Что такое радиация? Что такое радиация и ионизирующее излучение.

В современном мире случилось так, что нас окружает множество вредных и опасных вещей и явлений, большинство которых - дело рук самого человека. В данной статье мы поговорим о радиации, а именно: что такое радиация.

Понятие «радиация» происходит от латинского слова «radiatio» – лучеиспускание. Радиация – это ионизирующее излучение, распространяющееся в виде потока квантов или элементарных частиц.

Что делает радиация

Ионизирующим это излучение называют потому, что радиация, проникая сквозь любые ткани, ионизирует их частицы и молекулы, что приводит к образованию свободных радикалов, которые ведут к массовой гибели клеток ткани. Воздействие радиации на организм человека разрушительно и называется облучением.

В небольших дозах радиоактивное излучение не опасно, если не превышены опасные для здоровья дозы. При превышении норм облучения, следствием может стать развитие многих болезней (вплоть до рака). Последствия незначительных облучений сложно отследить, так как заболевания могут развиваться многие годы и даже десятилетия. Если же облучение было сильным, то это приводит к лучевой болезни, и к гибели человека, такие виды облучения возможны только при техногенных катастрофах.

Различают внутреннее и внешнее облучение. Внутреннее облучение может произойти при потреблении в пищу облученных продуктов, вдыхании радиоактивной пыли, или через кожу и слизистые оболочки.

Виды радиационных излучений

  • Альфа-излучение, это поток положительно заряженных частиц, образованных двумя протонами и нейтронами.
  • Бета-излучение, это излучение электронов (частиц с зарядом -) и позитронов (частиц с зарядом +).
  • Нейтронное излучение, это поток незаряженных частиц – нейтронов.
  • Излучение фотонов (гамма-излучение, рентгеновское излучение), это электромагнитное излучение, имеющее большую проникающую способность.

Источники радиации

  1. Природные: ядерные реакции, спонтанный радиоактивный распад радионуклидов, космические лучи и термоядерные реакции.
  2. Искусственные, то есть созданные человеком: ядерные реакторы, ускорители элементарных частиц, искусственные радионуклиды.

В чем измеряется радиация

Для обычного человека достаточно знать величину дозы и мощность дозы радиации.

Первый показатель характеризуется:

  • Экспозиционной дозой, она измеряется в Рентгенах (Р) и показывает силу ионизации.
  • Поглощенной дозой, которая измеряется в Греях (Гр) и показывает масштаб поражения организма.
  • Эквивалентной дозой (измеряется в Зивертах (Зв)), которая равна произведению поглощенной дозы и коэффициента качества, который зависит от вида радиационного излучения.
  • Каждый орган нашего организма имеет свой коэффициент радиационного риска, умножив его на эквивалентную дозу, мы получим эффективную дозу, которая показывает величину риска последствий облучения. Она измеряется в Зивертах.

Мощность дозы измеряется в Р/час, мЗв/с, то есть показывает силу потока радиации в течение определенного времени его воздействия.

Измерить уровень радиации можно с помощью специальных приборов – дозиметров.

Нормальным радиационным фоном считается 0,10-0,16 мкЗв в час. Безопасным считается уровень радиации до 30мкЗв/час. Если уровень радиации превышает данный порог, то время пребывания в зоне поражения сокращается пропорционально величине дозы (например, при 60 мкЗв/час, время облучения не больше получаса).

Чем выводят радиацию

В зависимости от источника внутреннего облучения можно использовать:

  • При выбросах радиоактивного йода – принимать до 0,25 мг иодида калия в день (взрослому человеку).
  • Для вывода из организма стронция и цезия используйте диету с высоким содержанием кальция (молоко) и калия.
  • Для выведения других радионуклидов можно использовать соки сильно окрашенных ягод (например, темный виноград).

Теперь Вы знаете, чем опасна радиация. Будьте внимательны к знакам, сигнализирующим о зонах заражения, и держитесь от этих зон подальше.

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.


Радиация и ионизирующие излучения

Слово «радиация» произошло от латинского слова «radiatio », что в переводе означает «сияние», «излучение».

Основное значение слова «радиация» (в соответствии со словарём Ожегова изд. 1953 года): излучение, идущее от какого-нибудь тела. Однако со временем оно было заменено на одно из его более узких значений - радиоактивное или ионизирующее излучение.

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Искусственная радиоактивность

В отличие от естественных источников радиации, искусственная радиоактивность возникла и распространяется исключительно силами людей. К основным техногенным радиоактивным источникам относят ядерное оружие, промышленные отходы, атомные электростанции - АЭС, медицинское оборудование, предметы старины, вывезенные из «запретных» зон после аварии Чернобыльской АЭС, некоторые драгоценные камни.

