100 м от зданий, чтобы избежать влияния радиоактивности строительных материалов этих зданий. Участок измерения фона должен быть удален примерно на 100 м от проезжих дорог и лесных массивов. Так как фон в течение суток меняется, его измеряют на открытой местности в каждом контрольном пункте в одни и те же часы. Чувствительный элемент дозиметра располагают на расстоянии 1 м от поверхности Земли. При каждом измерении гамма-фона мощность дозы определяют в трех точках на расстоянии 100...200 м одна от другой. Средний показатель регистрируют в рабочем журнале и записывают в сопроводительном документе.

В случае повышения гамма-фона в 2 раза и более необходимо немедленно в установленном порядке сообщить об этом в вышестоящие государственные ветеринарные учреждения и СЭС. Одновременно проводят внеплановый отбор проб объектов ветеринарного надзора и исследуют их на загрязненность.

Для измерения мощности дозы естественного фона пользуются радиометрами СРП-68-01, РУП-1, ДП-5А или другими приборами достаточной чувствительности.

При отборе проб необходимо соблюдать определенные правила.

Отбор проб травы проводят как на низинных, так и на горных пастбищах и сенокосах, удаленных от дорог не менее чем на 200 м. Траву срезают на трех участках, расположенных по треугольнику и отстоящих один от другого примерно на 50... 100 м. Пробу взвешивают, записывают сырую массу и помещают в целлофановый мешок.

Пробы сена, соломы, мякины, половы, концентрированных кормов отбирают при закладке их на зимнее хранение. Пробу усредняют, взвешивают и помещают в матерчатый или целлофановый мешок или в бумажный пакет.

Овощи и корнеклубнеплоды исследуют, как правило, в период уборки, отбирая усредненные пробы (по нескольку экземпляров из разных слоев бурта или ящиков в 1 пробу). Очищенные от земли и вымытые, их обрабатывают как одну пробу.

Пробы мяса берут из нежирной части туши, не снижая ее товарных качеств. Для анализа можно использовать мышцы шеи или конечностей. Однотипность отбираемых проб позволяет сопоставить получаемые результаты при исследовании мяса разных видов, возрастов и пород животных.

Однотипность следует соблюдать и при отборе проб костей, так как отложения остеотропных радионуклидов (например, стронция) неравномерны не только в разных участках одной и той же кости. Для исследования удобно брать последние ребра и шейные позвонки.

Для исследования мяса птицы берут 1 тушку, а при небольшой массе -- 3...4 тушки, отделяют мясо от костей и делают среднюю пробу. Мышцы и кости исследуют отдельно.

Рыбу для анализа отбирают целыми экземплярами, если она мелкая (при массе до 0,5 кг), а от крупной берут отдельные части (голова с частью тушки, часть туши с позвоночником). Надо учитывать, что наибольшую концентрацию радиоизотопов обнаруживают в жабрах, плавниках и чешуе, поэтому проба во всех случаях должна быть усредненной.

Чтобы не допустить порчи мяса, костей при доставке в радиологический отдел или при хранении, их консервируют. Пробы завертывают в несколько слоев марли, сильно смоченной 4...5 %-ным раствором формальдегида, или помещают в плотно закрывающиеся банки (полиэтиленовые мешки), куда вкладывают большой тампон ваты (фильтровальной бумаги), смоченной 40%-ным раствором формальдегида. Целые тушки птицы и рыбы можно консервировать путем инъецирования в них из шприца 5%-ного раствора формальдегида.

Яйца отбирают из одного птичника от птиц, содержащихся на одном рационе и в одинаковых условиях. Для анализа берут 20--40 яиц, объединяют в усредненную пробу. Всю пробу перед анализом разъединяют на съедобную часть (белок и желток) и скорлупу, которые исследуют раздельно. Яйца транспортируют в целом виде в упаковке, обеспечивающей их сохранность.

Пробы воды из рек, прудов, озер отбирают у берегов в местах водопоя животных. Если водоем глубокий, то берут 2 пробы: с поверхности и на расстоянии примерно 0,5 м от дна (чтобы не захватить донные отложения). Пробы помещают в чистые бутылки, предварительно ополоснув их исследуемой водой. Чтобы понизить адсорбцию радиоизотопов на стекле, воду подкисляют азотной или соляной кислотой до слабокислой реакции.

