Проведения вероятностного анализа безопасности на атомной станции. Вероятностный анализ безопасности как основа для принятия решений по управлению радиационным риском от аэс

Специалисты в области ядерной энергетики различают понятия надежности и безопасности ЯЭУ.

Надежность ЯЭУ – это ее свойство вырабатывать полезную энергию (тепловую, электрическую, механическую) требуемых параметров по заданному графику нагрузки в допустимых для нормальной эксплуатации радиационных условиях при заданной системе технического обслуживания и ремонтов оборудования.

Безопасность ЯЭУ – это ее свойство обеспечивать с помощью технических средств и организационных мер непревышение установленных доз по внутреннему и внешнему облучению персонала и населения, а также нормативов по содержанию радиоактивных продуктов в окружающей среде при нормальной эксплуатации и проектных авариях, т.е. таких авариях, против которых в проекте предусмотрена специальная защита.

Как видно из приведенных определений, надежность и безопасность, являясь свойствами, должны обеспечивать определенные потребительские качества ЯЭУ. Если безопасность обеспечивает только недопущение ущербов (в том числе и для населения),то надежность ЯЭУ обеспечивает также и экономичность эксплуатации ЯЭУ. Поскольку обеспечение безопасности ЯЭУ требует затрат (имеет определенную цену), то оно неизбежно приходит в противоречие с экономическими показателями ЯЭУ. Двойственность целей при обеспечении надежности ЯЭУ – с одной стороны, обеспечить экономичность, а с другой – безопасность ЯЭУ, делает свойство надежности ЯЭУ определяющим.

Обеспечению НиБ ЯЭУ с самого начала развития ядерной энергетики уделялось значительное внимание. Ответственные и квалифицированные специалисты всегда понимали важность этих свойств ЯЭУ и старались его обеспечить с запасом (иногда в ущерб экономичности). Достаточно привести пример с Первой в мире АЭС в г. Обнинске, пятидесятилетие которой было отмечено в июне 2004г. Основные ее системы за все время эксплуатации не выработали свой ресурс.

За время существования ядерной энергетики выработались определенные система и культура обеспечения НиБ ЯЭУ как сложных и потенциально опасных технических систем. Все важные для безопасности элементы и устройства дублируются (элементное резервирование), контроль состояния и режимов работы ЯЭУ осуществляется по многим параметрам приборами, использующими разные физические явления и принципы действия (функциональное резервирование). Все важные системы обслуживаются и ремонтируются по строго определенным графикам с последующим контролем качества. Такому важному фактору как квалификация и дисциплина обслуживающего персонала, уделяется самое серьезное внимание.

Заметим, однако, что абсолютно надежных технических систем в природе не существует. Если бы можно было создать такую систему, то можно смело утверждать, что она была бы и абсолютно бесполезной, т.к. весь положительный эффект от нее ушел бы на обеспечение ее собственной надежности. Это утверждение справедливо и для ЯЭУ. Поэтому на случай отказов оборудования предусматриваются системы, обеспечивающие их безопасность. Эти системы также могут отказывать. Поэтому они резервируются по тем же принципам, что и основное оборудование ЯЭУ.



Комплексное решение задачи по обеспечению НиБ ЯЭУ невозможно без их количественной оценки. Всегда нужен количественный критерий, определяющий достаточность принятых мер. Разработкой и применением специфических количественных методов оценки показателей НиБ ЯЭУ занимается большое число квалифицированных специалистов, основные усилия которых направлены на обеспечение необходимых точности и достоверностиоценок. Поскольку по своей природе отказы оборудования являются случайными событиями, то разработана и используется специальная технология оценок показателей НиБ ЯЭУ, имеющая специальное название – вероятностный анализ безопасности (ВАБ) . ВАБ представляет собой системный анализ причин возникновения, всевозможных путей развития и последствий аварий на ЯЭУ с использованием широкого спектра физических, теплотехнических методов, механики разрушения и ряда других, дополненных анализом надежности средств обеспечения безопаснос, а также новейших достижений теории вероятности, математической статистики, теории случайных процессов, алгебры логики и других.

В процессе проведения ВАБ обычно выделяют несколько основных этапов. ВАБ уровня 0 – оценка интенсивности исходных событий аварий и анализ надежности систем безопасности. ВАБ уровня 1 анализ аварийных процессов, которые могут привести к разрушению активной зоны, основных причин разрушения и частоты их возникновения. ВАБ уровня 2 предусматривает анализ теплофизических и химических процессов плавления активной зоны. Определяются возможные виды отказов защитной оболочки. Рассматриваются процессы выделения р/а продуктов из топлива, распространения их в пределах защитной оболочки и выхода за предусмотренные границы локализации. Результатом анализа является верочтностное распределение выбросов с различным количеством радиоактивных продуктов в окружающую среду. ВАБ уровня 3 посвящен анализу распространения радионуклидов в окружающей среде и воздействие их на население. При этом также учитываются экономические последствия аварий.

Основным понятием, которым оперируют при проведении ВАБ ЯЭУ, является риск . Это понятие является синтетическим и учитывает как неопределенности во времени появления и масштабах проявления нежелательных событий, так и ущерб от них. Интуитивное понимание риска всегда связывается с вероятностной природой событий. Если наступление или ненаступление неблагоприятного события в данных конкретных условиях предопределенно, то о риске говорить бессмысленно. В первом случае необходимо принимать меры по предотвращению события, которое обязательно наступит, если не изменить условия, приводящие к его появлению. Если событие определенно не наступает, то нет необходимости включать его в рассмотрение. Если случайное событие не приводит к ущербу, то интуитивно ясно, что его тоже можно не принимать во внимание при оценке риска, т.к. в этом случае просто нечем рисковать.

Количественной мерой риска R принято считать следующую математическую конструкцию:

где N – число рассматриваемых событий;

0 < Р i < 1 – вероятность наступления i-го события;

С i – ущерб от i-го события, если оно наступит.

Входящие в правую часть записанного равенства величины должны удовлетворять следующим условиям:

1) ущербы С i должны измеряться в одних и тех же единицах;

2) рассматриваемые события должны быть несовместны, т.е. наступление одного из них должно означать, что остальные (или любые сочетания из них) не наступили;

3) система рассматриваемых событий должна быть полной, т.е. должна включать в себя всю совокупность ситуаций, которые в принципе могут произойти на ЯЭУ (в том числе и ситуацию нормальной эксплуатации).

Последнее условие означает, что в рассмотрение должны быть включены и ущербы (облучение персонала в пределах норм, материальные затраты на противоаварийные мероприятия и др.), которые неизбежно возникают также и при нормальной эксплуатации ЯЭУ. Формально условие 3) записывается так:

.

Тогда риск R есть ни что иное, как среднее значение ущерба от работы ЯЭУ в данных конкретных условиях.

Часто рассматривают условный риск , т.е. риск только от неприятных событий на ЯЭУ, при условии, что какое-либо из них произошло. Условный риск R ус может быть вычислен по формуле

,

где считается, что событию нормальной эксплуатации присвоенномер N итогда .

Построение системы событий, по которой оценивается риск от ЯЭУ – сложный итерационный процесс. В него на разных стадиях проведения ВАБ включаются многие специалисты, в том числе экологи, радиобиологи, экономисты, сотрудники регулирующих органов, а также общественность. В странах, где ВАБ для ядерных технологий получил достаточное развитие, участие общественности в построении наиболее полной системы событий для оценки риска считается естественным и только приветствуется. Это гарантирует, что при проведении ВАБ ЯЭУ какие-либо важные детали при оценке риска не будут упущены, а также повышает уверенность правительственных учреждений в том, чтоих решении по развитию и/или модернизации ядерных технологий будут поняты общественностью правильно. Успех ВАБ ЯЭУ может быть достигнут только в случае, когда система событий, для которой должен оцениваться риск от ЯЭУ, принята всеми заинтересованными сторонами. Достоверная оценка вероятностей неблагоприятных событий при анализе риска является основной задачей при расчёте количественных показателей надежности ЯЭУ.

Следует отметить, что важнейшим в обеспечении НиБ ЯЭУ является человеческий фактор. Как уже отмечено выше, по оценкам специалистов примерно 70% крупных инцидентов на ЯЭУ или произошли из-за ошибок персонала, или сопровождались ими. Однако как раз учет вероятностей ошибок человека наиболее труден при проведении ВАБ . Второй трудностью является получение достоверных исходных данных по показателям надежности отдельных элементов и узлов ЯЭУ. У этой трудности есть причины как объективного, так и субъективного характера. Так как обеспечению надежности элементов и узлов ЯЭУ уделяется серьезное внимание и они, как правило, выпускаются малыми сериями или в единичных экземплярах, то статистика по их отказам крайне мала или отсутствует вовсе. Поэтому достоверная оценка показателей надежности таких элементов и узлов, в принципе, нетривиальная задача. Это – объективная причина . К субъективным причинам следует отнести трудности в организации сбора достоверной информации по отказам важных для безопасности элементов и узлов ЯЭУ.

Оценки второй компоненты риска – ущерба – также должны проводиться по определенным правилам. Здесь также есть некоторые проблемы, в том числе и морально-этического характера. Например, требование измерять ущербы от различных неблагоприятных событий в одних и тех же единицах приводит к необходимости введения единой шкалы для экономических и человеческих потерь при анализе последствий возможных тяжелых аварий. Моральные ущербы и неполученные в результате аварии выгоды также требуется измерять в одних и тех же единицах.

В силу изложенного, при проведении ВАБ приходится иметь дело, с одной стороны, с очень малыми величинами (10 -5 -10 -12), характеризующими вероятности отказов ЯЭУ и его элементов и систем, и/или очень большими (10 5 -10 12), характеризующими ущербы от аварий, а с другой – оценки этих величин часто весьма приблизительны.

Размер: px

Начинать показ со страницы:

Транскрипт

1 Вероятностный анализ безопасности первого уровня АЭС с энергоблоками ВВЭР-1500 Е.В.Байкова, к.т.н. Г.В.Токмачев, В.Р.Чулухадзе, д.т.н. Ю.В.Швыряев В статье представлены результаты вероятностного анализа безопасности (ВАБ) 1-го уровня, проведенного для внутренних инициирующих событий (ИС). Рассмотрены эксплуатационные состояния (ЭС) при работе энергоблока на номинальной или пониженных уровнях мощности и в режимах с остановленным реактором. Отчет по ВАБ первого уровня разработан в составе проектной документации по базовому проекту АЭС с реактором ВВЭР-1500 в соответствии с требованиями нормативных документов ОПБ-88/97 , РБ и РБ и Технического задания на разработку базового проекта АЭС с реактором ВВЭР Цель и объём анализа Основная цель выполнения работы состояла в проведении всесторонней комплексной (качественной и количественной) оценки достигнутого в проекте уровня безопасности энергоблока, включая: оценку соответствия проекта основным инженерным (детерминистическим) принципам и критериям современной концепции глубоко эшелонированной защиты, которые сформулированы в отечественных нормативных документах , в материалах МАГАТЭ и EUR ; подтверждения соответствия полученного по результатам вероятностного анализа безопасности среднего значения общей, т.е. суммарной по всем инициирующим событиям, частоты повреждения ядерного топлива (ПЯТ) вероятностному целевому показателю, принятому в техническом задании на разработку проекта АЭС c реактором ВВЭР В соответствии с техническим заданием для обеспечения радиационной безопасности вероятность тяжелого повреждения активной зоны для всех ЭС энергоблока, включая эксплуатационные состояния с остановленным реактором, не должна превышать на реактор в год, что на порядок ниже целевого значения, приведенного в п ОПБ-88/97 ; оценку эффективности и сбалансированности проектных решений на основе анализа вкладов в среднее значение общей частоты ПЯТ от различных ЭС энергоблока, групп ИС, невыполнения функций безопасности, отказов систем, отказов общего вида (ООВ) элементов и ошибочных действий персонала. 1

2 В качестве источника радиоактивности при разработке ВАБ первого уровня рассмотрено ядерное топливо в активной зоне реактора. К внутренним ИС отнесены единичные или множественные отказы (включая отказы по общей причине) систем, оборудования и элементов, включая обесточивание АЭС, а так же ошибки персонала, которые либо непосредственно вызывают ПЯТ, либо могут привести к таким событиям в случае невыполнения функций безопасности, предусмотренных для предотвращения таких повреждений или ограничения их размеров. Методология анализа В качестве методологической основы для разработки ВАБ для внутренних ИС используется широко применяемая в мировой практике методология деревьев событий (ДС) и деревьев отказов (ДО). При выполнении ВАБ использованы рабочие инструкции по выполнению отдельных задач ВАБ, которые разработаны в ФГУП «Атомэнергопроект» и имеют статус стандарта предприятия. В рамках проведения ВАБ выполнены следующие основные задачи. Определение эксплуатационных состояний Среди ЭС энергоблока, в которых могут возникать ИС, рассмотрены режимы работы на полной и пониженной мощности, включая минимально-контролируемый уровень нейтронной мощности реактора, и режимы с остановленным реактором, включая перегрузку ядерного топлива. При разделении эксплуатационного цикла энергоблока на отдельные ЭС рассмотрены следующие факторы: диапазон изменения параметров и состояний реакторной установки, включая уровни остаточных энерговыделений в реакторе и бассейне выдержке, температуру, давление, концентрацию борной кислоты, уровень теплоносителя в реакторной установке, герметичность реактора (закрыта или снята крышка); конфигурация систем, осуществляющих нормальный отвод тепла от активной зоны в каждом из выделенных диапазонов изменения параметров; действия персонала по осуществлению операций, необходимых в рассматриваемом диапазоне; 2