Радиация может попадать в наш организм как угодно, часто виной этому становятся предметы, не вызывающие у нас никаких подозрений. Лучший способ обезопасить себя — проверить своё жилище и находящиеся в нём предметы на уровень радиоактивности либо купить дозиметр радиации. Мы сами ответственны за свою жизнь и здоровье. Защитите себя от радиации!



В Российской Федерации существуют нормативы, регламентирующие допустимые уровни ионизирующего излучения. С 15 августа 2010 года и по настоящее время действуют санитарно-эпидемиологические правила и нормативы СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» .

Последние изменения были внесены 15 декабря 2010 года — СанПиН 2.1.2.2801-10 «Изменения и дополнения N 1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» .

Также действуют следующие нормативные документы, касающиеся ионизирующего излучения:

В соответствии с действующим СанПиН «мощность эффективной дозы гамма-излучения внутри зданий не должна превышать мощности дозы на открытой местности более чем на 0,2 мкЗв/час». При этом не сказано, какова же допустимая мощность дозы на открытой местности! В СанПиН 2.6.1.2523-09 написано, что «допустимое значение эффективной дозы , обусловленной суммарным воздействием природных источников излучения , для населения не устанавливается . Снижение облучения населения достигается путем установления системы ограничений на облучение населения от отдельных природных источников излучения», но при этом при проектировании новых зданий жилищного и общественного назначения должно быть предусмотрено, чтобы среднегодовая эквивалентная равновесная объемная активность дочерних изотопов радона и торона в воздухе помещений не превышала 100 Бк/м 3 , а в эксплуатируемых зданиях среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе жилых помещений не должна превышать 200 Бк/м 3 .

Однако в СанПиН 2.6.1.2523-09 в таблице 3.1 указано, что пределом эффективной дозы облучения для населения является 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год . Таким образом, можно рассчитать, что предельная мощность эффективной дозы равна 5мЗв разделить на 8760 часов (количество часов в году), что равно 0,57мкЗв/час .

О существовании невидимых смертоносных лучей сегодня осведомлены даже малые дети. С экранов компьютеров и телевизоров нас пугают страшными последствиями радиации: постапокалипсические фильмы и игры по-прежнему остаются модными. Однако лишь немногие могут дать внятный ответ на вопрос "что такое радиация?". И еще меньше людей осознают, насколько реальна угроза облучения. Причем, не где-то в Чернобыле или Хиросиме, а в своем собственном доме.

Что такое радиация?

На самом деле термин "радиация" не обязательно подразумевает "смертоносные лучи". Тепловая или, к примеру, солнечная радиация не несет практически никакой угрозы жизни и здоровью обитающих на поверхности Земли живых организмов. Из всех известных видов радиации реальную опасность представляет только ионизирующее излучение , которое физики также называют электромагнитным или корпускулярным. Вот оно-то и является той самой "радиацией", об опасности которой говорят с экранов телевизоров.

Ионизирующее гамма- и рентгеновское излучение — та "радиация", о которой говорят с экранов телевизоров

Особенность ионизирующего излучения состоит в том, что, в отличие от других видов излучения, оно обладает исключительно большой энергией и при взаимодействии с веществом вызывает ионизацию его молекул и атомов. Электрически нейтральные до облучения частицы вещества возбуждаются, вследствие чего образуются свободные электроны, а также положительно и отрицательно заряженные ионы.

Наиболее распространены четыре типа ионизирующего излучения: альфа, бета, гамма и рентгеновское (обладает теми же свойствами, что и гамма). Они состоят из разных частиц, а потому обладают разной энергией и, соответственно, разной проникающей способностью. Самое "слабое" в этом смысле альфа-излучение, которое представляет собой поток положительно заряженных альфа-частиц, неспособный "просочиться" даже через обычный лист бумаги (или кожу человека). Бета-излучение, состоящее из электронов, проникает сквозь кожу уже на 1-2 см, но и от него вполне реально защититься. А вот от гамма-радиации практически нет спасения: задержать высокоэнергичные фотоны (или гамма-кванты) может, разве что, толстая свинцовая или железобетонная стена. Впрочем, то, что альфа и бета-частицы легко остановить даже незначительной преградой вроде бумаги, вовсе не означает, что они никак не попадут в организм. Органы дыхания, микротравмы на коже и слизистых оболочках — "открытые ворота" для радиации с низкой проникающей способностью.

Единицы измерения и норма радиации

Основной мерой воздействия радиации принято считать экспозиционную дозу. Она измеряется в Р (рентгенах) или производных (мР, мкР) и представляет собой общее количество энергии, которое источник ионизирующего излучения успел передать предмету или организму в процессе облучения. Так как разные виды радиации обладают разной степенью опасности при одном и том же количестве переданной энергии, принято рассчитывать еще один показатель — эквивалентную дозу. Она измеряется в Б (бэрах), Зв (зивертах) или их производных и рассчитывается, как произведение экспозиционной дозы на коэффициент, характеризующий качество излучения (для бета и гамма-излучения коэффициент качества равен 1, для альфа — 20). Для оценки силы самого ионизирующего излучения используют другие показатели: мощность экспозиционной и эквивалентной дозы (измеряется в Р/сек или производных: мР/сек, мкР/час, мР/час), а также плотность потока (измеряется в (см 2 ·мин) -1) для альфа и бета-излучения.