Молоко перед взятием пробы тщательно перемешивают. Из большой тары берут пробы с поверхности и из глубины (стеклянной трубкой). Можно надаивать молоко от отдельных коров (выборочно) в чистые бутылки. Для радиометрического и радиохимического анализов используют как цельное, так и сепарированное молоко.

Каждую отобранную пробу взвешивают, помещают в чистую сухую тару, упаковывают в ящики и опечатывают. К таре прикрепляют этикетку, где указывают название пробы, место и дату взятия, ее массу. При взятии проб, их пересылке, а также при оформлении документов, дающих право хозяйству на списание взятых продуктов, следует руководствоваться действующими "Методическими указаниями по отбору и доставке проб объектов ветнадзора для определения их радиоактивной загрязненности".

Принимают и обрабатывают доставленные в лабораторию пробы в специальном помещении, оборудованном вытяжными и сушильными шкафами, муфельными печами, приспособленными для мытья тары, посуды и при необходимости проб. Присланный материал перед взятием средней пробы тщательно перемешивают, при необходимости промывают в проточной воде, измельчают с помощью мясорубки, терки, кофемолки, ножа и ножниц.

Внесение носителей и минерализацию проб осуществляют следующим образом. Носителями радионуклидов обычно служат стабильные элементы, одноименные или сходные по химическим свойствам с выделяемым из пробы радионуклидом и добавляемые в пробы в виде растворов тех или иных солей. Использование носителей значительно упрощает анализ, позволяя применять для выделения нуклидов реакции осаждения труднорастворимых солей и контролировать полноту выделения. Носитель вводят в пробу до начала ее химической обработки, что предотвращает неконтролируемые потери радионуклида. Обычно количество носителя выбирают равным 30...60 мг в пересчете на весовую форму, в виде которой носитель выделяют из пробы и взвешивают.

Роль носителя заключается в том, что, будучи введенным в пробу, он увеличивает массу выделяемого элемента и позволяет увлечь за собой одноименный или сходный по химическим свойствам радионуклид по всем этапам анализа, чем достигается наиболее полное извлечение радионуклида. Зная количество введенного в пробу носителя перед анализом и количество полученного в результате анализа, определяют химический выход носителя, по которому судят о полноте выделения радионуклида. Химический выход носителя определяют как отношение массы выделенного носителя (мг) в конце анализа к массе внесенного носителя (мг) в пробу перед анализом. Кроме того, применение носителей в радиохимическом анализе позволяет получить в конце анализа "весомое" количество радиоактивного препарата, которое можно нанести на подложку для радиометрии.

Обычно пробы содержат органические вещества, которые должны быть разрушены без потери радионуклидов на этапе подготовки проб к анализу с целью получения исходного гомогенного раствора. Разрушение органических веществ проводят, как правило, путем сухого или мокрого озоления. Чаще применяют метод сухого озоления, который состоит из трех этапов: высушивания, сжигания (обугливания) и озоления.

Высушивание проб проводят в сушильных шкафах при температуре 80... 100 °С. Сухие пробы сжигают на электроплитках или газовых горелках. При сжигании нельзя допускать воспламенения, так как при этом происходит потеря радионуклидов. Полученный после сжигания материал переносят в фарфоровые тигли или чашки и проводят озоление в муфельных печах при температуре 400...450 °С. Продолжительность озоления различная, в зависимости от количества и вида органических соединений в пробе: для растительных проб оптимальным временем считают 2...4 ч, для проб мяса, молока, костей и корнеклубнеплодов -- 15...25 ч. Озоление считают законченным, когда зола приобретает светло-серый или серый цвет, в зависимости от материала пробы. Если в золе содержатся обугленные частицы, содержимое тигля после охлаждения смачивают концентрированной азотной кислотой, высушивают и прокаливают еще раз. В результате минерализации получают остаток, состоящий из смеси солей и окислов, который иногда с трудом растворяется в кислотах. Озоленные пробы охлаждают в эксикаторе до комнатной температуры, взвешивают и рассчитывают коэффициенты озоления К оз (г/кг) путем деления массы золы (г) на массу сырой пробы, взятой для сжигания (кг). Готовую золу растирают в мелкий порошок и используют для определения суммарной бета-активности и радиохимического анализа.