3 конфигурация систем безопасности и условия введения их в действие в рассматриваемом диапазоне, включая способы управления системами безопасности (автоматический или оператором), управляющие сигналы и уставки. Помимо указанных факторов для каждого эксплуатационного состояния была определена его длительность. Для режимов с остановленным реактором были определены виды остановов энергоблока, включая следующие: останов для проведения частичной замены ядерного топлива (ЯТ) и проведения средних плановых ремонтов основного оборудования реакторной установки, турбоустановки и элементов систем безопасности; останов для проведения полной замены ЯТ и проведения капитальных ремонтов основного оборудования реакторной установки, турбоустановки и элементов систем безопасности; внеплановый останов для ремонта оборудования. Анализ, отбор и группирование инициирующих событий Для составления перечня внутренних ИС использованы следующие источники: материалы предварительного отчета по обоснованию безопасности АС, в котором приводятся перечни ИС для проведения детерминистических анализов безопасности и результаты расчетов аварийных процессов; результаты инженерного анализа режимов работы энергоблока и систем, их конфигураций и алгоритмов действий персонала в рассматриваемых ЭС; отраслевая база данных и эксплуатационная документация по нарушениям и авариям на действующих АЭС с ВВЭР-1000; перечни ИС из ранее разработанных ВАБ для АЭС с ВВЭР-1000 и другие источники обобщенных данных, включая материалы МАГАТЭ. В рамках настоящей работы был проведен анализ перечней ИС, рассматриваемых в ВАБ первого уровня для следующих российских и зарубежных энергоблоков с реактором ВВЭР-1000: энергоблоки 1, 5 Балаковской АЭС; энергоблок 5 Нововоронежской АЭС; энергоблок 1 Калининской АЭС; 3

4 энергоблок 5 Запорожской АЭС в Украине; энергоблок 1 Южно-Украинской АЭС в Украине; АЭС Тяньвань в Китае; АЭС Куданкулам в Индии; АЭС Бушер в Иране; АЭС Темелин в Чехии; энергоблок 5 АЭС Козлодуй в Болгарии. В результате, были разработаны перечни ИС для работы энергоблока на мощности и режимов с остановленным реактором, которые были объединены в группы ИС, характеризующиеся одинаковыми конфигурацией систем безопасности, функциями безопасности и критериями успешного их выполнения (критериями успеха). В частности, для режима работы на полной мощности было идентифицировано 34 группы ИС, среди которых рассмотрены следующие категории ИС: ИС с течами из 1-го контура внутри защитной оболочки (ЗО), возникновение которых требует выполнения функций приведения реактора в подкритическое состояние, поддержания запаса теплоносителя в активной зоне и отвода тепла от активной зоны; течи из 1-го контура во 2-ой контур, возникновение которых требует выполнение функций приведения реактора в подкритическое состояние, изоляции аварийного парогенератора (ПГ) от главного парового коллектора и от окружающей среды, поддержания запаса теплоносителя в активной зоне и отвода тепла от активной зоны; ИС с течами из 1-го контура за пределы ЗО, возникновение которых требует выполнения функций изоляции течей; ИС с переходными процессами, возникновение которых требует введение в действие системы аварийной защиты реактора и/или выполнения функций отвода тепла от активной зоны; ИС, требующие административного останова блока. Анализ и моделирование аварийных последовательностей Моделирование аварийных последовательностей (АП) или моделирование путей протекания аварий проводилось для определения полных множеств конечных состояний (КС) без повреждения и с повреждением ядерного топлива для каждой рассматриваемой группы ИС. 4

5 В качестве КС без ПЯТ рассмотрены стабильные состояния без превышения установленных проектных пределов повреждения ТВЭЛ ов (температура оболочек ТВЭЛ ов не более 1200 ºС; локальная глубина окисления оболочек ТВЭЛ ов не более 18 % первоначальной толщины стенок; доля прореагировавшего циркония не более 1 % его массы в оболочках ТВЭЛ ов) в условиях «холодного» или «горячего» останова энергоблока. В качестве методологической основы для моделирования АП использован метод деревьев событий (ДС). ДС представляет собой логическую диаграмму, по которой определяется множество возможных КС без повреждения и с повреждением ядерного топлива. Каждое из таких КС является реализацией определенных совокупностей (сочетаний, комбинаций) промежуточных событий при заданном ИС. В качестве промежуточных рассмотрены события невыполнения функций безопасности из-за отказов систем и/или ошибочных действий персонала. Для каждого ЭС разработано несколько десятков ДС, в частности, для режима работы на мощности их число составило 34 основных и 33 трансферных ДС. Моделирование АП проведено на основе критериев успеха, полученных по результатам расчетов аварийных процессов с применением компьютерных программ и методов улучшенной оценки. Это обеспечивает разработку реалистических вероятностных моделей, наиболее близко отражающих действительное протекание аварий. В рамках этой задачи выявлена, описана и документально оформлена каждая аварийная последовательность, которая может привести к ПЯТ. Анализ надежности систем Эта задача заключалась в анализе видов отказов отдельных элементов и их последствий с точки зрения влияния на работоспособность систем. Задача выполнялась путем разработки детальных моделей надежности всех технологических, обеспечивающих (охлаждающая вода, вентиляция, электроснабжение) и управляющих систем в форме деревьев отказов (ДО). ДО представляет собой логическую диаграмму, по которой определяется возникновение основного (или вершинного) события, заключающегося в отказе системы выполнить заданную функцию вследствие комбинаций отказов отдельных элементов системы (базовых событий). ДО разрабатывались для каждой из выполняемых системой функций безопасности применительно к каждому ИС, требующему их выполнения. Модели разработаны для 16 систем. 5

6 Разработка ДО каждой системы включала выполнение следующих этапов: 1) Формулировка понятия отказа системы при выполнении заданной функции безопасности на основе критериев успеха, определенных при моделировании АП. 2) Анализ технологических или структурных схем системы с определением её границ, состава и границ входящих в неё элементов. 3) Анализ состояния, режимов работы, технического обслуживания и ремонтов системы и её элементов при нормальной эксплуатации и в течение периодов после возникновения ИС, требующих функционирования системы. 4) Определение для каждого элемента присущих ему видов отказов с оценкой влияния отказов элементов на работоспособность структурных единиц системы и системы в целом с учетом условий функционирования, технического обслуживания и восстановления работоспособности. Для каждого вида отказов определены показатели надежности, значения которых оценивались в задаче анализа данных. Виды отказов элементов совместно с их показателями надежности использовались в качестве исходных данных для базовых событий при построении ДО. 5) Выполнение анализа зависимостей, включая выявление зависимостей между технологическими и обеспечивающими системами и элементами и выявление общих для различных систем частей и элементов. 6) Выполнение анализа отказов общего вида (ООВ 1), в качестве которых рассмотрены зависимые отказы двух или более элементов, возникающие одновременно или на коротком промежутке времени вследствие общей причины. Анализ ООВ включал следующие этапы: анализ реализованных в проекте мер защиты от ООВ; выявление групп элементов, потенциально подверженных ООВ; выбор параметрических моделей для количественной оценки интенсивностей (вероятностей) реализации ООВ. В качестве параметрических моделей для количественной оценки ООВ использованы модели α и β-факторов; включение сформированных групп ООВ в модель надежности системы. 7) Идентификация ошибочных действий персонала, которые влияют на работоспособность системы, и включение их в ДО в качестве базовых событий. 8) Построение графов ДО для структурных единиц системы и систем в целом. 1 ООВ отказы общего вида, которые являются разновидностью отказов по общей причине (ООП). Факторами, способствующими возникновению ООВ, являются одинаковость конструкции, режимов использования, технического обслуживания и условий окружающей среды. 6

7 Анализ надежности персонала Целью данного этапа являлась разработка моделей для действий персонала, перечень которых был определен на основе анализов АП и ДО. При анализе ошибок персонала, моделируемых в ВАБ, рассмотрены следующие их категории: предаварийные ошибки персонала (ОП), которые представляют собой ошибочные действия персонала до возникновения ИС и приводят к неготовности оборудования или системы. Определение перечня предаварийных ОП проведено по результатам анализа надежности систем; послеаварийные ОП, которые представляют собой ошибки персонала при выполнении управляющих действий после возникновения ИС и приводят к невыполнению функций безопасности на послеаварийном периоде. Определение перечня возможных послеаварийных ОП выполнено на основе анализа аварийных последовательностей и анализа надежности систем; зависимые ошибки персонала при выполнении двух или более последовательных действий на послеаварийном периоде. Анализ зависимых ОП проведен на основе анализа АП и перечня минимальных сечений для конечных состояний с ПЯТ. Для решения задачи оценки вероятности ошибок персонала были использованы следующие материалы: методика оценки вероятности ошибки человека THERP для предаварийных ошибок персонала и зависимых ошибок персонала, процедура анализа надежности персонала и процедура систематического анализа надежности персонала SHARP для послеаварийных ОП ; результаты анализа надежности персонала, выполненного для действующих АЭС с ВВЭР Особенностью анализа надежности персонала для энергоблока АЭС с реактором ВВЭР-1500 (РУ В-448) являлось то, что данный анализ выполняется на стадии разработки базового проекта. На этой стадии отсутствуют эксплуатационные инструкции, инструкции по ликвидации аварий, регламент безопасной эксплуатации блока, рабочие программы комплексных испытаний оборудования блока, инструкции по контролю исправности оборудования систем безопасности. Поэтому анализ надежности персонала носит предварительный характер, а его результаты будут использованы при разработке 7

8 эксплуатационной документации. Количественная оценка вероятностей ошибок персонала на текущей стадии проекта проведена с учетом следующих предположений и допущений: уровень эксплуатационной документации, регламентирующей действия персонала АЭС при эксплуатации блока и ликвидации аварий, будет не ниже, чем для действующих блоков с ВВЭР-1000; уровень квалификации персонала АЭС с ВВЭР-1500 будет не ниже, чем для действующих блоков с ВВЭР Предполагается, что весь персонал имеет достаточный опыт работы на аналогичных местах (не менее полугода). На следующей стадии проекта после разработки эксплутационной документации будет проведен более детальный анализ надежности персонала. Анализ данных В рамках выполнения ВАБ требуется проведение сбора и обработки данных для формирования базы данных по частотам инициирующих событий, показателям надежности оборудования и параметрам ООВ. В доэксплуатационный период, когда выполнялся ВАБ АЭС с ВВЭР-1500, специфическая для этой АЭС база данных по указанным параметрам отсутствует. Поэтому для сбора и получения необходимой информации были использованы все возможные источники информации: национальная база данных по нарушениям в работе АЭС, которая содержит информацию о переходных процессах на АЭС с ВВЭР-1000 России и Украины; базы данных по надежности оборудования АЭС с ВВЭР-1000; результаты вероятностно-прочностных расчетов, полученные ФГУП ОКБ «Гидропресс» для разрывов первого контура на ВВЭР-1500; результаты ВАБ для проектируемых и строящихся АЭС с ВВЭР-1000, а именно: АЭС Тяньвань в Китае, АЭС Куданкулам в Индии и 5,6-го блоков Балаковской АЭС, являющихся наиболее близкими аналогами к проекту с реактором ВВЭР-1500; использование упрощенных логических моделей для оценки частот ряда ИС; обобщенные данные. Разработка вероятностной модели энергоблока и выполнение количественных оценок ПЯТ Разработка вероятностных расчетных моделей и количественная оценка частоты повреждения ядерного топлива в активной зоне, а также анализы значимости, чувствительности и неопределенностей выполнены с использованием кода Risk Spectrum 8

9 PSA Professional, версия Программа аттестована Госатомнадзором Российской федерации, регистрационный номер аттестационного паспорта 160 от Программное средство Risk Spectrum PSA Professional позволяет разрабатывать и анализировать модели риска и надежности методом ДО и ДС и выполнять вероятностные расчеты. Основу алгоритма расчетов составляют генерация и количественная оценка минимальных сечений, представляющих собой минимальный по количеству набор событий, обусловливающих наступление вершинного события анализируемого ДО или конечных состояний АП. При этом Risk Spectrum PSA Professional позволяет неявно моделировать ООВ на ДО. Расчетная модель включает полный комплекс логически связанных между собой ДС, функциональных и системных ДО, баз данных по показателям надежности элементов, параметрам моделей ООВ, частотам ИС и значениям вероятностей ошибочных действий персонала, полученных по результатам анализа надежности персонала. Объем количественных анализов АП включал следующие виды количественных оценок: точечная оценка значения общей, то есть суммарной по всем АП частоты ПЯТ; точечные оценки значений частот АП с повреждением и без повреждения активной зоны для каждой из рассматриваемых групп ИС; анализы неопределенностей значений частоты ПЯТ с определением математического ожидания (среднего значения), медианы, а также верхних и нижних границ 90 % доверительного интервала; анализы значимости для определения вклада в значение общей частоты ПЯТ от отказов элементов, ООВ, ошибочных действий персонала, систем и групп ИС; анализы чувствительности для оценки эффективности новых проектных решений и принятых в ВАБ предположений. Результаты анализа Результаты ВАБ содержат необходимую информацию для проведения всесторонних комплексных (качественных и количественных) оценок и обоснований достигаемого в проекте уровня безопасности. В ВАБ проведена оценка эффективности проектных решений для снижения вероятностей реализации запроектных аварий с тяжелыми радиационными последствиями и/или тяжелыми повреждениями источников радиоактивности. 9