Сегодня принято считать, что ионизирующее излучение с мощностью дозы ниже 30 мкР/час абсолютно безопасно для здоровья. Но все относительно… Как показали последние исследования, разные люди обладают разной устойчивостью к воздействию ионизирующего излучения. Примерно 20% обладают повышенной чувствительностью, столько же — пониженной. Последствия облучения малыми дозами обычно проявляются спустя годы или не проявляются вовсе, сказываясь только на потомках пораженного радиацией человека. Так что, безопасность малых доз (незначительно превышающих норму) до сих пор остается одним из самых обсуждаемых вопросов.

Радиация и человек

Итак, в чем же состоит влияние радиации на здоровье человека и других живых существ? Как уже было отмечено, ионизирующее излучение различными путями проникает в организм и вызывает ионизацию (возбуждение) атомов и молекул. Далее, под воздействием ионизации в клетках живого организма образуются свободные радикалы, которые нарушают целостность белков, ДНК, РНК и др. сложных биологических соединений. Что в свою очередь приводит к массовой гибели клеток, канцеро- и мутагенезу.

Другими словами, влияние радиации на организм человека разрушительно. При сильном облучении негативные последствия проявляются практически сразу: высокие дозы вызывают лучевую болезнь разных степеней тяжести, ожоги, слепоту, возникновение злокачественных новообразований. Но не менее опасны и малые дозы, до недавних пор считавшиеся "безвредными" (сегодня к такому выводу приходит все большее число исследователей). Отличие состоит лишь в том, что последствия радиации сказываются не сразу, а по прошествии нескольких лет, иногда десятилетий. Лейкозы, раковые опухоли, мутации, уродства, нарушения ЖКТ, системы кровообращения, психического и умственного развития, шизофрения — вот далеко не полный список заболеваний, которые способны вызвать малые дозы ионизирующего излучения.

Даже небольшое облучение приводит к катастрофическим последствиям. Но особенно опасна радиация для маленьких детей и пожилых людей. Так, по данным специалистов нашего сайта www.сайт, вероятность возникновения лейкемии при облучении малыми дозами увеличивается в 2 раза для детей младше 10 лет и в 4 раза для младенцев, находившихся на момент облучения в утробе матери. Радиация и здоровье в буквальном смысле слова не совместимы!

Защита от радиации

Характерная особенность радиации состоит в том, что она не "растворяется" в окружающей среде, подобно вредным химическим соединениям. Даже после устранения источника излучения, фон долгое время остается повышенным. Поэтому ясного и однозначного ответа на вопрос "как бороться с радиацией?" не существует до сих пор. Понятно, что на случай ядерной войны (к примеру) придуманы специальные средства защиты от радиации: спецкостюмы, бункеры и пр. Но это для "чрезвычайных ситуаций". А как быть с малыми дозами, которые до сих пор многие считают "практически безопасными"?

Известно, "спасение утопающих — дело рук самих утопающих". Пока исследователи решают, какую дозу следует признать опасной, а какую — нет, лучше самому купить прибор, измеряющий радиацию и за версту обходить территории и предметы, даже если они "фонят" совсем немного (заодно решится вопрос "как распознать радиацию?", ведь с дозиметром в руках Вы всегда будете в курсе окружающего фона). Тем более что в современном городе радиацию можно встретить в любых, даже самых неожиданных местах.

И напоследок пара слов о том, как вывести радиацию из организма. Чтобы максимально ускорить очищение, врачи рекомендуют:

1. Физические нагрузки, баня и сауна — ускоряют обмен веществ, стимулируют кровообращение и, следовательно, способствуют выведению любых вредных веществ из организма естественным путем.

2. Здоровое питание — особенное внимание следует уделить овощам и фруктам, богатым антиоксидантами (именно такую диету прописывают онкологическим больным после химиотерапии). Целые "залежи" антиоксидантов содержатся в чернике, клюкве, винограде, рябине, смородине, свекле, гранатах и других кислых и кисло-сладких плодах красных оттенков.

Радиация предстает перед нами в образе
«незримого, коварного и смертельно опасного врага, подстерегающего на каждом шагу».
Её нельзя увидеть, нельзя пощупать, она незаметна..

Это вызывает у людей, некий трепет и ужас, особенно при отсутствии понимания, что же такое собственно это такое..
Более ясное представление о том, что же такое радиация,
о бытовой опасности радиации и радиоактивности вы будете иметь, прочитав данную статью..