На первом этапе радиохимического анализа необходимо перевести золу в раствор. В большинстве случаев для анализа берут 20...30 г золы. Существуют два метода переведения золы в раствор: растворение и экстрагирование. Под растворением пробы понимают полное переведение ее в раствор. Это достигается только в том случае, когда в пробах отсутствует кремниевая кислота. Способы полного растворения озоленных проб практически применимы лишь к навескам 1... 10 г. Для растворения необходимо применять жесткие условия (концентрированные кислоты, высокую температуру и встряхивание).

Из больших навесок золы радионуклиды приходится экстрагировать кислотами. Многие радионуклиды хорошо экстрагируются из больших навесок проб. Никакие способы контроля полноты экстракции в этом случае невозможны.

Выделение радионуклидов из проб проводят реакцией осаждения, экстракцией и дистилляцией.

Для осаждения выбирают реакции, наиболее специфические для выделяемого элемента. Цель этого этапа работы -- по возможности более полно выделить носитель и отделить его от сопутствующих макро- и микроэлементов пробы. Выбор реакции осаждения особенно важен тогда, когда из пробы должны быть выделены последовательно несколько радионуклидов.

В радиохимическом анализе полное выделение носителя не является главной задачей. Гораздо важнее обеспечить такие условия, при которых доли выделенного носителя и радионуклида равны. Этого достигают, когда радионуклид и носитель находятся в одинаковой химической форме или переходят в одинаковую форму в момент выделения осадка. Данное требование автоматически выполняется для большинства элементов. Трудности в приведение радионуклидов и их носителей к единой химической форме возникают чаще в случае элементов, отличающихся многообразием химических форм в растворах. К таким элементам относится, например, йод, который может быть в растворе в виде I 2 , I - , IO - 3 , IO - 4 . Если первые две формы легко переходят друг в друга, I 2 - 2I - , то для превращения их в одну из кислородсодержащих форм должны быть созданы специальные условия, иначе носитель, добавленный в виде I - , и радионуклид, находящийся в форме IO - 3 , (IO - 4), будут вести себя совершенно независимо. Количественное выделение носителя в этом случае не приведет к количественному выделению радионуклида.

Химическое состояние в растворе радионуклидов со сложным химическим составом, как правило, неизвестно. Поэтому перед выделением носителя обеспечивают условия, в которых он превращается из одной формы в другую, побывав во всех возможных валентных состояниях. Для йода это достигается введением носителя в двух формах в таких соотношениях, в которых весь йод превращается в элементарное состояние I - + IO - 4 > I 2 . При этом в какой бы химической форме ни находился в растворе радионуклид йода, в одной из стадий превращения носителя их химические формы совпадут, и далее они будут вести себя одинаково.

Использование метода экстракции для выделения радионуклидов из растворов проб имеет ряд преимуществ. Поверхность раздела фаз при экстракции ничтожно мала по сравнению с таковой при осаждении. Это позволяет повысить селективность извлечения нуклидов. Кроме того, данный метод отличают быстрота и легкость исполнения. Однако процесс экстракции часто неспецифичен для данного элемента, и в органический растворитель переходит целая группа нуклидов. Исключение составляет экстракция элементарного йода (эфиром, хлороформом и пр.) из азотнокислых растворов и экстракция уранил-нитрата диэтиловым эфиром из раствора 1,5 н. HNO 3 . Когда в пробе содержится несложная смесь нуклидов и их количества сравнимы, экстракция весьма полезна. Так, в пробах золы молока и костей, как правило, присутствуют лишь 3 нуклида бета-излучателя 137 Cs, 90 Sr, 90 Y. В таких условиях экстракция иттрия трибутилфосфатом приводит к количественному выделению химически и радиохимически чистых препаратов иттрия.