10 Качественная оценка безопасности Основные задачи качественного анализа безопасности состояли в установлении степени соответствия проектных решений основным принципам современной концепции глубокоэшелонированной защиты, изложенным в ОПБ-88/97 и отчете МАГАТЭ INSAG-12 , включая следующие: принцип единичного отказа; обеспечение защиты от отказов по общей причине и ООВ; принцип физического разделения; принцип разнообразия; обеспечение защиты от ошибочных действий эксплуатационного персонала; расширенное применение систем пассивного принципа действия; обеспечение более высокого уровня надежности для функций безопасности с большей частотой требований на их выполнение; снижение (насколько это возможно) значений частот или вероятностей отказов оборудования и элементов, приводящих к возникновению исходных событий аварий. Несомненным достоинством приведенных выше детерминистических принципов является простота их понимания и подкрепление практикой использования в различных областях техники. Следует отметить, что они, являясь основой при обосновании безопасности, имеют вероятностную природу. Практически все эти принципы имеют безусловную направленность на снижение риска от использования АЭС за счет снижения размеров радиационных последствий при авариях и/или за счет снижения вероятностей или частот реализации таких аварий. При использовании ВАБ обеспечено рассмотрение расширенного (по отношению к детерминистическим подходам) числа ИС и отказов, анализ безопасности АЭС с реактором ВВЭР-1500 для различных режимов ее работы и эксплуатационных состояний, а также определение показателей риска. Поэтому применение ВАБ позволило оценить безопасность АЭС на качественно ином уровне, что повышает общественную приемлемость использования АЭС, а с учетом определения вклада систем и мероприятий в показатели риска (т.е. их эффективности) помогает существенно оптимизировать соотношение безопасность/экономика. 10

11 Оценка соответствия проекта АЭС с реактором ВВЭР-1500 приведенным выше детерминистическим принципам с применением результатов ВАБ проведена на функционально-системном и элементном уровнях. Анализ ДС, проведенный на функционально-системном уровне, показал, что на большинстве из ДС отсутствуют АП с повреждением активной зоны, которые реализуются при отказе только одной системы безопасности. Подавляющее число аварийных АП с ПЯТ реализуется при совместном отказе двух или более систем. В частности, АП, возникающие вследствие невыполнения функций отвода тепла через второй контур, реализуются при совместном отказе активных и пассивных систем отвода тепла по второму контуру. Другим примером являются АП с ПЯТ при течах из первого контура, которые возникают при совместном отказе активной системы аварийного охлаждения активной зоны и одной из пассивных систем. Исключение составляют АП при течах из первого контура за пределы ЗО, которые реализуются при неизоляции течи (незакрытии локализующей арматуры на аварийном трубопроводе). Следует, однако, отметить, что снижение частот таких АП достигается за счет применения принципа конструкционного разнообразия, в соответствии с которым предусмотрена установка на этих трубопроводах изолирующих задвижек различной конструкции: с пневмо- и электроприводами. Качественная оценка безопасности на элементном уровне в проекте АЭС с реактором ВВЭР-1500 выполнена на основе анализа перечня минимальных сечений. Минимальные сечения представляют собой комбинации минимального числа базовых событий функционально-системных ДО и ДС, приводящие к ПЯТ. В состав минимальных сечений совместно с ИС могут входить независимые отказы, ООВ групп элементов систем важных для безопасности, ошибочные действия персонала и события, связанные с осуществлением мер по управлению запроектными авариями (например, использование временнóго резервирования для восстановления критических функций безопасности). На качественном уровне анализ перечня минимальных сечений, в частности, позволяет сделать следующие выводы о влиянии различных факторов на безопасность АЭС с ВВЭР-1500: в составе минимальных сечений, определенных для полного перечня, отсутствуют минимальные сечения, содержащие дополнительно к ИС только один независимый отказ элемента систем безопасности или только одно ошибочное действие персонала, учет которых требуется в соответствии с ОПБ-88/97 . Исключением является такое запроектное ИС, как катастрофический разрыв корпуса реактора, который непосредственно ведет к 11

12 повреждению активной зоны, но имеет очень низкую вероятность. Это показывает, что проект систем безопасности соответствует принципу единичного отказа, и в проекте обеспечена защита от ошибочных действий эксплуатационного персонала на должном уровне; в составе минимальных сечений отсутствуют минимальные сечения, содержащие ООВ одной группы однотипных элементов дополнительно к ИС. Это показывает, что в проекте предусмотрена достаточная защита от отказов по общей причине. Анализ качественных результатов ВАБ на системно-функциональном и элементном уровне показывает, что концепция безопасности, принятая в проекте АЭС с реактором ВВЭР-1500, обеспечивает выполнение всех приведенных выше инженерных (детерминистических) принципов современной концепции глубокоэшелонированной защиты. Количественная оценка безопасности Полученное в результате расчетов среднее значение общей частоты ПЯТ для рассматриваемых внутренних ИС при длительности послеаварийного периода 24 ч составляет 2, на реактор в год для режима работы энергоблока на мощности и 5, на реактор в год для режимов с остановленным реактором, что в сумме составляет 8, на реактор в год. Это ниже значения целевого показателя 1, на реактор в год, определенного в техническом задании на базовый проект АЭС с реактором ВВЭР-1500, и более чем в десять раз ниже значения целевого показателя на реактор в год, установленного в ОПБ-88/97 . Такие результаты доказывают эффективность применяемых в базовом проекте новых проектных решений для достижения высокого уровня безопасности. Для того чтобы сравнить уровень безопасности, достигнутый в проекте АЭС с ВВЭР-1500, с другими проектами на сопоставимой базе, была рассмотрена суммарная частота ПЯТ для проектных ИС, возникающих при работе энергоблока на мощности (без учета разрыва корпуса реактора). Такая база для сравнения выбрана из-за того, что ВАБ для этих проектов выполнены в различном объеме. Это сравнение дает следующие результаты: АЭС с ВВЭР, на реактор в год; АЭС Тяньвань 3, на реактор в год ; АЭС Куданкулам 2, на реактор в год ; блок 1 Балаковской АЭС 3, на реактор в год. 12

13 Таким образом, в проекте АЭС с ВВЭР-1500 получен уровень безопасности, сравнимый с АЭС Куданкулам и более высокий относительно других проектов АЭС в части защиты от внутренних ИС при работе энергоблока на мощности. Такое снижение частоты ПЯТ достигнуто за счет применения новых проектных решений. Следует отметить, что результаты ВАБ базового проекта АЭС с ВВЭР-1500 получены для перечня ИС при работе энергоблока на мощности, расширенного по сравнению с перечнем ВАБ для действующих и вводимых в эксплуатацию энергоблоков с ВВЭР Расширение перечня обосновано результатами анализа обобщенных перечней ИС, опыта проведения ВАБ и опыта эксплуатации энергоблоков АЭС с реакторами ВВЭР-1000, а также инженерным анализом энергоблока базового проекта с реактором ВВЭР Сравнительный анализ результатов ВАБ, выполненного для АЭС с ВВЭР-1500, с результатами ВАБ для АЭС с реактором ВВЭР-1000 показал, что современные проектные решения оказывают существенное влияние на снижение вклада в частоту ПЯТ от отдельных категорий ИС, и как следствие, на значительное снижение этого вероятностного показателя безопасности по сравнению с АЭС, где такие мероприятия не внедрены. К этим проектным решениям, в частности, относятся следующие: применение в базовом проекте АЭС с реактором ВВЭР-1500 системы пассивного отвода тепла и установка изолирующих задвижек вместо обратных клапанов после быстродействующих запорно-отсечных клапанов БЗОК обеспечивают значительное снижение вклада от переходных процессов; применение в базовом проекте АЭС с реактором ВВЭР-1500 автоматических сигналов течи из первого во второй контур и введение по этим сигналам в действие систем безопасности (срабатывание аварийной защиты реактора, запуск систем аварийного расхолаживания ПГ и пассивного отвода тепла в режим расхолаживания, закрытие изолирующих задвижек на паропроводах и трубопроводах питательной воды аварийного парогенератора) значительно уменьшает вклад от течей из первого контура во второй контур; использование одного канала системы аварийного и планового расхолаживания первого контура для целей нормальной эксплуатации обеспечивает дополнительную защиту от отказов по общей причине. Применение этого решения совместно с использованием гидроемкостей второй ступени и системы пассивного отвода тепла позволяет снизить вклад от течей из первого контура внутри ЗО; 13

14 применение изолирующих клапанов разной конструкции (с пневмо- и электроприводами) на каждой трубной проходке через ЗО обеспечивает снижение вклада от течей из первого контура за пределы ЗО. По результатам анализов вкладов от ООВ и ошибочных действий персонала проведена оценка эффективности предусмотренных в проекте мер по защите от влияния таких событий и оценка эффективности использованных в проекте инженерных принципов безопасности. Анализ вкладчиков в частоту ПЯТ показал, что применение принципа функционального и конструктивного разнообразия в системах безопасности позволяет обеспечить глубокую защиту от отказов по общей причине, а применение пассивных систем и активных систем, не требующих для своего функционирования вмешательства персонала - от ошибочных действий персонала. Результаты ВАБ показали, что в проекте АЭС с реактором ВВЭР-1500 получен более высокий уровень безопасности по сравнению с действующими АЭС, который полностью удовлетворяет жестким требованиям, предъявляемым к новым АЭС. Результаты ВАБ подтверждают, что в базовом проекте АЭС с реактором ВВЭР-1500 обеспечено выполнение всех основных инженерных принципов современной концепции глубокоэшелонированной защиты, включая принципы функционального и конструктивного разнообразия, защиты от ошибочных действий персонала, физического разделения и обеспечения более высокой надежности выполнения функций безопасности с большой частотой требований. Список литературы 1. «Общие положения обеспечения безопасности атомных станций», ОПБ-88/97, НП, Госатомнадзор России, «Рекомендации по выполнению вероятностного анализа безопасности атомных станций уровня 1 для внутренних инициирующих событий», РБ, Госатомнадзор России, Москва, «Основные рекомендации по выполнению вероятностного анализа безопасности атомных станций», РБ, Федеральная служба по атомному надзору, Москва, «Basic Safety Principles for Nuclear Power Plants». A report by the International Nuclear Safety Advisory Group/ Safety Series No.75-INSAG-3, International Atomic Energy Agency, Vienna, 1988 (на английском языке). 5. «Basic Safety Principles for Nuclear Power Plants 75-INSAG-3 Rev.1.» INSAG-12. A report by the International Nuclear Safety Advisory Group. International Atomic Energy Agency, Vienna, 1999 (на английском языке). 14

15 6. «European Utility Requirements for LWR Nuclear Plants», Revision C, April 2001 (на английском языке). 7. Swain, A.D., Guttman, H.E., «Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications», U.S. NRC, NUREG/CR-1278 (THERP) (на английском языке). 8. «Accident Sequence Evaluation Program. Human Reliability Analysis Procedure», U.S. NRC, NUREG/CR-4772, February 1987 (на английском языке). 9. Hannaman, G.W., Spurgin, A.J., and Fragola, J.R., «Systematic Human Action Reliability Procedure (SHARP)», NP-3583, Electric Power Research Institute, 1984 (на английском языке). 10. Ershov, G., Sobolev, A., «Plant Status and PSA of Tianwan NPP», International Workshop "Safety of VVER-1000 Nuclear Power Plants" 7-12 April 2003, Pieštany, Slovakia. 11. Mishra A., Chauhan A. Probabilistic Safety Assessment of KK-NPP. Proceedings of the 3rd International Conference on Reliability, Safety and Hazards ICRESH-05 Conference, Mumbai, India, December 2005, p


Подход к применению ВАБ при проектировании АЭС с реакторами ВВЭР нового поколения Г.В.Токмачев ФГУП «Атомэнергопроект», Москва, Россия 1. ВВЕДЕНИЕ Развитие атомной энергетики базируется на применении энергоблоков

Введение ОБОСНОВАНИЕ КЛАССИФИКАЦИИ ИСХОДНЫХ СОБЫТИЙ ПО ЧАСТОТЕ ИХ ВОЗНИКНОВЕНИЯ ДЛЯ АНАЛИЗА БЕЗОПАСНОСТИ РУ АЭС-2006 Руководитель темы: В.М. Рогов Автор доклада: А.Л. Глазунов АО ОКБ «ГИДРОПРЕСС», Подольск,

AES-2006 Design Safety Justification for Novovoronezh Plant-2 Site Using Probabilistic Safety Assessment Methodology Yu.V. Svyriaev, V.B. Morozov, G.V. Tokmachev, E.V.Baykova, V.R. Chulukhadze, M.V. Fedulov

ТОМСКЙ ПОЛТЕХНЧЕСКЙ УНВЕРСТЕТ Томский политехнический университет Теплоэнергетический факультет Кафедра Атомных и тепловых электрических станций Сергей Александрович Беляев Системы безопасности АЭС с реактором

Оценка надежности АСУ ТП, разрабатываемого на программируемых средствах для АЭС с ВВЭР-1000 Токмачев Г.В., Чулухадзе В.Р. Ежегодная конференция молодых специалистов ФГУП ОКБ «Гидропресс», Подольск, Московская

1 УДК 621.039.58 Повышение безопасности АЭС с ВВЭР после аварии на АЭС «Фукусима» Авторы: Беркович В.Я., Быков М.А., Мартынов А.В., Букин Н.В., Щеколдин В.В., Пантюшин С.И. ОКБ «ГИДРОПРЕСС» 2 Влияние внешних

Анализ результатов проверок состояния ядерной и радиационной безопасности ядерных установок судов и иных плавсредств Постановление Федеральной службы по экологическому, технологическому и атомному надзору

Форум «АТОМЭКСПО 2012» Экспертный анализ Вопросы страхования гражданской ответственности за ядерные риски для атомных станций малой мощности Кузнецов В.П., Демин В.Ф., Макаров В.И., Молчанов А.С., Созонюк

Новые технические решения, направленные на повышение безопасности, в проекте РУ БН-800 Б.А. Васильев, В.Е Воронцов, А.И. Староверов, В.И. Шкарин, А.Г. Смирнов Семинар CORDEL г. Москва, 25-26 октября 2016г.