РАДИОАКТИВНОСТЬ, РАДИАЦИЯ И РАДИАЦИОННЫЙ ФОН:

1. ЧТО ТАКОЕ РАДИОАКТИВНОСТЬ И РАДИАЦИЯ.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

2. КАКАЯ БЫВАЕТ РАДИАЦИЯ?

Различают несколько видов радиации:

— Альфа-частицы: относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.

— Бета-частицы - это просто электроны.

— Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.

— Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.

Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.
Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

* Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток.

Но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи).

* Следует различать радиоактивность и радиацию.
Источники радиации - радиоактивные вещества или ядерно-технические установки
(реакторы, ускорители, рентген.оборудование и т.п.) — могут существовать значительное время,
а радиация существует лишь до момента своего поглощения в каком-либо веществе.

3. К ЧЕМУ МОЖЕТ ПРИВЕСТИ ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.

Облучение может вызвать:
— нарушение обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций, как следствие облучения человека, то таковых еще ни разу не удалось обнаружить.
Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга "Жизнь после Чернобыля" шведских ученых С.Кулландера и Б.Ларсона).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

4. КАК РАДИАЦИЯ МОЖЕТ ПОПАСТЬ В ОРГАНИЗМ?



Организм человека реагирует на радиацию, а не на ее источник.
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике.
В этом случае говорят о внутреннем обучении.

Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего.

5. ПЕРЕДАЕТСЯ ЛИ РАДИАЦИЯ КАК БОЛЕЗНЬ?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать» тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» - вместе с обычной грязью - может быть передана при контакте другому человеку.

Передача грязи приводит к ее быстрому разбавлению до безопасных пределов, В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии)

6. В КАКИХ ЕДИНИЦАХ ИЗМЕРЯЕТСЯ РАДИОАКТИВНОСТЬ?


Мерой радиоактивности служит активность.
Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду.
Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки).
Это - огромная величина: 1 Ки = 37000000000 Бк.

Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.

Как было сказано выше, при этих распадах источник испускает ионизирующее излучения.
Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза.
Она часто измеряется в Рентгенах (Р).
Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.

Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы.
Единица измерения мощности экспозиционной дозы - микроРентген/час.

Мощность дозы, умноженная на время, называется дозой.
Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).


Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час.
В быту можно считать, что 1 Зиверт = 100 Рентген.
Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри,
(для определенности рассматриваем источник цезий-137), на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час.
Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: "Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тыс.рентген при норме 20 "

* Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген - это то же самое, что мешок картошки весом в столько-то минут.
Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

* Во-вторых, можно высказать следующие соображения:
10 тысяч рентген/час - достаточно большая величина.
С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час!

Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику.
Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать,
что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час.
Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем 100р- купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о "норме 20" можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. 20 микроРентген/час.
Кстати, такой нормы нет.

Поэтому правильно сообщение, по-видимому, должно выглядеть так:
«Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том,что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».

7. ЧТО ТАКОЕ ИЗОТОПЫ?

В таблице Менделеева более 100 химических элементов.
Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента.
Известно около 2000 изотопов, из которых около 300 - стабильные.
Например, у первого элемента таблицы Менделеева - водорода - существуют следующие изотопы:
- водород Н-1 (стабильный),
- дейтерий Н-2 (стабильный),
- тритий Н-3 (радиоактивный, период полураспада 12 лет).

Радиоактивные изотопы обычно называют радионуклидами.

8. ЧТО ТАКОЕ ПЕРИОД ПОЛУРАСПАДА?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.

Абсолютно ошибочной является следующая трактовка понятия "период полураспада" :
"если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)".

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда.
В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом.
Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида - свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно.
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

ПО ПРОИСХОЖДЕНИЮ РАДИОАКТИВНОСТЬ ДЕЛЯТ НА ЕСТЕСТВЕННУЮ (природную) И ТЕХНОГЕННУЮ:

9. ЧТО ВОКРУГ НАС РАДИОАКТИВНО?
(Воздействие на человека тех или иных источников радиации поможет оценить диаграмма 1 - см. рис внизу)

а) ЕСТЕСТВЕННАЯ РАДИОАКТИВНОСТЬ.
Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях - дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне,
в стройматериалах, из которых они построены, содержится природная радиоактивность.

б) РАДОН (вносит существенный вклад в облучение человека как сам, так и продукты его распада)

Основным источником этого радиоактивного инертного газа является земная кора.
Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях.
Другой источник радона в помещении - это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона.

Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.

Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

Основную часть дозы облучения от радона человек получает, находясь в закрытом,
непроветриваемом помещении;
регулярное проветривание может снизить концентрацию радона в несколько раз.

При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.