Возможность использования дистилляции в радиохимическом анализе ограничивается нуклидами тех элементов, которые образуют легколетучие соединения. Особенность методов дистилляции -- их чрезвычайно высокая специфичность для каждого элемента, позволяющая получить без дополнительной очистки радиохимически и химически чистые препараты.

Очистку выделенных радионуклидов от посторонних нуклидов и сопутствующих макроэлементов проводят с целью получения радиохимически чистых препаратов. Радиохимически чистым называют препарат данного радионуклида, не содержащий других радиоактивных веществ. Например, выделенный из раствора и очищенный препарат стронция не должен содержать никаких других нуклидов, кроме 89 Sr и 90 Sr. В радиохимическом анализе можно считать условно радиохимически чистыми и такие препараты, которые кроме изотопов выделяемого элемента содержат другие нуклиды, не мешающие количественному измерению радиоактивности определяемых радионуклидов. Например, в результате экстракции иттрия из азотнокислых растворов проб костей получают препараты, содержащие не только 90 Y, но и радионуклиды тория и плутония, количественно экстрагирующиеся в тех же условиях. Однако эти радионуклиды являются альфа-излучателями и не регистрируются детекторами, используемыми для измерения бета-активности 90 Y.

Идентификацию и проверку радиохимической чистоты выделенных из проб радионуклидов выполняют с помощью приборов, используемых для измерения скорости счета препаратов. Короткоживущие радионуклиды можно идентифицировать, определив их период полураспада путем измерения скорости счета от препарата несколько раз с небольшими интервалами (в часах, днях) до снижения ее наполовину от исходной. По результатам измерений строят график в координатах логарифм скорости счета -- время. Из графика находят период полураспада радионуклида и сравнивают его с табличным значением. Совпадение найденного и табличного значений свидетельствует о радиохимической чистоте измеряемого препарата. Если в препарате присутствует один радионуклид с простым спектром, то на графике получится прямая линия. Если экспериментальные точки не укладываются на прямую, это означает, что в препарате есть по крайней мере 2 радионуклида. Графическим анализом кривая может быть разложена на прямолинейные участки, соответствующие каждому из содержащихся в препарате радионуклидов.

В случае анализа долгоживущих радионуклидов такую проверку радиохимической чистоты можно выполнить измерением слоя половинного поглощения бета-частиц в алюминии, характеризующим максимальную энергию бета-спектра радионуклида, являющуюся одной из основных его характеристик. Для определения слоя половинного ослабления измеряют скорость счета от препарата, а затем закрывают препарат экраном из алюминиевой фольги известной толщины (мг/см 2) и вновь измеряют скорость счета. Далее накрывают препарат последовательно вторым, третьим и т. д. экранами, каждый раз определяя скорость счета от препарата до тех пор, пока она не уменьшится до скорости счета фона. По результатам измерения на графике в координатных осях, на которых отложены логарифм скорости счета и толщина алюминиевой фольги (мг/см 2), строят график, аналогичный графику изменения активности со временем, но такой график может быть построен быстрее (за несколько минут или часов, в зависимости от активности). Если в препарате присутствует один радионуклид с простым спектром, то на графике получится прямая линия, по наклону которой находят слой половинного ослабления. Найденное значение сравнивают с табличным. Если радионуклид испускает 2 (или больше) группы бета-частиц, график будет представлять собой кривую, которую можно разложить на соответствующие прямые точно так же, как и при определении периода полураспада.

Спектрометрический метод радиационной экспертизы применяют для анализа сложных смесей без предварительного выделения радионуклидов. Наиболее широко распространены гамма-спектрометрические методы с использованием сцинтилляционных и полупроводниковых детекторов. Спектрометрия актуальна при "свежих" выпадениях смеси радионуклидов, а когда известен изотопный состав, то нет необходимости проводить спектрометрию. При использовании гамма-спектрометрических методов нужны три эталонных гамма-источника для градуировки спектрометра по энергии. Если есть ЭВМ, то необязательно иметь три источника -- метрологи проводят калибровку по своим источникам; данные вводят в компьютер и выдают свидетельство на один год.