Вероятностный анализ безопасности для пожаров на АЭС Куданкулам в Индии Г.Токмачев Атомэнергопроект, Москва, Россия Доклад на Международной конференции по надежности, безопасности и риску 2005, Мумбай,

Методика анализа запроектных аварий для Балаковской АЭС Морозов В.Б., Барсуков А.Ф., Минибаев Р.Ф. АО «Атомэнергопроект» Первичные критерии скрининга кандидатов в перечень ЗПА. Цель разработки представительного

Роль экспертизы в повышении безопасности атомных станций М.И. Мирошниченко, И.о. начальника управления по регулированию безопасности атомных станций и исследовательских ядерных установок IХ Международный

УПРАВЛЕНИЕ ЗАПРОЕКТНЫМИ АВАРИЯМИ В ДЕЙСТВУЮЩИХ НОРМАТИВНЫХ ДОКУМЕНТАХ РОССИИ Предисловие А.М. Букринский, Заслуженный энергетик России (НТЦ ЯРБ) В связи с интересом, возникшим к управлению запроектными

ISSN 0002-306X. Изв. НАН РА и ГИУА. Сер. ТН. 2007. Т. LX, ¹ 3. УДК 621.039.586 ЭНЕРГЕТИКА Ш.В. ПОГОСЯН, Ц.А. МАЛАКЯН, А.М. АМИРДЖАНЯН, А.А. ГЕВОРКЯН ВЕРОЯТНОСТНЫЙ АНАЛИЗ АВАРИЙНЫХ СЦЕНАРИЕВ, ПОТЕНЦИАЛЬНО

ПОДХОД К МОДЕЛИРОВАНИЮ ОТКАЗОВ ПО ОБЩЕЙ ПРИЧИНЕ В ВЕРОЯТНОСТНОМ АНАЛИЗЕ БЕЗОПАСНОСТИ ПРОЕКТОВ НОВЫХ АЭС С ВВЭР-1000 В.Б. Морозов, Г.В. Токмачев ОАО «Атомэнергопроект», г. Москва В статье обсуждаются проблемы

ФЕДЕРАЛЬНЫЙ НАДЗОР РОССИИ ПО ЯДЕРНОЙ И РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (ГОСАТОМНАДЗОР РОССИИ) ПОСТАНОВЛЕНИЕ 18 сентября 2000 г МОСКВА 4 Об утверждении и введении в действие федеральных норм и правил в области

146 Проблемы энергетики ТРУДЫ МФТИ. 2014. Том 6, 1 УДК 621.039.58 Р. Т. Исламов 1, А. А. Деревянкин 1, И. В. Жуков 1, М. А. Берберова 1, С. С. Дядюра 2, Ю. А. Мардашова 2, Р. Ш. Кальметьев 2 1 Международный

ФЕДЕРАЛЬНЫЙ НАДЗОР РОССИИ ПО ЯДЕРНОЙ И РАДИАЦИОННОЙ БЕЗОПАСНОСТИ ПОСТАНОВЛЕНИЕ от 31 декабря 2002 г. 14 ОБ УТВЕРЖДЕНИИ И ВВЕДЕНИИ В ДЕЙСТВИЕ ФЕДЕРАЛЬНЫХ НОРМ И ПРАВИЛ В ОБЛАСТИ ИСПОЛЬЗОВАНИЯ АТОМНОЙ ЭНЕРГИИ

УДК 621.039 ПРАВИЛА ОБЕСПЕЧЕНИЯ ВОДОРОДНОЙ ВЗРЫВОЗАЩИТЫ НА АТОМНОЙ СТАНЦИИ. НП-ХХХ-ХХ Госатомнадзор России Москва, 2002 «Правила обеспечения водородной взрывозащиты на атомной станции» устанавливают основ-ные

Требования по готовности РУ для АЭС-2006 и способы их выполнения в проекте 1 Требования технических заданий на разработку проектов АЭС-2006 и РУ по готовности реакторных установок В технических заданиях

Ключевые моменты в пользу стратегического выбора Эволюционная и безопасная конструкция Проект реакторной установки с реактором ВВЭР мощностью 1200 МВт эл. (АЭС-2006) основан на многолетнем опыте, полученном

РАЗРАБОТКА ПОДХОДА К ОЦЕНКЕ ОПТИМАЛЬНОЙ ПЕРИОДИЧНОСТИ ВИХРЕТОКОВОГО КОНТРОЛЯ ТЕПЛООБМЕННЫХ ТРУБ ГОРИЗОНТАЛЬНЫХ ПАРОГЕНЕРАТОРОВ В.А. Григорьев, А.А. Шубин, Н.Б. Трунов, С.Е. Давиденко, В.В. Денисов ФГУП

ТРУДЫ МФТИ. 2012. Том 4, 3 Р. Ш. Кальметьев и др. 205 УДК 621.039.58 Р. Ш. Кальметьев, А. С. Филиппов, Д. В. Михайлович Московский физико-технический институт (государственный университет) Анализ значимости

Основные сведения о ТАЭС и о корректирующих мероприятиях на ТАЭС после аварии на АЭС «Фукусима» Moscow Centre Содержание 31 Основные сведения о ТАЭС 32 3 Государственная комплексная инспекция ядерной безопасности

ПРОЕКТНОЕ НАПРАВЛЕНИЕ «ПРОРЫВ»: результаты реализации новой технологической платформы ядерной энергетики 3-4 апреля 2015 Аширметов Марат Рахимович, главный инженер проекта БН-1200, АО «АТОМПРОЕКТ» Энергоблок

Возможные пути оптимизации систем безопасности РУ ВВЭР-6 с использованием расчетного кода КОРСАР/ГП Руководитель темы В. В. Щеколдин Автор доклада И. А. Черемисов Введение При проектировании РУ требуется

Ключевые моменты в пользу стратегического выбора Эволюционная и безопасная конструкция ÔÔРУ с ВВЭР-1000 реакторная установка с водо-водяным энергетическим реактором для блоков АЭС мощностью 1000 МВт (электрических).

УДК.001.2 Разработка методики реалистических расчётов с анализом неопределённостей для обоснования безопасности РУ ВВЭР Петкевич И.Г. ОАО ОКБ «Гидропресс» 2013 год 1. Актуальность и новизна проекта Современные

Implementation in Russian AES-92 design with VVER-1000 of the set pumpejector in emergency core cooling system Использование в российском проекте АЭС-92 с ВВЭР-1000 агрегата «насос-эжектор» в системе аварийного

ОЦЕНКА РИСКА ДЛЯ АЭС С ВВЭР Л.П.Кабанов, Р.Т.Исламов, А.А.Деревянкин, И.В.Жуков, М.А.Берберова, С.С.Дядюра Международный центр по ядерной безопасности, Москва, Россия Безопасность АЭС, как и любых других

Продление срока эксплуатации АЭС с ВВЭР Сорокин Н.М., Концевой А.А., Давиденко Н.Н., Медведев П.Г. Краткое описание текущей ситуации Установленный в проекте 30-летний срок эксплуатации действующих АЭС

ДОКЛАД Системы безопасности и системы по преодолению В соответствии с концепцией глубоко эшелонированной защиты в проекте АЭС предусмотрены системы безопасности, предназначенные для выполнения следующих

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ Тема. Режимы работы АЭС АЭС 2009/2010 уч.г. 1 Особенности режимов работы оборудования на АЭС Наличие ионизирующего излучения Принципиальная возможность цепной реакции Наличие

Особенности современных российских проектов АЭС 22.04.2011 С.А. Бояркин Принципы безопасности российских АЭС 1. Принцип глубокоэшелонированной защиты. 2. Принцип самозащищенности реакторной установки.

Основные подходы к продлению срока эксплуатации оборудования и трубопроводов реакторных установок ВВЭР-1000 АЭС России 04-06 июня 2014 г. Варна, Болгария Акимов Павел Александрович 1 Источники разработки

Требования нормативных документов в области использования атомной энергии об использовании аттестованных программных средств Федеральные нормы и правила в области использования атомной энергии 1. НП-001-15

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО АТОМНОЙ ЭНЕРГИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «НАУЧНО-ИНЖЕНЕРНЫЙ ЦЕНТР «СНИИП» 0715596 ВЫСОКИЕ ТЕХНОЛОГИИ ДЛЯ РАДИАЦИОННОЙ И ЯДЕРНОЙ СТИ Щсщщвщ СИСТЕМА КОНТРОЛЯ,

О УДК: 621.039 ОБНОВЛЕННЫЕ ОБЩИЕ ПОЛОЖЕНИЯ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ АС ВВЕДЕНЫ В ДЕЙСТВИЕ Букринский А.М., к.т.н., Ланкин М.Ю., к.т.н., Шарафутдинов Р.Б., к.т.н. (ФБУ «НТЦ ЯРБ»), Мирошниченко М.И. (Ростехнадзор),

ВЕРОЯТНОСТНЫЙ АНАЛИЗ БЕЗОПАСНОСТИ ДЛЯ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЙ НА 1 БЛОК БАЛАКОВСКОЙ АЭС И.В. Калинкин, М.М. Васюков, Р.В. Юрьев Введение Вероятностный анализ безопасности (ВАБ) является инструментом для

Федеральный надзор России по ядерной и радиационной безопасности (Госатомнадзор России) ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА В ОБЛАСТИ ИСПОЛЬЗОВАНИЯ АТОМНОЙ ЭНЕРГИИ ТРЕБОВАНИЯ К ОБОСНОВАНИЮ ВОЗМОЖНОСТИ ПРОДЛЕНИЯ

РУ АЭС 2006 Ключевые моменты в пользу стратегического выбора Эволюционная, безопасная и новая конструкция РУ АЭС-2006 реакторная установка с реактором типа ВВЭР мощностью 1200 МВт. Проект основан на опыте,

ВВЭР - 1000 2008 Ключевые моменты в пользу стратегического выбора Действующие и строящиеся АЭС с реакторными установками типа ВВЭР (ВВЭР-440, ВВЭР-1200) Эволюционная и безопасная конструкция ÔÔРУ реакторная

Руководство по проведению периодической оценки безопасности блока атомной станции Федеральная служба по экологическому, технологическому и атомному надзору Утверждено постановлением Федеральной службы

Обеспечение ядерной и физической безопасности объектов использования атомной энергии в свете реформы технического регулирования Никифоров Никита Васильевич Международный форум «АТОМЭКСПО-2011» 8 июня 2011

БАЗА ЗНАНИЙ ГАРАНТ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ Асмолов В. Г. д.т.н., проф. www.rosenergoatom.ru Базовые принципы безопасности ЗАКОНОДАТЕЛЬНЫЙ БЛОК федеральные законы (принципы ответственности) система норм

«ЗАДАЧИ РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОГО ОБОСНОВАНИЯ СПОТ ЗО ДЛЯ АЭС НОВОГО ПОКОЛЕНИЯ» А.М. Бахметьев, М.А. Большухин, В.А. Бабин, А.М. Хизбуллин, О.В. Макаров ФГУП ОКБМ С.Е. Семашко, В.Г. Сидоров, И.М. Ивков,

Утверждено приказом Федеральной службы по экологическому, технологическому и атомному надзору от 20 г. Положение о порядке и условиях допустимости учета глубины выгорания ядерного топлива при обосновании

КОНСТРУКЦИЯ СИСТЕМЫ УДЕРЖАНИЯ РАСПЛАВА И ОХЛАЖДЕНИЯ КОРПУСА ДЛЯ НОВЫХ ПРОЕКТОВ РУ ВВЭР. Тишин Р.Е. 1. Введение Содержание 2. Проектирование системы удержания расплава в корпусе реактора для проектов ВВЭР-600

Государственная инспекция ядерного регулирования Украины ГНТЦ ЯРБ Национальная академия наук Украины Государственный научно-технический центр по ядерной и радиационной безопасности Эволюция нормативных

Повышение надежности и экономической эффективности ядерного топлива для АЭС. Движение к нулевому отказу. Исполнительный директор ОАО «ТВЭЛ» Д.В. Крылов Москва 06 июня 2012 года Наша цель Поставка Заказчику

Опыт применения на АЭС РД ЭО0552-2004 «Применение системной методологии для обеспечения целостности ТОТ ПГ с реакторами ВВЭР-440 и ВВЭР-1000» А.Ф. Гетман (ВНИИАЭС), Б.И.Лукасевич (ОКБ Гидропресс), А.А.Тутнов,

ОЦЕНКА ВЕРОЯТНОСТИ ОТРЫВА КРЫШКИ КОЛЛЕКТОРА ПГВ-000 С ПРИМЕНЕНИЕМ ВЕРОЯТНОСТНЫХ МЕТОДОВ МЕХАНИКИ РАЗРУШЕНИЯ Стобецкий А.А., Григорьев В.А., Уланов В.В ФГУП ОКБ «ГИДРОПРЕСС», г. Подольск, Московская область,

Опыт разработки и внедрения современной системы контроля условий эксплуатации ядерного топлива А.Е. Калинушкин, В.И. Митин, Ю.М. Семченков РНЦ «Курчатовский институт» Доклад на круглом столе «Унифицированная

ПОСТАНОВЛЕНИЕ МИНИСТЕРСТВА ПО ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ РЕСПУБЛИКИ БЕЛАРУСЬ 27 июля 2017 г. 34 Об утверждении норм и правил по обеспечению ядерной и радиационной безопасности На основании подпункта 7.4 пункта

Корпорация «ТВЭЛ» ЯДЕРНОЕ ТОПЛИВО ДЛЯ РЕАКТОРОВ ВВЭР. СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ Докладчик: В.Л. Молчанов Зам. исполнительного директора ОАО «ТВЭЛ» 6-я международная конференция «Обеспечение безопасности

Опытная эксплуатация режима суточного регулирования мощности на бл. 2 ХАЭС 20.04 11.05.2015 Режим суточного регулирования мощности энергоблока АЭС с РУ ВВЭР-1000/В320 При выполнении суточного регулирования

СПРАВОЧНАЯ СТАТЬИ ИНФОРМАЦИЯ ОБЗОР НОРМАТИВНЫХ ДОКУМЕНТОВ, РАЗРАБОТАННЫХ В ФБУ «НТЦ ЯРБ» И УТВЕРЖДЁННЫХ ФЕДЕРАЛЬНОЙ СЛУЖБОЙ ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ Ниже представлены краткие

Диссертация

Швыряев, Юрий Васильевич

Ученая cтепень:

Доктор технических наук

Место защиты диссертации:

Код cпециальности ВАК:

Специальность:

Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации

Количество cтраниц:

1 Краткий обзор состояния проблемы.