Сравнить мощность излучения различных источников радона поможет диаграмма 2.
(см рис ниже - Сравнительная мощность различных источников радона)

в) ТЕХНОГЕННАЯ РАДИОАКТИВНОСТЬ.:

Техногенная радиоактивность возникает вследствие человеческой деятельности

Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона.

Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.

Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40.

Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.

Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.

И, конечно, свой вклад дают испытания ядерного оружия(ЯО), предприятия атомной энергетики и промышленности.

* Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п.
Такие ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.

Для сравнения, вклад Чернобыля в суммарную коллективную дозу радиации, которую получат россияне и украинцы, проживающие на загрязненных территориях, в предстоящие 50 лет составит всего 2%,тогда как 60% дозы будут определяться естественной радиоактивностью.

10. РАДИАЦИОННАЯ ОБСТАНОВКА В РОССИИ?

Радиационная обстановка в разных регионах России освещается в государственном ежегодном документе "О состоянии окружающей природной среды Российской Федерации".
Также доступна информация о радиационной обстановке в отдельных регионах.


11.. КАК ВЫГЛЯДЯТ ЧАСТО ВСТРЕЧАЕМЫЕ РАДИОАКТИВНЫЕ ПРЕДМЕТЫ?

Согласно данным МосНПО "Радон", более 70 процентов всех выявляемых в Москве случаев радиоактивных загрязнений приходится на жилые массивы с интенсивным новым строительством и зеленые зоны столицы.

Именно в последних в 50-60-е годы располагались свалки бытового мусора, куда свозились также низкорадиоактивные промышленные отходы, считавшиеся тогда относительно безопасными.
Похожая ситуация и в С.-Петербурге.

Кроме того, носителями радиоактивности могут быть отдельные предметы, изображенные на рисунках. прикрепленных к статье(описание смотри под рисунками), а именно:

Радиоактивный переключатель (тумблер) :
Переключатель со светящимся в темноте тумблером, кончик которого покрашен светосоставом постоянного действия на основе солей радия. Мощность дозы при измерениях «в упор» - около 2 миллиРентген/час.

Авиационные часы АЧС с радиоактивным циферблатом:
Часы с циферблатом и стрелками выпуска до 1962 г., флуоресцирующими благодаря радиоактивной краске. Мощность дозы вблизи часов около 300 микроРентген/час.

— Радиоактивные трубы из металлолома:
Обрезки отработавших труб из нержавеющей стали, применявшихся в технологических процессах на предприятии атомной промышленности, но каким-то образом попавшие в металлолом. Мощность дозы может быть весьма значительной.

— Переносной контейнер с источником радиации внутри:
Переносной свинцовый контейнер, внутри которого может находиться миниатюрная металлическая капсула, содержащая радиоактивный источник (например, цезий-137 или кобальт-60). Мощность дозы от источника без контейнера может быть очень большой.

12.. ЯВЛЯЕТСЯ ЛИ КОМПЬЮТЕР ИСТОЧНИКОМ РАДИАЦИИ?

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ);
дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.

Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ.

Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99. Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.

Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission»

При выполнении заказов на радиационный контроль офисов ряда организаций г.Москвы, сотрудниками ЛРК-1 было проведено дозиметрическое обследование около 50 мониторов на ЭЛТ разных марок, с размером диагонали экрана от 14 до 21 дюйма.
Во всех случаях мощность дозы на расстоянии 5 см от мониторов не превосходила 30 мкР/час,
т.е. с трехкратным запасом укладывалась в допустимую норму (100 мкР/час).

13. ЧТО ТАКОЕ НОРМАЛЬНЫЙ РАДИАЦИОННЫЙ ФОН или НОРМАЛЬНЫЙ УРОВЕНЬ РАДИАЦИИ?

На Земле существуют населенные области с повышенным радиационным фоном.

Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря.
Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория - в Индии (штат Керала) и Бразилии (штат Эспириту-Санту).
Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер).
Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности.

Кроме того, даже для конкретной местности не существует "нормального фона" как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.

В любом месте, даже для неосвоенных территорий, где "не ступала нога человека",
радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Москве позволяют указать
ТИПИЧНЫЕ ЗНАЧЕНИЯ ФОНА НА УЛИЦЕ (открытой местности) - 8 - 12 мкР/час,
В ПОМЕЩЕНИИ - 15 - 20 мкР/час.

Нормы, действующие в России, изложены в документе "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы" (СанПиН СанПиН 2.2.2/2.4.1340-03)

14.. КАКИЕ БЫВАЮТ НОРМЫ РАДИОАКТИВНОСТИ?

В отношении радиоактивности существует очень много норм - нормируется буквально все.
Во всех случаях проводится различие между населением и персоналом, т.е. лицами,
чья работа связана с радиоактивностью (работники АЭС, ядерной промышленности и т.п.).
Вне своего производства персонал относится к населению.
Для персонала и производственных помещений устанавливаются свои нормы.