Список литературы

1. Белов А. Д., Киршин В. А., Лысенко Н. П., Пак В. В. и др. Радиобиология -- М.: Колос, 1999. -- 384 с: ил.

2. Голубев В. П. Дозиметрия и защита от ионизирующих излучений. -- М.: Атомиздат,1971.

3. Иванов В. И. Курс дозиметрии. -- М.: Атомиздат, 1970.

4. Ярмоненко С. П. Радиобиология человека и животных. -- М.: Высшая школа, 1988.

Размещено на Allbest.ru

Подобные документы

    Строение атома и физическая характеристика элементарных частиц, входящих в его состав. Радиометрическая и радиохимическая экспертиза объектов ветеринарного надзора. Обследование пораженных животных. Состояние обмена веществ у облучённых животных.

    контрольная работа , добавлен 30.01.2009

    Принципы организации ветеринарного дела. Становление животноводческих отраслей в XIX и начале ХХ веков. Темпы развития животноводства. Подготовка ветеринарных специалистов по типу Хорошевской школы-пансионата. Постановка ветеринарного образования.

    реферат , добавлен 09.04.2012

    Характеристика основных защитных мероприятий, проведение которых зависит от времени, прошедшего с начала выпадения радиоактивных веществ на сельскохозяйственные угодья. Обеспечение санитарно-радиологического благополучия объектов ветеринарного надзора.

    реферат , добавлен 24.01.2012

    Характеристика ветеринарной клиники "Ветеринарный врач", ее основных фирм-поставщиков. Снабжение ветеринарной клиники препаратами и инструментами ветеринарного назначения. Особенности учета, хранения и использования ветеринарных препаратов в клинике.

    курсовая работа , добавлен 16.03.2016

    Принципы планирования профилактических и оздоровительных мероприятий в различных сферах ветеринарного дела. Состояние животноводства, анализ ветеринарного обслуживания хозяйства и план профилактических противоэпизоотических мероприятий "АгроГранит".

    курсовая работа , добавлен 06.12.2011

    Перестройка сельского хозяйства и животноводства. Создание учебных заведений для подготовки ветеринарных кадров. Деятельность основоположника советской эпизоотической школы академика С.Н. Вышелесского. Мероприятия по борьбе с заразными болезнями животных.

    реферат , добавлен 11.04.2012

    Специфика работы ветеринарных специалистов, их обязанности. Основные задачи главного ветеринарного врача, его взаимодействие с зоотехником животноводческого хозяйства. Проведение мероприятий, направленных на профилактику и лечение заболеваний животных.

    реферат , добавлен 14.04.2012

    Развитие ветеринарного дела. Необходимость созыва первого Всероссийского съезда ветеринарных врачей. Проведение пленарных и секционных заседаний. Основные вопросы съезда. Усиление мер по борьбе с повальным воспалением легких крупного рогатого скота.

    презентация , добавлен 29.01.2017

    Планирование ветеринарных мероприятий как путь универсализации всей системы ветеринарных работ на территории страны. Объекты ветеринарного планирования, комплексность разработки планов мероприятий. Принципы составления проекта плана ветмероприятий.

    реферат , добавлен 15.04.2012

    Структура ветеринарных органов, особенности ветеринарного обслуживания крупных животноводческих ферм и комплексов. Методы оказания первой помощи заболевшим животным и техника применения лечебных средств. Методы диагностики инфекционных болезней.

Радиологическая экспертиза объектов ветнадзора проводится подразделениями радиационного контроля: отделом радиологии ГУ «Белгосветцентр», радиологическими отделами облветлабораторий, постами радиационного контроля отделов диагностики районных ветеринарных станций, перерабатывающих предприятий, а также лабораторий ветсанэкспертизы рынков. Отдел радиологии ГУ «Белгосветцентр» осуществляет методическое руководство и контроль за работой всех вышеуказанных подразделений.

Измеряемыми параметрами объектов радиационного контроля являются основные величины характеризующие радиационное воздействие на человека, для внешнего излучения – мощность экспозиционной дозы и плотность потока частиц; для внутреннего – концентрация радионуклидов в объектах контроля.