2 Методология вероятностного анализа безопасности АС.

2.1 Общая вероятностная модель безопасности АС.

2.3 Отбор и группировка инициирующих событий.

2.3.1 Определение понятия и классификация инициирующих событий.

2.3.2 Составление полного перечня внутренних ИС.

2.3.3 Группирование ИС.

2.4 Разработка деревьев событий.

2.4.1 Основные понятия и порядок построения ДС.

2.4.2 Основные принципы разработки ДС.

2.5 Методология анализа надежности СБ.

2.5.1 Общие положения.

2.5.2 Классификация отказов элементов.

2.5.3 Построение моделей надежности систем.

2.5.4 Количественный анализ надежности СБ.

2.6 Методика анализа зависимых отказов.

2.6.1 Виды зависимых отказов.

2.6.2 Анализ зависимостей при построении деревьев событий.

2.6.3 Анализ зависимостей при разработке моделей надежности систем.

2.6.4 Качественный анализ отказов общего вида.

2.7 Анализ надежности персонала.

2.7.1 Общие положения.

2.7.2 Основные этапы выполнения анализа надежности персонала

2.8 Оценка параметров надежности элементов.

2.8.1 Термины и определения используемые при анализе данных.

2.8.2 Определение групп компонентов для задачи анализа данных

2.8.3 Использованные источники данных.

2.8.4 Определение границ компонентов.

2.8.5 Определение видов отказов элементов.

2.8.6 Классификация событий по условиям обнаружения и восстановления.

2.8.7 Номенклатура показателей надежности.

2.8.8 Моделирование отказов элементов на деревьях отказов.

2.8.9 Методы применяемые для задачи оценки параметров надёжности.

2.9 Подход к оценке и обоснованию безопасности АС на основе результатов ВАБ.

2.9.1 Общие положения.

2.9.2 Качественная оценка безопасности на основе результатов

2.9.3 Количественная оценка безопасности на основе результатов

2.10 Выводы по главе 2.

3 Применение ВАБ при проектировании АЭС с реакторами ВВЭР нового поколения.

3.1 Введение.

3.2 Концепция безопасности.

3.2.1 Реакторная установка В-392.

3.2.2 Системы безопасности АЭС-92.

3.3 Оценка эффективности проектных решений для

АЭС-92 на основе результатов ВАБ.

3.3.1 Краткая характеристика ВАБ уровня 1.

3.3.2 Результаты ВАБ уровня 1.

3.3.3 Анализ значимости.

3.3.4 Анализ чувствительности.

3.3.5 Анализ неопределенностей значений частоты ПАЗ.

3.3.6 Оценка уровня безопасности АЭС «Куданкулам » на основе результатов ВАБ.

3.4 Проектные решения по повышению экономичности.

3.4.1 Снижение затрат на сооружение АЭС.

3.4.2 Повышение показателей надежности выработки энергии.

3.5 Выводы по главе 3.

4 Применение ВАБ при проектировании АЭС «Бушер-1».

4.1 Краткая характеристика концепции безопасности проекта АЭС «Бушер-1».

4.2 Оценка уровня безопасности АЭС «Бушер » на основе результатов ВАБ уровня 1.

4.2.1 Краткая характеристика ВАБ уровня 1.

4.2.2 Исходные данные и предположения при проведении количественных оценок значений частот ПАЗ.

4.2.3 Устранение логических петель.

4.2.4 Результаты оценки частоты повреждения активной зоны.

4.3 Оценка уровня безопасности АЭС «Бушер-1» на основе результатов ВАБ. fc 4.4 Выводы по главе 4.

5 Применение ВАБ для действующих АЭС с реакторами ВВЭР.

5.1 Применение ВАБ для энергоблоков 3, 4 Нововоронежской АЭС.

5.1.1 Введение.

5.1.2 Результаты ВАБ по проекту 1.4.TACIS-91.

5.1.3 Результаты ВАБ по проекту NOVISA.

5.1.4 Результаты ВАБ по проекту R2.01/96 TACIS-96.

5.1.5 Применение ВАБ при обосновании возможности продления назначенного срока службы энергоблоков 3,4 НВАЭС .

5.1.6 Выводы по разделу 5.1.

5.2 Разработка стратегии технического обслуживания

СБ для АЭС с реакторами В-320.

5.2.1 Выводы по разделу 5.2.

5.3 Применение ВАБ для оптимизации регламентов технического ^ обслуживания и ремонтов СБ АЭС с реактором В-320.

5.3.1 Обоснование внесения изменений в технологический регламент проведения капитальных ремонтов СБ.

5.3.2 Оптимизация технического обслуживания и ремонтов систем безопасности АЭС с В-320.

5.3.3 Выводы к разделу 5.3.

Введение диссертации (часть автореферата) На тему "Вероятностный анализ безопасности при проектировании и эксплуатации атомных станций с реакторами ВВЭР"

Атомные станции (АС) вследствие накопления в процессе эксплуатации значительных количеств радиоактивных продуктов и наличия принципиальной возможности выхода их при авариях за предусмотренные границы представляют собой источник потенциальной опасности или источник риска радиационного воздействия на персонал, население и окружающую среду. Степень радиационного риска прямо зависит от уровня безопасности АС, которая является одним из основных свойств АС, определяющих возможность их использования в качестве источников тепловой и электрической энергии.

В соответствии с «Общими положениями обеспечения безопасности атомных станций » ОПБ -88/97 /3/ понятие (или термин) «Безопасность АС » определено как «свойство АС при нормальной эксплуатации и нарушениях нормальной эксплуатации, включая аварии, ограничивать радиационное воздействие на персонал, население и окружающую среду установленными пределами».

В соответствии с «Федеральным Законом о Техническом Регулировании » /2/ понятие безопасности объектов определено как «состояние, при котором отсутствует недопустимый риск, связанный с причинением вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений». В свою очередь понятие риска в этом Законе определяется как «вероятность причинения вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений с учетом тяжести этого вреда».

По отношению к АС причинение вреда связано с радиационным воздействием. Поэтому приведенные в ОПБ-88/97 и «Федеральном Законе о Техническом Регулировании » определения понятия безопасности можно считать эквивалентными.

На большинстве эксплуатируемых в настоящее время АС используются реакторы водоводяного типа (ВВЭР, РУ\!И). Как показывает мировой опыт, АС с такими реакторами представляют собой источники энергии, удовлетворяющие самым жестким экологическим требованиям в условиях их нормальной эксплуатации. Потенциальная опасность возникает при авариях, в процессе которых накопленные в тепловыделяющих элементах (ТВЭЛ ) и теплоносителе 1-го контура радиоактивные продукты могут выходить за предусмотренные границы в количествах, превышающих установленные для нормальной эксплуатации пределы.

Аварии относятся к категории случайных событий, которые характеризуются размерами последствий и величинами вероятностей их реализации. Понятие аварии составляет фундаментальную основу безопасности, как внутреннего свойства АС, и определяет вероятностную природу этого свойства.

Следует отметить, что вероятностная природа безопасности заключена уже в приведенных выше определениях этого свойства.

Актуальность работы состоит в том, что оценка и обоснование достигаемого при проектировании и эксплуатации АС уровня безопасности должно проводиться на основе применения методов системного анализа, что может быть реализовано за счет разработки и применения методологии вероятностных анализов безопасности (ВАБ ). ВАБ признаны как сторонниками, так и противниками использования атомной энергетики единственным практическим средством для комплексной качественной и количественной оценки безопасности АС.

Вероятностный анализ безопасности АС представляет собой комплексный, всесторонний системный анализ безопасности, в процессе которого разрабатываются вероятностные модели для определения конечных состояний с повреждением источников радиоактивности и конечных состояний АС с превышением установленных пределов по выбросам радиоактивных продуктов и радиационному воздействию-на население и окружающую среду и определяются значения вероятностных показателей безопасности. Результаты ВАБ используются для качественных и количественных оценок достигнутого уровня безопасности, а также для выработки и принятия решений при проектировании и эксплуатации АС.

ВАБ могут выполняться на различных стадиях жизненного цикла АС, включая проектирование, сооружение, ввод в эксплуатацию, эксплуатацию и снятие с эксплуатации. Наиболее эффективно и со сравнительно небольшими затратами ВАБ могут использоваться на этапе проектирования АС, где их результаты могут служить основой для выработки технических решений, направленных на повышение безопасности и внедряемых непосредственно в проект АС. Применение ВАБ на этапе проектирования позволяет создать АС с заданным уровнем безопасности.

ВАБ могут быть эффективно использованы также для разработки мероприятий по повышению безопасности действующих АС.

ВАБ представляет собой итеративный процесс, который может включать несколько стадий, различающихся между собой по целям, объему, содержанию и глубине выполняемых анализов. Объем и содержание ВАБ определяют его полноту и, в конечном счете, уровень остаточного риска (т.е. риска, который не подвергся анализу), а глубина ВАБ определяет уровень реалистичности разработанных вероятностных моделей безопасности АС. Все это, в свою очередь, оказывает определяющее влияние на достоверность получаемых результатов и эффективность их использования в качестве основы для разработки проектных решений по управлению безопасностью.

Полнота ВАБ определяется перечнем рассмотренных исходных событий (ИС). Разработка полномасштабных ВАБ должна производиться для полных перечней внутренних (вызванных отказами систем, элементов или ошибочными действиями персонала АС), внутриплощадочных (вызванных воздействиями пожаров, затоплений, пароводяных струй, биений трубопроводов, летящих предметов, изменений температур, влажности в помещениях АС) и внешних (вызванных характерными для площадки АС воздействиями природного или техногенного характера) исходных событий.

В зависимости от объема, целей и возможного использования результатов различают несколько уровней вероятностных анализов безопасности /25,116/.

ВАБ АС уровня 1 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения конечных состояний с повреждением источников радиоактивности и оцениваются значения частот или вероятностей их реализации. В качестве основных источников радиоактивности для АС с ВВЭР рассматриваются ядерное топливо в активной зоне реактора и отработавшее ядерное топливо в бассейне выдержки.

ВАБ АС уровня 2 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения различных категорий выбросов радиоактивных продуктов в окружающую среду или различных значений экспозиционных доз в зоне планирования защитных мероприятий и оцениваются значения частот или вероятностей их реализации.

ВАБ АС уровня 3 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения видов и размеров ущербов, вызванных радиационным воздействием на население и окружающую среду.

Основываясь на приведенном в ОПБ-88/97 определении безопасности и целевых значениях вероятностей превышения предельных аварийных выбросов (п.1.2.17) и вероятностей запроектных аварий с тяжелым повреждением активной зоны реактора (п.4.2.2), можно сделать вывод о том, что для анализа, оценки и обоснования достигнутого при проектировании и эксплуатации АС уровня этого свойства необходимо и достаточно выполнение полномасштабных ВАБ уровней 1 и 2. Этот вывод подкрепляется также тем обстоятельством, что уже определение вероятностных показателей для радиационных последствий по результатам ВАБ уровня 2 связано с большой степенью неопределенностей вследствие недостаточных значений о процессах при тяжелых запро-ектных авариях.

Выполнение ВАБ уровня 3 с оценкой показателей риска нанесения ущерба здоровью или жизни людей на окружающей АС территории требует определения условных вероятностей получения человеком соответствующих доз. Это связано с еще большими неопределенностями в оценках показателей риска, что приводит к практической бесполезности проведения таких оценок. Поэтому основные решения по безопасности принимаются по результатам ВАБ уровней 1 и 2.

Основные цели работы

Основные цели диссертационной работы заключаются в разработке методологии ВАБ и ее применении в качестве инструмента для анализа, оценки, выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

Применение ВАБ при проектировании обеспечивает реализацию комплексного системного подхода к анализу и обоснованию безопасности и позволяет создавать АС с заданным уровнем этого свойства для достижения приемлемо низкого уровня радиационного риска от использования АС.