Далее будем говорить только о нормах для населения - той их части, которая прямо связана с обычной жизнедеятельностью, опираясь на Федеральный Закон "О радиационной безопасности населения" № 3-ФЗ от 05.12.96 и "Нормы радиационной безопасности (НРБ-99). Санитарные правила СП 2.6.1.1292-03".

Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам.

а) ВОЗДУХ, ПРОДУКТЫ ПИТАНИЯ, ВОДА:
Для вдыхаемого воздуха, воды и продуктов питания нормируется содержание как техногенных, так и естественных радиоактивных веществ.
В дополнение к НРБ-99 применяются "Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2.560-96)".

б) СТРОЙМАТЕРИАЛЫ

Нормируется содержание радиоактивных веществ из семейств урана и тория, а также калий-40 (в соответствии с НРБ-99).
Удельная эффективная активность (Аэфф) естественных радионуклидов в строительных материалах, используемых для вновь строящихся жилых и общественных зданий (1 класс),

Аэфф = АRa +1,31АTh + 0,085 Ак не должна превышать 370 Бк/кг,

где АRa и АTh - удельные активности радия-226 и тория-232, находящиеся в равновесии с остальными членами уранового и ториевого семейств, Ак - удельная активность К-40 (Бк/кг).

* Также применяются ГОСТ 30108-94:
"Материалы и изделия строительные.
Определение удельной эффективной активности естественных радионуклидов" и ГОСТ Р 50801-95 "
Древесное сырье, лесоматериалы, полуфабрикаты и изделия из древесины и древесных материалов. Допустимая удельная активность радионуклидов, отбор проб и методы измерения удельной активности радионуклидов".

Отметим, что согласно ГОСТ 30108-94 за результат определения удельной эффективной активности в контролируемом материале и установления класса материала принимается значение

Аэфф м = Аэфф + DАэфф, где DАэфф - погрешность определения Аэфф.

в) ПОМЕЩЕНИЯ

Нормируется суммарное содержание радона и торона в воздухе помещений:

для новых зданий - не более 100 Бк/м3, для уже эксплуатируемых - не более 200 Бк/м3.

г) МЕДИЦИНСКАЯ ДИАГНОСТИКА

Не устанавливаются предельные дозовые значения для пациентов, однако выдвигается требование минимально достаточных уровней облучения для получения диагностической информации.

д) КОМПЬЮТЕРНАЯ ТЕХНИКА

Мощность экспозиционной дозы рентгеновского излучения на расстоянии 5 см от любой точки видеомонитора или персональной ЭВМ не должна превышать 100 мкР/час. Норма содержится в документе "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы" (СанПиН 2.2.2/2.4.1340-03).

15. КАК ЗАЩИТИТЬСЯ ОТ РАДИАЦИИ? ПОМОГАЕТ ЛИ ОТ РАДИАЦИИ АЛКОГОЛЬ?

От источника радиации защищаются временем, расстоянием и веществом.

— Временем - в следствии того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.

— Расстоянием - благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния).
Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час,
то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.

— Веществом - необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

* Что касается главного источника облучения в помещениях - радона и продуктов его распада,
то регулярное проветривание позволяет значительно уменьшить его дозовую нагрузку.

* Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы - благо их ассортимент ныне чрезвычайно богат.

* Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.

* Существуют также и народные рецепты помогающие бороться и очищать организм от радиации.
у них вы узнаете уже сегодня)

16. КОГДА ДУМАТЬ О РАДИАЦИИ?

В обыденной мирной, пока еще, жизни крайне мала вероятность столкнуться с источником радиации, представляющим непосредственную угрозу для здоровья.
в местах наиболее вероятного обнаружения источников радиации и локальных радиоактивных загрязнений - (свалки, котлованы, склады металлолома).

Тем не менее именно в обыденной жизни о радиоактивности следует вспомнить.
Это полезно сделать:

При покупке квартиры, дома, земельного участка,
--при планировании строительных и отделочных работ,
--при выборе и приобретении строительных и отделочных материалов для квартиры или дома,
а также материалов для благоустройства территории вокруг дома (грунт насыпных газонов, насыпные покрытия для теннисных кортов, тротуарная плитка и брусчатка и т.д.).

—к тому же мы всегда должны помнить о вероятности БП

Следует все-таки отметить, что радиация - далеко не самая главная причина для постоянного беспокойства. По разработанной в США шкале относительной опасности различных видов антропогенного воздействия на человека, радиация находится на 26-м месте, а первые два места занимают тяжелые металлы и химические токсины.

СРЕДСТВА И МЕТОДЫ ИЗМЕРЕНИЯ РАДИАЦИИ


Дозиметры. Эти приборы с каждым днем приобретают все большую популярность.