Мощность экспозиционной дозы излучения определяется экспозиционной дозой отнесенной к единице времени. В качестве единиц измерения применяются в СИ – А/кг; внесистемная – Р/сек; Р/час. В практике широко распространены дольные единицы – мА/кг; мР/ч; мкР/ч.

Предельное значение мощности экспозиционной дозы естественного γ-фона на территории РБ не должна превышать 20 мкР/ч. Повышение величины γ-фона служит одним из ранних и объективных показателей неблагополучия радиационной обстановки на местности.

Плотность потока частиц (фотонов) – отношение частиц (фотонов), проникающих в элементарную сферу за интервал времени, к площади центрального сечения этой сферы и к этому интервалу времени. Единицы измерения в СИ – 1/(м 2 ∙ с) = м -2 ∙ с -1 ; внесистемная – 1/(см 2 ∙ с) = см -2 ∙ с -1 .

Активность радионуклида – физическая величина определяющая количество ядерных распадов в единицу времени.

Единица активности в СИ – беккерель (Бк) равен одному распаду ядра радиоактивного элемента за секунду. Кратные единицы: МБк – 10 6 Бк, ГБк – 10 9 Бк. Внесистемная единица активности – кюри (Ки) равен активности радионуклида в котором происходит 3,7∙10 10 ядерных превращений за секунду. Применяются дольные единицы: мКи – 10 -3 Ки, мкКи – 10 -6 Ки,

нКи – 10 -9 Ки, пКи – 10 -12 Ки.

Концентрация радионуклидов в исследуемых пробах характеризуется удельной или объемной активностью. Удельная активность – отношение активности радионуклида к массе пробы, единицы измерения в СИ – Бк/кг, внесистемная Ки/кг. Объемная активность – отношение активности радионуклида к объему пробы. В СИ единица измерения Бк/л, внесистемная – Ки/л.

Радиологическая экспертиза проводится согласно «Схемы радиационного контроля продуктов питания и сельскохозяйственной продукции государственной ветеринарной службы Минсельхозпрода РБ» и включает четыре этапа: 1) отбор проб; 2) обработка и подготовка проб к исследованию; 3) инструментальная или радиохимическая экспертиза; 4) дача заключения.

Правила отбора проб продукции определены в стандартах РБ на каждый вид продукции: СТБ 1050-98 Отбор проб продукции животноводства; СТБ 1051-98 Отбор проб молока и молочных продуктов; СТБ 1053-98 Отбор проб пищевых продуктов; СТБ 1054-98 Отбор проб овощей, фруктов и ягод; СТБ 1055-98 Отбор проб картофеля и корнеплодов; СТБ 1056-98 Отбор проб сельскохозяйственного сырья, кормов и др.

Обработку и подготовку проб к инструментальному исследованию проводят в соответствии с «Методикой экспрессного определения объемной и удельной активности бета-излучающих радионуклидов в воде, продуктах питания, растительности и почве методом «прямого» измерения «толстых» проб» и другими методиками, включенными в Перечень методических документов в области радиационного контроля, допущенных к применению в РБ.

Радиометрические, гамма-, бета-спектрометрические исследования проб проводятся на приборах, включенных в госреестр Республики Беларусь, прошедших метрологическую проверку, по методикам выполнения измерений, утвержденным в установленном порядке. Технические характеристики используемых приборов должны обеспечивать проведение контроля содержания радионуклидов на соответствие действующим республиканским допустимым уровням.

Радиохимический анализ, в основе которого применяют методы аналитической химии, позволяет дать полную характеристику радиоактивной загрязненности объектов отдельными радионуклидами. При проведении данной экспертизы в пробах определяют содержание наиболее опасных в биологическом отношении радиоизотопов. Радиохимический анализ продуктов питания и объектов ветнадзора проводят в отделе радиологии ГУ «Белгосветцентр», а также в отделах радиологии облветлабораторий.

Радиохимический анализ включает следующие этапы: выделение радиоизотопа, его очистка и идентификация, проверка радиохимической чистоты, измерение активности радионуклида.