Научная новизна работы

1. Впервые в отечественной практике с использованием методов теории вероятностей и теории надежности разработана методология выполнения вероятностных анализов безопасности и анализов надежности систем безопасности атомных станций, которая используется в качестве инструмента для выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

В процессе разработки методологии ВАБ решены следующие научные проблемы:

Предложена общая вероятностная модель безопасности АС, с использованием которой определен комплекс вероятностных показателей безопасности (ВПБ) и систематизированы задачи, решение которых необходимо для выполнения ВАБ;

Разработан комплекс инженерных методик и подходов для выполнения отдельных задач ВАБ, включая составление перечней инициирующих событий (ИС), построение вероятностных моделей для определения полного множества возможных состояний АС, построение моделей надежности систем, выполняющих функции безопасности, моделирование зависимых отказов и отказов по общей причине или отказов общего вида, моделирование ошибочных действий персонала, формирование баз данных по значениям частот ИС и показателей надежно-" сти элементов и оборудования, построение интегральной вероятностной модели АС, выполнение количественных расчетов, анализов неопреде--" ленностей, значимости и чувствительности значений ВПБ.

2. Разработан подход комплексной оценки безопасности АС на основе результатов ВАБ.

3. Впервые в отечественной практике ВАБ применены для решения следующих вопросов безопасности при проектировании и эксплуатации АС:

3.1. Разработана концепция безопасности АС с ВВЭР третьего поколения, которая обеспечивает переход на качественно новый уровень безопасности по сравнению с действующими АС;

3.2. Разработана стратегия проведения периодического технического обслуживания и ремонтов систем безопасности;

3.3. Разработан подход по обоснованию внесения изменений в действующие технологические регламенты безопасной эксплуатации АС с реакторами В-320.

3.4. Выполнена оптимизация структуры управляющих систем безопасности для действующих АЭС с реакторами В-320.

3.5. Обоснована возможность продления на 10 лет назначенного (проектного) срока эксплуатации энергоблоков 3, 4 Нововоронежской АЭС с реакторами В-179.

Практическая ценность работы

Методология ВАБ используется в качестве инструмента по решению вопросов безопасности для действующих и проектируемых АС.

С ее применением были выполнены ВАБ уровня 1 для энергоблоков действующих и вновь проектируемых АЭС с реакторами ВВЭР, включая:

ВАБ уровня 1 для энергоблоков с реактором В-320 Балаков-ской АЭС (1991-2001 гг.). Отчеты по ВАБ были включены в состав проектных материалов, представляемых концерном «Росэнергоатом » (РЭА ) в Госатомнадзор РФ (ГАН РФ) для получения лицензии на ввод энергоблока 4 в эксплуатацию и для получения лицензий на продолжение эксплуатации блоков 1-4 Балаковской АЭС;

ВАБ уровня 1 для энергоблоков 3 и 4 с реакторами ВВЭР-440 Нововоронежской АЭС, разработанные по проектам 1.4 и Р.01/96 Программ ТАС18-91, ТАС1Э-96 и по проекту НОВИСА (по контракту, который финансировался Департаментом энергетики США ). Результаты ВАБ использованы для разработки мер по модернизации с целью повышения уровня безопасности этих энергоблоков и для получения лицензии ГАН РФ на продление срока службы этих энергоблоков еще на 10 лет;

ВАБ уровней 1 и 2 для внутренних исходных событий, ВАБ для пожаров в помещениях АЭС и ВАБ для сейсмических воздействий в составе проекта достройки АЭС «Бушер » в Исламской Республике Иран с реактором ВВЭР-1000 (РУ В-446). ВАБ уровня 1 был подвергнут экспертизе миссии МАГАТЭ и Иранского надзорного органа и использован Иранской эксплуатирующей организацией для получения лицензии на строительство АЭС «Бушер ». В процессе проектирования энергоблока на основе результатов ВАБ были разработаны рекомендации по дополнительным проектным решениям по повышению безопасности, которые позволили снизить значения частоты ПАЗ более чем на порядок по сравнению с первоначальным вариантом проекта;

На основе результатов ВАБ для АЭС с РУ В-320 были определены слабые места этого проекта и сформулированы основные принципиальные решения по повышению безопасности, которые вошли в концепцию безопасности проектов энергоблоков АЭС с реакторами ВВЭР третьего поколения (проект АС-92). Применение этой концепции позволило создать энергоблок с качественно новым уровнем безопасности с одновременным снижением затрат на его сооружение и эксплуатацию. Основные решения по проекту АС-92 реализованы в проектах второй очереди Нововоронежской АЭС (НВАЭС -2) и в проекте АЭС «Куданку-лам» в Республике Индии. ВАБ для этих проектов использованы Индийской эксплуатирующей организацией и Росэнергоатомом для получения лицензий на сооружение. Строительство этих АЭС проводится в настоящее время;

Разработанная стратегия проведения технического обслуживания систем безопасности включена в технологические регламенты безопасной эксплуатации действующих АЭС с реакторной установкой В-320;

Методика анализа надежности систем безопасности включена в отраслевые руководящие материалы РТМ 95490-78 «» и РТМ 95823-81 «Надежность оборудования реакторных установок АЭС. Методика расчета»;

Выполненное на основе ВАБ обоснование возможности проведения плановых ремонтов каналов систем безопасности при останове энергоблоков АЭС с В-320 для производства замены фильтров в бакеприямке ГА-201 позволило сократить на 40 суток длительность останова энергоблока 2 Балаковской АЭС для проведения КПР в 2003 году.

Достоверность результатов работы

Достоверность научных положений, методологии и практических результатов работы подтверждается сравнением с современной методологией, широко применяемой в мировой практике, долговременным (на протяжении более 25 лет) использованием в отечественной практике, результатами экспертиз Госатомнадзора России, надзорных органов и эксплуатирующих АС организаций Индии, Ирана, Финляндии, миссии МАГАТЭ результатами экспертиз многих ведущих в области ВАБ организаций США (SAIC, ArgoneNL), Англии (NNC Limited), Германии (GRS, Westinghouse Reactor), Франции (EDF, IPSN). Практически все разработанные на основе ВАБ рекомендации по безопасности внедрены на действующих и в проекты новых и достраиваемых АС с ВВЭР.

Непосредственно автором в составе целостной методологии выполнения вероятностных анализов безопасности и анализов надежности систем безопасности АС разработаны общая вероятностная модель безопасности АС, комплекс вероятностных показателей безопасности, основы и общие подходы построения детальных вероятностных моделей для определения полного множества аварийных состояний, построения моделей надежности СБ, включая определение перечней исходных событий, систематизацию особенностей структуры, режимов использования, регламентов технического обслуживания и ремонтов, многообразия видов отказов, определение функций вероятностей отказов элементов, подход к анализу ошибочных действий персонала и подход к комплексной качественной и количественной оценке и обоснованию безопасности на основе результатов ВАБ.

Детальная разработка отдельных составных частей методологии ВАБ и анализов надежности систем производилась под руководством и при участии автора сотрудниками возглавляемых им подразделений.

Разработка ВАБ для действующих и проектируемых АС в России и за рубежом, включая работы по ВАБ по проектам Программ TACIS, финансируемых Комиссией Европейского Сообщества, и по контрактам с EDF, GRS, USDOE, была выполнена под руководством и при непосредственном участии автора сотрудниками БКП -5 совместно с сотрудниками других подразделений ФГУП «Атомэнергопроект » и сотрудниками ФГУП ОКБ «Гидропресс », РНЦ «Курчатовский институт », ВНИИАЭС . Автор, в частности, лично разрабатывал разделы по моделированию аварийных последовательностей, анализам результатов, выводам и рекомендациям.

Положения, выносимые на защиту

1. Методология выполнения вероятностных анализов безопасности АС, включающая общую вероятностную модель безопасности и комплекс ВПБ, комплекс методик, подходов и принципов для построения детальных вероятностных моделей для определения полных множеств аварийных состояний АС, моделей надежности систем, подходы для моделирования зависимых отказов, ошибочных действий персонала, формирования баз данных, разработки интегральной вероятностной модели АС в целом и выполнения количественных расчетов ВПБ.

2. Подход для проведения комплексной качественной и количественной оценки безопасности на основе результатов ВАБ.

3. Результаты применения методологии ВАБ в качестве инструмента для выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

Апробация работы

Основные положения и результаты диссертации докладывались и получили положительную оценку на внутренних и международных конференциях и семинарах: 17-й Всесоюзный семинар «Методологические вопросы исследования надежности больших систем энергетики », Паланга, 1982; Всесоюзный научный семинар «Методы комплексной автоматизации установок по преобразованию тепловой и атомной энергии в электрическую», Москва, 1984; 17-й отраслевой семинар «Надежность ядерных энергетических установок. Теория и практика», НИКИЭТ , 1984; Научно-практическая конференция ГПАН, Москва, 1991; Конференция «Практика разработки ВАБ и использование их результатов для действующих и вновь проектируемых АЭС с ВВЭР», Москва, «Атомэнергопро-ект», 2002; Советско-западногерманский семинар по вопросам безопасности, Москва, 1988; Советско-американские семинары в Москве (1989) и Вашингтоне (1990); Технический комитет МАГАТЭ «Применение ВАБ для новых проектов и систем снижения аварийных последствий », Вена, Австрия, 1989; Технический комитет МАГАТЭ «Достижения в анализах надежности и вероятностных анализах безопасности », Будапешт, Венгрия, 1992; Конференция МАГАТЭ, Вена, Австрия, 2001; Советско-английский семинар по «Проектированию АЭС с ВВЭР/PWR и применению ВАБ» в Москве (1991) и Натсфорде (1991).

Материалы по ВАБ уровня 1 для АЭС «Бушер » в Исламской Республике Иран докладывались на совещании с миссией МАГАТЭ, Москва, 2002. Материалы по проектам TACIS рассматривались на многочисленных рабочих совещаниях с консультантами западных фирм в процессе их выполнения и на итоговых совещаниях в Комиссии Европейского Сообщества.

Материалы диссертации обсуждались на заседаниях Научно-технического Совета ФГУП «Атомэнергопроект » и кафедры АСУ Обнинского технического университета атомной энергетики.

1. Швыряев Ю.В. и др. «Вероятностный анализ безопасности атомных станций. Методика выполнения». Ядерное общество. Москва, 1992, 266 стр.

2. ¡Кпёмин А.И[., Поляков Е.Ф. Швыряев Ю.В. и др. «Методика расчета структурной надежности АЭС и ее систем на этапе проектирования ». Руководящий Технический материал, РТМ 95490-78, НИКИЭТ, 1978, 128 стр.

3. [Клёмин А.И|., Поляков Е.Ф. Швыряев Ю.В. и др. «Надежность оборудования реакторных установок АЭС. Методика расчета». РТМ-95823-81 НИКИЭТ, 1981, 231 стр.

4. Букринский A.M., Швыряев Ю.В. «Требования к надежности систем безопасности АЭС ». Электрические станции, № 3, 1981, стр. 1216.

5. Швыряев Ю.В., Барсуков А.Ф., Деревянкин A.A. «Обеспечение надежности наиболее ответственных систем АЭС ». Электрические станции, № 1, 1982, стр. 4-8.

6. Швыряев Ю.В., Барсуков А.Ф., Деревянкин A.A. «Влияние технического обслуживания на надежность систем безопасности АЭС ». Электрические станции, № 6, 1984, стр. 12-13.

7. Швыряев Ю.В., Трахтенберг М.Д. и др. «Расчет показателей надежности подсистемы управления блока ВВЭР-1000 ЗаАЭС». Отчет АТЭП. Книги 1 и 2. 1985, 300 стр.

8. [Клёмин А.И|., Швыряев Ю.В., Морозов В.Б., Барсуков А.Ф. «Количественный анализ надежности систем безопасности атомных станций при проектировании». Известия Академии Наук СССР . Энергетика и транспорт, №1, 1986, стр 28-36.

9. Швыряев Ю.В., ¡Клемин А.И.| «», Сборник «», Воронеж, 1987, 6 стр.

10. Швыряев Ю.В., Федотов Д.К., Деревянкин A.A. «Оценка влияния надежности действий оперативного персонала на безопасность работы АЭС». Электрические станции, № 4, 1988, стр. 6-8.

11. Швыряев Ю.В., Барсуков А.Ф., Токмачев Г.В. и др. «Оценка вероятностных показателей безопасности АС-У87 и АС-88». Проект АЭС с реакторами ВВЭР-1000 повышенной безопасности, АЭП , инв. № 11/089, 1988, 370 стр.

12. Швыряев Ю.В., Барсуков А.Ф., Деревянкин A.A., Морозов В.Б., Токмачев Г.В. «Применение вероятностных анализов безопасности для принятия решений при проектировании атомных станций». Безопасность атомных станций. Сборник трудов, ч.2. Москва, НТЦ БАЭ 1990, с.38-47.

13. Швыряев Ю.В., Деревянкин A.A., Токмачев Г.В. «Вероятностное моделирование аварийных последовательностей для АЭС с ВВЭР-440», «Атомная энергия », том 73, вып. 1, июль 1992, стр. 54-59.