После аварии в Чернобыле, тема радиации перестала быть интересом только узкого круга специалистов.

Многие люди стали больше беспокоится об опасности, которую она может в себе нести. Сейчас уже нельзя до конца быть уверенным в чистоте продуктов питания, которыми торгуют на рынках и в магазинах, а также в безопасности воды в природных источниках.

Данный прибор для измерения перестал быть экзотикой и стал одним из бытовых приборов, который помогает определить безопасность нахождения в том или ином месте, а также " норму "(в этой области) приобретаемых стройматериалов, вещей, продуктов и т.п.

а потому давайте разберемся


1. ЧТО ИЗМЕРЯЕТ И ЧЕГО НЕ ИЗМЕРЯЕТ ДОЗИМЕТР.

Дозиметр измеряет мощность дозы ионизирующего излучения непосредственно в том месте, где он находится.

Основное предназначение бытового дозиметра - измерение мощности дозы в том месте, где этот дозиметр находится (в руках человека, на грунте и т.д.) и проверка тем самым на радиоактивность подозрительных предметов.

Однако скорее всего, Вам удастся заметить только достаточно серьезные повышения мощности дозы.

Поэтому индивидуальный дозиметр поможет прежде всего тем, кто часто бывает в районах, загрязненных в результате аварии на ЧАЭС (как правило, все эти места хорошо известны).

Кроме того, такой прибор может быть полезен в незнакомой удаленной от цивилизации местности (например при сборе ягод и грибов в достаточно "диких" местах), при выборе места для строительства дома, для предварительной проверки привозного грунта при ландшафтном благоустройстве.

Повторим, однако, что в этих случаях полезен он будет только при весьма существенных радиоактивных загрязнениях, которые встречаются нечасто.

Не очень сильные, но, тем не менее, небезопасные загрязнения бытовым дозиметром обнаружить очень трудно. Для этого нужны совершенно другие методы, которые могут использовать только специалисты.

Относительно возможности проверять с помощью бытового дозиметра соответствие радиационных параметров установленным нормам можно сказать следующее.

Дозовые показатели (мощность дозы в помещениях, мощность дозы на местности) для отдельных точек проверить можно. Однако бытовым дозиметром очень трудно обследовать все помещение и добиться уверенности в том, что не пропущен локальный источник радиоактивности.

Почти бесполезно пытаться измерять радиоактивность продуктов питания или стройматериалов с помощью бытового дозиметра.

Дозиметр способен выявить разве что ОЧЕНЬ СИЛЬНО загрязненные продукты или строительные материалы, содержание радиоактивности в которых в десятки раз превосходит допустимые нормы.

Напомним, что для продуктов и строительных материалов нормируется не мощность дозы, а содержание радионуклидов, а дозиметр принципиально не позволяет измерять этот параметр.
Здесь опять же нужны другие методы и работа специалистов.

2. КАК ПРАВИЛЬНО ПОЛЬЗОВАТЬСЯ ДОЗИМЕТРОМ?

Следует пользоваться дозиметром в соответствии с прилагаемой к нему инструкцией.

Также необходимо учитывать, что при любых измерениях радиации присутствует естественный радиационный фон.

Поэтому сначала выполняют измерение дозиметром уровня фона, характерного для данного участка местности (на достаточном удалении от предполагаемого источника радиации), после чего выполняют измерения уже в присутствии предполагаемого источника радиации.

Наличие устойчивого превышения над уровнем фона может свидетельствовать об обнаружении радиоактивности.

В том, что показания дозиметра в квартире больше в 1,5 - 2 раза, чем на улице, нет ничего необычного.

Кроме того, необходимо учитывать, что при измерениях на "уровне фона" в одном и том же месте прибор может показать, например, 8, 15 и 10 мкР/час.
Поэтому для получения достоверного результата рекомендуют провести несколько измерений и затем вычислить среднее арифметическое. В нашем примере среднее составит (8+15+10)/3 = 11 мкР/час.

3. КАКИЕ БЫВАЮТ ДОЗИМЕТРЫ?

* В продаже можно встретить как бытовые, так и профессиональные дозиметры.
Последние имеют целый ряд принципиальных преимуществ. Однако, эти приборы весьма дороги (в десять и более раз дороже бытового дозиметра), а ситуации, когда эти преимущества могут быть реализованы, крайне редки в быту. Поэтому приобретать надо бытовой дозиметр.

Особо следует сказать о радиометрах для измерения активности радона: хотя они бывают только в профессиональном исполнении, но их использование в быту может быть оправданным.

* Подавляющее большинство дозиметров являются прямопоказывающими, т.е. с их помощью можно получить результат сразу после измерения.

Существуют и непрямопоказывающие дозиметры, не имеющие никаких устройств питания и индикации, исключительно компактные (часто в виде брелока).
Их предназначение - индивидуальный дозиметрический контроль на радиационно-опасных объектах и в медицине.