Отбор проб продуктов питания и объектов ветнадзора для радиохимической экспертизы проводится в соответствии с «Методическими указаниями по отбору проб для определения их загрязненности радиохимическим методом», а также СТБ 1059-98 Подготовка проб для определения стронция-90 радиохимическими методами.

По результатам экспертизы на каждую произведенную в хозяйстве партию сельскохозяйственной продукции: не предназначенную для реализации – оформляется протокол испытаний с указанием фактического и допустимого содержания радионуклидов и рекомендацией по дальнейшему использованию продукции; о содержании радионуклидов в предназначенной для реализации продукции животноводства, делается отметка в товарно-транспортной накладной. При отгрузке скота на мясокомбинаты данные дозиметрического исследования указываются в ветеринарном свидетельстве. На экспортируемую продукцию животноводства результаты радиологических испытаний заносятся в ветеринарное свидетельство. На некультивируемые грибы, дикорастущую продукцию, перечень которых установлен постановлением Сов. Мин. РБ от 11.05.99 г. № 681 «О дополнительных мерах по радиационному контролю экспортной продукции», поставляемые в другие страны, а также дикорастущую продукцию, поставляемую в страны ЕС, выдается паспорт радиационной безопасности.

Раздел 9. Ветеринарно-санитарная оценка продуктов животноводства при радиационных поражениях

Предубойный осмотр и сортировка животных при радиационных поражениях. Порядок убоя пораженных животных. Ветеринарно-санитарная оценка туш и органов животных при внешнем облучении. Особенности ветеринарно-санитарной оценки туш и органов при внутреннем поражении. Ветеринарно-санитарная оценка молока при радиационных поражениях. Ветеринарно-санитарная оценка яиц кур при внешнем и внутреннем облучении.

Раздел 10 Радиологический контроль объектов ветеринарного надзора

Система и методы радиологического контроля, ее цели и задачи, организационная структура. Основные принципы организации радиологического контроля в ветеринарии, виды радиологического контроля. Методы радиологического контроля.

Объекты исследования, правила отбора и подготовки проб объектов ветеринарного надзора. Последовательные этапы проведения радиологического контроля. Экспрессные и лабораторные методы. Разновидности экспрессных методов. Измерение суммарной бета-активности. Экспрессные методы определения стронцня-90, цезня-137 и йода-131. Экспрессные методы измерения радиоактивности по гамма-излучению. Экспресс-метод радиационного контроля на продовольственных рынках. Прижизненный радиационный контроль. Оценка данных радиометрического контроля.

Ветеринарная радиохимическая экспертиза, ее цели и задачи. Принципы радиохимического анализа при определении активности объектов ветнадзора на содержание стронция-90, цезия-137, йода-131, счинца-210, полония-210. Спектрометрические методы радиационного контроля, их классификация (альфа-, бета-, гамма- спектрометрические методы), физические основы этих методов, достоинства, преимущества, пути преодоления возможных ошибок измерения. Особенности проведения полевой спектрометрии.

Раздел 11. Использование радионуклидных методов и радиационной

биотехнологии в животноводстве и ветеринарии

Использование радиационной технологии в растениеводстве и животноводстве с целью стимуляции роста, развития и повышения продуктивности животных, изменения наследственных свойств организма. Возможности применения радиационной биотехнологии при производстве кормов и кормовых добавок; для обработки готовой продукции животноводства с целью удлинения сроков хранения и обеззараживания при некоторых заболеваниях; для стерилизации инструментов, биопрепаратов, перевязочных средств, для радиационного обеззараживания кожевенного сырья, шерсти, тары, навоза; для уничтожения вредных насекомых, получения вакцин. Использование радиационной технологии в диагностике болезней, терапии опухолей, в биологической промышленности и других отраслях народного хозяйства.

Раздел 12. Основы радиационной безопасности и организация работы с радиоактивными веществами

Радиационная безопасность как социально-гигиеническая проблема. Цели и задачи радиационной безопасности. Нормирование радиационного фактора. «Нормы радиационной безопасности НРБ-99» и «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99)»

Размещение и оборудование радиологических лабораторий. Получение, учет, хранение, транспортировка источников ионизирующих излучений, организация работ с закрытыми и открытыми радиоактивными источниками.