14. Швыряев Ю.В. и др. Атомная электростанция Нововоронежская - 2. Проект, раздел 7. «Вероятностный анализ безопасности » (Том 1. Вероятностный анализ безопасности первого уровня, книги 1,2; Том 2. Вероятностный анализ безопасности второго уровня, книга 1; Том 3. Вероятностный анализ безопасности для пожаров в помещениях АЭС, книги 1-4; Том 4. Вероятностный анализ безопасности для сейсмических воздействий, книги 1-3), Москва, «Атомэнергопроект », 1998, 1243 стр.

15. Швыряев Ю.В. и др. Нововоронежская АЭС, блок 3. Отчет по углубленной оценке безопасности. Приложение 3. Вероятностный анализ безопасности 1-го уровня. Москва, 2000, 681 стр.

16. Швыряев Ю.В., Барсуков А.Ф. и др. Проект TACIS R2.01/96. Вероятностный анализ безопасности 1-го уровня для проекта АЭС с

ВВЭР-230 Нововоронежская АЭС, блок 3: Стояночный режим: 21 отчет, 1999-2001, 928 стр.; Режим работы на мощности: 23 отчета, 2000-2001, 1421 стр.

17. Беркович В.М., Швыряев Ю.В. «Применение ВАБ для выработки и принятия решений по обеспечению безопасности АЭС "Куданку-лам" в Республике Индия». Сборник трудов 2-ой всероссийской научно-технической конференции «», г. Подольск, Московская область, 19-23 ноября 2001, том 3, стр. 208-213.

18. Швыряев Ю.В. и др. Нововоронежская АЭС, блок 4. Отчет по углубленной оценке безопасности. Приложение 1. Вероятностный анализ безопасности (уровень 1). Москва, 2002, 647 стр.

19. Швыряев Ю.В. и др. АЭС «Бушер ». Вероятностный анализ безопасности. 18.Ви. 10.0.00.\ZAB.PR. «Атомэнергопроект », Москва 2003.

20. Швыряев Ю.В. и др. АЭС «Куданкулам », блок 1. Предварительный отчет по обоснованию безопасности. Отчет по вероятностному анализу безопасности. Пакет 51-2.18 К.К.О.О.О.Х/АВ.РР* 003, книги 1-6. «Атомэнергопроект », Москва, 2002.

21. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева О.О. «Обоснование возможности вывода в ремонт каналов СБ при выполнении капитального ремонта с реконструкцией бака ГА-201 энергоблоков АЭС с реактором В-320». «Атомэнергопроект », Москва, 2003, 147 стр.

22. Беркович В.М., Малышев А.Б., Швыряев Ю.В. «». Теплоэнергетика, № 11, 2003, стр. 2-10.

Структура и объем работы.

Диссертация состоит из введения, пяти глав, заключения, списка литературы из 187 наименований и четырех приложений. Общий объем работы составляет 341 страниц, основной текст изложен на 310 страницах, содержит 34 рисунка и 37 таблиц.

Список литературы диссертационного исследования доктор технических наук Швыряев, Юрий Васильевич, 2004 год

3. Общие положения обеспечения безопасности атомных станций, ОПБ - 88/97, НП-001-97 , Госатомнадзор России. -1997.

4. Нормы радиационной безопасности, НРБ -99, СП 2.6.1.758-99, Главный государственный санитарный врач Российской Федерации. -1999.

5. Правила радиационной безопасности при эксплуатации атомных станций, ПРБ АС-99, Минздрав России. -1999.

6. Требования к содержанию отчета по обоснованию безопасности атомной станции с реакторами типа ВВЭР , НП-006-98 (с изменением № 1, внесенным постановлением Госатомнадзора России от 15.01.96 № 1), Госатомнадзор России. -1995.

7. Рекомендации по углубленной оценке безопасности действующих энергоблоков атомных станций с реакторами типа ВВЭР и РБМК (ОУОБ АЭС), РБ-001-97, (РБ Г-12-42-97), Госатомнадзор России. -1997.

8. Требования к составу комплекта и содержанию документов, обосновывающих безопасность в период дополнительного срока эксплуатации блока атомной станции, РД-04-31-2001, Госатомнадзор России. -2001.

9. Заявление Госатомнадзора России «Применение вероятностного анализа безопасности действующих энергоблоков атомных станций». -1999.

10. Руководство по проведению экспертизы вероятностного анализа безопасности атомных электростанций. Часть 1. ВАБ уровня 1. Раздел 1.1 «Внутренние инициирующие события », ДНП-1-25-2002-/090, Москва, НТЦ ЯРБ Госатомнадзора России. -2002.

11. Рекомендации по выполнению вероятностного анализа безопасности блока атомных станций уровня 1 для внутренних инициирующих событий (при работе блока в режиме выработки электроэнергии во внешнюю сеть), РБ-024-02, Госатомнадзор России. -2002.

12. NUCLEAR REGULATORY COMMISSION, An Assessment of Accident Risks in US Commercial Nuclear Power Plant (Reactor Safety Study), Rep.WASH-1400, Washington, DC.-1975.

13. Биркхофер А. Исследования риска при эксплуатации атомных электростанций в ФРГ . Бюллетень МАГАТЭ. -1980. -книга 22. -№ 5/6.

14. Токмачев Г. В. Вероятностные анализы безопасности первого уровня АЭС с реакторами PWR. Атомная техника за рубежом. -1988. -N 12. -С. 18-22.

15. Токмачев Г.В. Состояние и тенденции развития вероятностных анализов безопасности атомных станций. Новости науки и техники. Атомная энергетика. -1990. -вып. 7. -С.17-22.

16. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. Москва, Наука. -1965.

17. Гнеденко Б.В., Козлов Б.А., Ушаков И.А. О роли и месте теории надежности в процессе создания сложных систем. В книге «Теория надежности и массового обслуживания ». Москва, Наука. -1969.

18. Farmer F.R. Siting criteria - А new approach. Vienna, IAEA. -1967.

19. Vesely W.A. Time - dependent methodology for fault tree evaluation. Nuclear Engeneering and Design, vol. 13. -1970. -№ 2.

20. Рябинин И.А., Черкесов Г.Н. Логико-вероятностные методы исследования надежности структурно-сложных систем. М.: Радио и связь. -1981.

21. Владимиров Д.А. Булевы алгебры. М.: Наука. -1969. -320 с.

22. I Клёмин А.И. Инженерные вероятностные расчеты при проектировании ядерных реакторов. Москва, Атомиздат. -1974.

23. Procedures for Conducting Probabilistic Safety Assessments of Nuclear Power Plants (Level 1), IAEA Safety Series No. 50-P-4// IAEA,Vienna, Austria. -1992.

24. NUREG/CR-2300, "PRA Procedures Guide," January 1983.

25. NUREG/CR-2815, "Probabilistic Safety Analysis Procedures Guide", US NRC, August 1985.

26. NUREG/CR-4550. Analysis of Core Damage Frequency from Internal Events: Methodology Guidelines. Volume 1. NRC, USA, September 1987.

27. NUREG/CR-1150 „Severe Accident Risk: An assessment of for Five US Nuclear Power Plants", US NRS, Washington DC. -1990.

28. Working Materials of the Workshop conducted under IAEA Technical Cooperation Project RER/9/068 "Harmonization of Probabilistic Safety Assessment Practices", IAEA, Vienna, Austria. -2002.

29. Applications of Probabilistic Safety Assessment (PSA) for Nuclear Power Plants", lAEATECDOC Series No. 1200. -2001.

30. Regulatory Guide 1.174, "An approach for using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis", USNRC.-1998.

31. Regulatory Guide 1.175-1.178, "An approach for Plant-Specific Risk-Informed Decision Making", US NRC. -1998.

32. Swain, A.D., Guttman, H.E., Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, NUREG/CR-1278, Sandia Nalt. 1.abs, Albuquerque, NM. -1983.

33. HALL, R.E., FRAGOLA, I.R., WREATHALL, J., Post Event Human Decision Errors: Operator Action Tree/Time Reliability Correlation, Rep. NUREG/CR-3010, USNRC, Washington, DC.-1982.

34. Hannaman, G.W., Spurgin, A.J., and Fragola, J.R., Systematic Human Action Reliability Procedure (SHARP), NP-3583, Electric Power Research Institute. -1984.

35. Embrey at al., "SLIM-MAUD": An Approach to Assessing Human Error Probabilities Using Structured Expert Judgement", NUREG/CR-6350. -1996.

36. IAEA Safety Series 50-P-10, "Human Reliability Analysis in Probabilistic Safety Assessment for Nuclear Power Plants". -1995.

37. Проект NOVISA. Детальный анализ ошибок персонала и восстанавливающих действий. 6hw020xr. Нововоронежская АЭС. -2000.

38. COMMISSION OF THE EUROPEAN COMMUNITIES ISPRA RESEARCH CENTRE, Common Cause Failures Reliability Benchmark Exercise, Rep. EUR-11054-EN, CEC, Ispra. -1987.

39. NUCLEAR REGULATORY COMMISSION, Procedures for Treating Common Cause Failures in Safety and Reliability Studies, Vol. 1, Rep. NUREG/CR-4780, Washington, DC.-1988.

40. HIRSCHBERG, S., Retrospective Analysis of Dependencies in the Swedish Probabilistic Safety Studies, Phase I: Qualitative Overview, Rep. ASEA-ATOM-87-36, ASEA-ATOM (now ABB ATOM), Vaesteraas. -1987.

41. HIRSCHBERG, S. (Ed.), Summary Report on Common Cause Failure Data Benchmark Exercise, Rep. RAS-470 (86) 14, Nordic Liaison Committee for Atomic Energy (NKA), Risoe. -1987.

42. EDWARDS, G.T., WATSON, I.A., A Study of Common Mode Failures, Rep. SRDR-146, United Kingdom Atomic Energy Authority Safety and Reliability Di rectorate, Culcheth, Warrington. -1979.

43. FLEMING, K.N., et al., Classification and Analysis of Reactor Operating Experi ence Involving Dependent Failures, Rep. EPRI-NP-3967, Palo Alto, CA. -1985.

44. Mankamo T. and Pulkkinen Dependent Failutures of Diesel Generators. Nuclear Safety, Vol.23, N01.-1982.

45. Atwood, C.L., 1980a. Common Cause and Individual Failure and Fault Rates for 1.icensee Event Reports of Pumps at U.S. Commercial Nuclear Power Plants, draft, EGG-EA-5289, EG&G Idaho, Inc., Idaho Falls, Idaho.

46. Atwood. C.L., 1980b. Estimators for the Biomlal Failure Rate Common Cause Model, USNRC Report NUREG/CR-1401.

47. Atwood C.L., 1982a. Common Cause Fault Rates for Pumps: Tstimates Based on Licensee Event Reports at U.S. Commercial Nuclear Power Plants, January 1972-September 1980, USNRC Report NUREG-CR-2098.

48. Atwood, C.L., 1982b. Common Cause Fault Rates for Instrumentation and Con trol Assemblies: Estimates Based on Licensee Event Reports at U.S. Commer cial Nuclear Power Plants, 1976-1978, USNRC Report NUREG/CR-2771.

49. Atwood, C.L., and J.A. Steverson, 1982a. Common Cause Fault Rates for Die sel Generators: Estimates Based on Licensee Event Reports at U.S. Nuclear Power Plants, 1976-1978, USNRC Report NUREG/CR-2G99.

50. Atwood C.L., and J.A. Steverson, 1982b. Common Cause Fault Retes for Valves: Estimates Based on Lisensee Event Reports at U.S. Commercial Nu clear Power Plants, 1976-1980, USNRC Report NUREG/CR-2770.

51. Atwood, C.L, and W.J. Suitt, 1982. User"s Guide to BFR, A Computer Code Based on the Binomial Failure Rate Common Cause Model, USNRC Report NUREG/CR-2729.

52. NUREG/CR-5497, F. Marshall, D. Rasmuson and A. Mosleh, "Common-Cause Failure Parameters Estimations"// NEEL/EXT-97-01328. -1998.

53. Сиряпин B.H., Спассков В.П. Критерий отбраковки негерметичных кассет ВВЭР и надежность активной зоны. Сборник "Вопросы атом, науки и техники", вып.1(4). -1980.

54. Сиряпин В.Н..|Клемин А.И.| Математическая модель надежности активной зоны ВВЭР. Сборник "Вопросы атом, науки и техники", серия "Физика и техника ядерных реакторов", вып. 2. -1981.

55. Сиряпин В.Н. Поляков Е.Ф. Влияние периодического контроля оборудования АЭС при эксплуатации на его надежность. Сборник "Вопросы атом, науки и техники", серия "Физика и техника ядерных реакторов", вып. 2. -1981.

56. Спассков В.П., Сиряпин В.Н., Шеин В.П. Некоторые вопросы создания безопасного оборудования ядерных энергетических установок с реакторами типа ВВЭР. Сборник "Вопросы атом, науки и техники", серия "Физика и техника ядерных реакторов", вып. 6. -1982.

57. Сиряпин В.Н., Спассков В.П., Филь И.С. Вероятностный анализ температурного режима активной зоны ВВЭР в условиях максимально-проектной аварии. "Сборник "Вопросы атом, науки и техники". -1983. -№7(36).

58. Швыряев Ю.В., Сиряпин В.Н., | Цыганков Е.А. Отраслевая научно- техническая программа «Полномасштабный ВАБ действующих АС с реакторами ВВЭР » Москва, концерн «Росэнергоатом ». -1993. -21с.

59. Швыряев Ю.В., Барсуков А.Ф. «Методика определения регламента технического обслуживания СБ АЭС. Расчет периодичности проверок элементов СБ». Проект методики / Отчет ВТИ . -1986. -20 с.