Поскольку провести перезарядку такого дозиметра или считать его показания можно только с помощью специальной стационарной аппаратуры, его нельзя использовать для принятия оперативных решений.

* Дозиметры бывают беспороговые и пороговые. Последние позволяют обнаружить только превышение редустановленного изготовителем нормативного уровня радиации по принципу "да-нет" и благодаря этому просты и надежны в эксплуатации, стоят дешевле беспороговых примерно в 1,5 - 2 раза.

Как правило, беспороговые дозиметры можно эксплуатировать и в пороговом режиме.

4. БЫТОВЫЕ ДОЗИМЕТРЫ В ОСНОВНОМ РАЗЛИЧАЮТСЯ ПО СЛЕДУЮЩИМ ПАРАМЕТРАМ:

— типы регистрируемых излучений - только гамма, или гамма и бета;

— тип блока детектирования - газоразрядный счетчик (также известен как счетчик Гейгера) или сцинтилляционный кристалл/пластмасса; количество газоразрядных счетчиков варьируется от 1 до 4-х;

— размещение блока детектирования - выносной или встроенный;

— наличие цифрового и/или звукового индикатора;

— время одного измерения - от 3 до 40 секунд;

— наличие тех или иных режимов измерения и самодиагностики;

— габариты и вес;

— цена, в зависимости от комбинации вышеперечисленных параметров.

5. ЧТО ДЕЛАТЬ, ЕСЛИ ДОЗИМЕТР "ЗАШКАЛИВАЕТ" ИЛИ ЕГО ОКАЗАНИЯ НЕОБЫЧНО БОЛЬШИЕ?

— Убедиться, что при удалении дозиметра от того места, где его "зашкаливает", показания прибора приходят в норму.

— Убедиться, что дозиметр исправен (большинство приборов такого рода имеют специальный режим самодиагностики).

— Нормальную работоспособность электрической схемы дозиметра могут частично или полностью нарушать замыкания, протечки батареек, сильные внешние электромагнитные поля. Если есть возможность, желательно продублировать измерения с помощью другого дозиметра, желательно другого типа.

Если же вы уверены, что обнаружили источник или участок радиоактивного загрязнения, НИ В КОЕМ СЛУЧАЕ не следует пытаться самостоятельно избавиться от него (выбросить, закопать или спрятать).

Следует как-то обозначить место своей находки, и обязательно сообщить о ней службам, в чьи обязанности входит обнаружение, идентификация и захоронение бесхозных радиоактивных источников.

6. КУДА ЗВОНИТЬ В СЛУЧАЕ ОБНАРУЖЕНИЯ ВЫСОКОГО УРОВНЯ РАДИАЦИИ?

Главное управление МЧС РФ по РС(Я), оперативный дежурный: тел: /4112/ 42-49-97
-Управление федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по РС(Я) тел: /4112/ 35-16-45, факс: /4112/ 35-09-55
-Территориальные органы Министерства охраны природы РС(Я)

(заранее узнайте номера телефонов для таких случаев в своем регионе)

7. КОГДА СТОИТ ОБРАТИТСЯ К СПЕЦИАЛИСТАМ ДЛЯ ИЗМЕРЕНИЯ РАДИАЦИИ?

Подходы типа "Радиоактивность - это очень просто!" или "Дозиметрия - своими руками" себя не оправдывают. В большинстве случаев непрофессионал не может правильно трактовать число, высветившееся на табло дозиметра в результате проведенного замера. Соответственно, он не может самостоятельно принять решение о радиационной безопасности подозрительного объекта, рядом с которым этот замер был проведен.

Исключение составляет ситуация, когда дозиметр показал очень большое число. Тут все ясно: отойти подальше, проверить показания дозиметра вдали от места аномального показания и, если показания стали обычными, то, не возвращаясь к "плохому месту", быстро уведомить соответствующие службы.

К специалистам (в соответствующим образом аккредитованные лаборатории) необходимо обращаться в тех случаях, когда необходимо ОФИЦИАЛЬНОЕ заключение о соответствии того или иного товара действующим нормам радиационной безопасности.

Такие заключения обязательны для продуктов, которые могут концентрировать в себе радиоактивность с места произрастания: ягоды и сушеные грибы, мед, лекарственные травы. При этом для товарных партий продуктов радиационный контроль обойдется продавцу лишь в доли процента от стоимости партии.

При покупке земельного участка или квартиры не помешает убедиться в соответствии их естественной радиоактивности действующим нормам, а также в отсутствии техногенного радиационного загрязнения.

Если вы все таки решили приобрести себе индивидуальный бытовой дозиметр, серьезно отнеситесь к этому вопросу.

(Лаборатория радиационного контроля ЛРК-1 МИФИ)



Просмотров