Способы защиты от внешнего и внутреннего облучения: расстояние, время, экранирование, разбавление. Меры индивидуальной защиты и личной гигиены. Средства защиты и защитные материалы. Допустимые уровни загрязнения рабочих мест, спецодежды и пр. Техника безопасности при ведении животноводства и технологической переработке продукции животноводства в условиях радиоактивного загрязнения территории. Методы дезактивации. Сбор, удаление и обезвреживание твердых и жидких радиоактивных отходов. Мероприятия при аварийных ситуациях. Радиационный контроль.

5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

Наименование обеспечи-ваемых (последующих) дисциплин

№№ разделов дисциплины, необходимых для изучения обеспечиваемых (последующих) дисциплин

Безопасность жизнедеятельности

Ветеринарно-санитарная экспертиза

Ветеринарная фармако-логия. Токсикология

Биологическая химия

Общая и частная хирургия

Акушерство и гинекология

Внутренние незаразные болезни

Вирусология и биотехнология

5.3. Разделы дисциплины и виды занятий

Наименование раздела дисциплины

Практ. Зан.

Введение

Физические основы радиобиологии

Дозиметрия и радиометрия ионизирующих излучений

Основы сельскохозяйственной радиоэкологии

Токсикология радиоактивных веществ

Ведение сельскохозяйственного производства на землях, загрязненных радионуклидами

Биологическое действие ионизирующих излучений.

Лучевые поражения животных.

Ветеринарно-санитарная оценка продуктов животноводства при радиационных поражениях

Радиологический контроль объектов ветеринарного надзора..

Использование радионуклидных методов и радиационной биотехнологии в животноводстве и ветеринарии

Основы радиационной безопасности и организация работы с радиоактивными веществами.

6. Лабораторный практикум

№ раздела

дисциплины

Наименование лабораторных работ

Радиометрические, дозиметрические и спектрометрические приборы, применяемые для радиационного контроля объектов ветеринарного надзора, устройство и освоение работы на основных типах приборов.

Детекторы ионизирующих излучений, их устройство, принцип работы. Типы детекторов. Счетная характеристика детекторов.

Определения слоя половинного ослабления иттрия-90 и углерода-14, Идентификация долгоживущих радионуклидов по слою половинного ослабления.

Градуировка радиометрических приборов с помощью эталонных источников. Приготовление эталонов из КСl и определение коэффициента эффективности. Определение толщины слоя препарата.

Изучение клинических проявлений и течения острой лучевой болезни у животных. Определение абсолютной активности препарата методом сравнения с эталоном (стандартом). Статистическая обработка результатов радиометрии.

Радиационный контроль продукции и сырья экспрессными методами. Прижизненный контроль содержания цезия-137 в мышечной ткани животных.

Определение уровня радиоактивной загрязненности кормов и продуктов животноводства по суммарной бета активности. Расчет активности относительным методом. Расчет поправки на самопоглощение

Спектрометрический метод идентификации изотопного состава радионуклидных загрязнений.

Радиационный контроль рыночной продукции гамма спектрометром СКС-99 «Спутник»

Измерение активности цезия-137 в объектах ветеринарного надзора спектрометром СКС-99 «Спутник».

Оценка соответствия проб продовольствия требованиям критериев радиационной безопасности с использованием программного обеспечения комплекса «Прогресс».

Определение абсолютной активности препарата методом сравнения с эталоном (стандартом). Статистическая обработка результатов радиометрии.

Расчет активности радионуклидов, разведение и приготовление рабочих растворов радионуклидов.

Изучение характера распределения меченых аминокислот в организме мышей

2 и виды занятий. № п/п

Федерации ПРИМЕРНАЯ ПРОГРАММА Наименование дисциплины «Биологическая... + + + 6 Ветеринарно -санитарная экспертиза 5.3. Разделы дисциплины и виды занятий. № п/п Наименование раздела дисциплины Лекции Лаборат... Зав. кафедрой радиобиологии , рентгенологии и...



Просмотров