60. Швыряев Ю.В., Барсуков А.Ф. «Методика оценки вероятностных показателей безопасности атомных станций » / Отчет ВТИ, арх.№ 13215. -1987. -47 с.

61. Швыряев Ю.В., Барсуков А.Ф. «Оценка показателей надежности и определение периодичности технического обслуживания систем безопасности АЭС «Козлодуй-Ш» / Отчет ВТИ, арх.№ 13238. -1987. -124 с.

62. Швыряев Ю.В.,| Клемин А.И| «Вероятностные показатели и критерии безопасности » // Сборник «Вопросы обеспечения безопасности современных систем энергетики », Воронеж. -1987. -С.6 -12.

63. Швыряев Ю.В., Федотов Д.К., Деревянкин А.А. «Оценка влияния надежности действий оперативного персонала на безопасность работы АЭС» // Электрические станции, № 4. -1988. -С.6-8.

64. Швыряев Ю.В., Морозов В.В., Барсуков А.Ф., Токмачев Г.В. и др. «Анализ надежности и обоснование регламента технического обслуживания систем безопасности блоков №1, 2 Калининской АЭС» / Отчет АЭП , инв. № 3/1-89. -1988.-107 с.

65. Швыряев Ю.В., Морозов В.Б., Барсуков А.Ф., Токмачев Г.В., Деревянкин А.А. «Оценка вероятностей повреждения активной зоны для АЭС с В-1000» / Доклад на советско-западногерманском семинаре по вопросам безопасности АЭС, Москва. -1988. -40 с.

66. Швыряев Ю.В., Шендерович В.Я., Володин А.В., Токмачев Г.В. и др. «Техническое обоснование безопасности сооружения и эксплуатации АЭС » // Проект АЭС с реакторами ВВЭР-1000 повышенной безопасности, АЭП. -1988.-1800 с.

67. Швыряев Ю.В., Барсуков А.Ф., Токмачев Г.В. и др. «Оценка вероятностных показателей безопасности АС-У87 и АС-88» // Проект АЭС с реакторами ВВЭР-1000 повышенной безопасности, АЭП, инв. № 11/0-89. -1988. -370 с.

68. Швыряев Ю.В. и др. «Применение вероятностных оценок безопасности при проектировании АЭС с реакторами ВВЭР» / Технический комитет МАГАТЭ Применение ВАБ новых проектов и систем снижения аварийных последствий», Вена, май 1989.-12 с.

69. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Оценка вероятностей повреждения активной зоны реактора В-1000 при авариях с малой течью» / Доклад на советско-западногерманском семинаре, Москва. -1989.-25 с.

70. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Руководство по выполнению вероятностных анализов безопасности АС при проектировании» // НТД , АЭП, инв. № Р.210.002-90. -291 с.

71. Швыряев Ю.В., Токмачев Г.В. «Оценка вероятности повреждения активной зоны реактора В-1000 при обесточивании энергоблока» /Доклад на советско-американском семинаре, июнь 1990, Вашингтон. -20 с.

72. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Вероятностный анализ запроектных аварий для Ростовской АЭС » // Проект Ростовской АЭС, АЭП, инв. № п/м-88. -1990. -350 с.

73. Швыряев Ю.В., Морозов В.Б., Байкова Е.В., Токмачев Г.В. и др. «Комплекс программ для ПЭВМ по оценке вероятностных показателей безопасности АЭС» / Отчет АЭП, инв. № 0-XIII1/3/90. -57 с.

74. Швыряев Ю.В., Барсуков А.Ф., Токмачев Г.В., Краснорядцева 0 .0 . «Анализ надежности для обоснования регламента технического обслуживания систем безопасности 3 - 4 блоков Кольской АЭС» /АЭП, инв. № 0-1.125/90. -1990. -91 с.

75. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности АЭС «Темелин » в ЧСФР» // Москва, АЭП. -1990. -321 с.

76. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Вероятностный анализ запроектных аварий для Балаковской АЭС (энергоблоки № 5, 6)» // Проект Балаковской АЭС, АЭП, инв. № п/м-134. -1990. -507 с.

77. Швыряев Ю.В., Антропов Г.А., Барсуков А.Ф. и др. «Mini - PSA АЭС-91 для условий Финляндии» // Проект энергоблока 3 «Ловиса » в Финляндии. ЛиАЭП. -1991.-450 с.

78. Швыряев Ю.В., Майнич В.П., Свердлов А.А., Токмачев Г.В. и др. «Результаты расчетов частоты повреждения активной зоны АЭС «Хурагуа » при авариях «большая » и «средняя » течь» / Отчет П.АЭП, инв.№ 69713. -1991.-254 с.

79. Швыряев Ю.В., Барсуков А.Ф. «Вероятностный анализ безопасности 1-го уровня АС-92» // Проект АЭС-92, Москва, АЭП. -1991. -150 с.

80. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. «Внедрение методов вероятностного анализа в практику проектирования АЭС » /Доклад на научно-практической конференции ГПАН, Москва. -1991. -10 с.

81. Швыряев Ю.В., Морозов В.Б., Токмачев Г.В. «Анализ зависимых отказов при проведении вероятностных анализов безопасности » /Доклад на советско-английском семинаре, Москва, апрель 1991. -17,5 с.

82. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности блока №4 Балаковской АЭС» //АЭП. -1992. -273 с.

83. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности 1-го уровня АС-91ПР»//АЭП, Москва. -1992.-117 с.

84. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности 1-го уровня для технических предложений АЭС НП-1000» / /АЭП, Москва. -1992.-79 с.

85. Швыряев Ю.В. и др. «Вероятностный анализ безопасности атомных станций. Методика выполнения». Ядерное общество. Москва. -1992. -264 с.

86. Швыряев Ю.В., Деревянкин А.А., Токмачев Г.В. «Вероятностное моделирование аварийных последовательностей для АЭС с ВВЭР-440», «Атомная энергия », том 73, вып. 1, июль 1992. -С.54-59.

87. Швыряев Ю.В., Морозов В.Б., Барсуков А.Ф., Деревянкин А.А., Токмачев Г.В. Состояние и проблемы вероятностного анализа безопасности для АЭС с ВВЭР //Атомная энергия, Москва, том 74, вып. 6. -1993. -С.459-466.

88. Швыряев Ю.В. и др. Нововоронежская АЭС. 3 энергоблок . Вероятностный анализ безопасности первого уровня. Том 1. Количественная оценка частоты повреждения активной зоны для внутренних исходных событий // АЭП, Москва. -1996.

89. Shvyryaev Y.V., Barsukov A.F., Krasnorjadtseva 0 .0 . et al. Project: PSA for W E R 1000/\/320. Summary Report. First Level Probabilistic Safety Analysis for Zaporozh"e NPP. Unit 5. 95-KL-REP-MOHT-EDF-055n01 // AEP, Moscow. -1998.-926 p.

90. Букринский A.M., Антропов B.H., Швыряев Ю.В. Методика разработки перечней запроектных аварий (1-ая редакция) / Отчет НТЦ ЯРБ, инв. № 120-19/361, Москва. -1998. -121 с.

91. Yu. Shvyryaev., Antropov V.N., Buckrinsky A.M. «Development of Methodology and List of BDBA for WWER-1000 for Quantitative Analysis». // SAM-99 -Information Exchange Forum on "Severe Accident Management", Obninsk, 18-

93. Yu. Shvyryaev. «Novisa Project PSA of NVNPP3» // Fifth International Information Exchange Forum Safety Analysis for NPP"s of WER and RBMK Types, 16 - 20 October 2000, Obninsl

94. Швыряев Ю.В. Атомная станция Нововоронежская АЭС-2, Перечень ЗПА для энергоблоков НВАЭС -2 // «Атомэнергопроект », Москва. -2000. -89 с.

95. Швыряев Ю.В. Перечень ЗПА АЭС с В-320 / «Атомэнергопроект », Москва. - 2000. -87 с.

96. Швыряев Ю.В. и др. «Нововоронежская АЭС, блок 3. Отчет по углубленной оценке безопасности. Приложение 3. Вероятностный анализ безопасности 1-го уровня» / /АЭП, Москва. -2000. -681 с.

97. Малышев А.Б., Морозов В. Б, Швыряев Ю.В. "Особенности разработки отчетов по анализу безопасности и ВАБ для эксплуатирующихся энергоблоков АЭС с ВВЭР в России". Сборник трудов АЭП, № 2, -2001. -С.43-53.

98. Швыряев Ю.В. «Применение ВАБ для выработки и принятия решений по повышению безопасности действующих и проектируемых АЭС с реакторами ВВЭР» / Конференция МАГАТЭ, Австрия (Вена), сентябрь 2001. (на русск. и англ. яз.). -33 с.

99. Швыряев Ю.В. и др. Нововоронежская АЭС, блок 4. Отчет по углубленной оценке безопасности. Приложение 1. Вероятностный анализ безопасности (уровень 1) //АЭП, Москва. -2002. -647 с.

100. Швыряев Ю.В., Морозов В.Б., Токмачев Г.В. и др. Проект NOVISA (WBS 3.1.11). Окончательный отчет по ВАБ первого уровня. 16JW011XR / /АЭП, Москва. -2002.

101. Морозов В.Б., Швыряев Ю.В. "ВАБ для АЭС с ВВЭР в рамках программы TACIS. Основные результаты" // Международная конференция. Десятилетие Программ ТАСИС в странах СНГ, г. Киев, 10-12 июля 2002. Сборник докладов. -С. 167-173.

102. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева 0 .0 . «Анализ и расчет снижения частоты повреждения активной зоны энергоблоков 1-4 Балаковской АЭС при реализации компенсирующих мероприятий для запроектных ава-рий» / /АЭП, Москва. -2002. -232 с.

103. Правила и нормы ядерной и радиационной безопасности. Требования к содержанию отчета по обоснованию безопасности АС с реакторами типа ВВЭР (ПНАЭ Г-01-036-95), Госатомнадзор России, Москва. -1995.

104. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева 0 .0 . и др. Проект АЭС «Бу- шер». Вероятностный анализ безопасности. 18.BU.1 O.O.00.VAB.PR // «Атомэнергопроект », Москва. -2003.

105. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева О.О. «Обоснование возможности вывода в ремонт каналов СБ при выполнении капитального ремонта с реконструкцией бака ГА-201 энергоблоков АЭС с реактором В-320» // «Атомэнергопроект », Москва. -2003. -148 с.

106. Беркович В.М., Малышев А.Б., Швыряев Ю.В. «Создание энергоблоков АЭС с реакторами ВВЭР нового поколения » // Теплоэнергетика, № 11. -2003. -С.2-10.

107. Швыряев Ю.В., Токмачев Г.В., Байкова Е.В. ст. "Вероятностный анализ безопасности 4-го энергоблока Нововоронежской АЭС" / Сборник трудов АЭП.-2003.-№4.-С.9-15.

108. Швыряев Ю.В. «Современный подход к методологии вероятностного анализа безопасности атомных станций» // Известия ВУЗов. Ядерная энергетика.-2004.-№1.-С. 17-24.

109. Банюк Г.Ф., Драгунов Ю.Г., Сиряпина Л.А., Таранков Г.А. Анализ причин коррозионной повреждаемости труб парогенераторов АЭС с ВВЭР. "20-ый отраслевой семинар "Инженерные и экономические аспекты ядерной энергетики",. -1986.

110. Стекольников В.В., Ермаков Н.И., Денисов В.П., Сиряпин В.Н. Опыт создания и эксплуатации реакторных установок ВВЭР-1000. Журнал "Ядер-ж ная Европа". -1984.

111. Вихорев Ю.В, Вознесенский В.А., Гончаров В.В., Дубровин К.Н., Проселков В.Н., Сидоренко В.А., Сиряпин В.Н., Фатиева Н.Л., Филь Н.С. Опыт эксплуатации ТВС реактора ВВЭР-1000 пятого блока Нововоронежской АЭС. Журнал "Атомная энергия", том 54. -1983.

112. Предварительный отчет по обоснованию безопасности. Отчет по анализам надежности. Анализ надежности системы аварийной защиты реактора, АЭС «Куданкулам » Блок 1,2; 412-Пр-227, ФГУП ОКБ «Гидропресс ». -2000.

113. Установка реакторная В-446. Анализ надежности. Часть 10. Система аварийной защиты реактора АЭС «Бушер » Блок 1. ФГУП ОКБ «Гидропресс ». -2000.

114. В.А. Григорьев «Концепция применения вероятностных методов механики разрушения для анализа надежности оборудования и трубопроводов РУ с ВВЭР», Сборник трудов конференции «Обеспечение безопасности АЭС с ВВЭР ».-2001.

115. Бахметьев A.M., Самойлов О.Б., Усынин Г.Б. Методы оценки и обеспечения безопасности ЯЭУ : (Б-ка эксплуатационника АЭС; Вып. 23). - М.: Энерго-атомиздат. -1988. -136 с.

116. Авербах Б.А., Бахметьев A.M., Егоров В.В. и др. Анализ защищенности реакторной установки АСТ -500 от отказов по общей причине и ошибок персонала. - Тезисы докладов Всесоюзного научно-технического совещания. - ВНИИАЭС , М.-1987.

117. Бахметьев A.M. Статус ВАБ при проектировании и лицензировании АЭС. Международная встреча по безопасности и лицензированию ГТ-МГР, 9-13 октября 2000, Сан-Диего (США ).

118. A.M. Бахметьев , С П. Линьков, СВ. Гуреев и др.Вероятностный анализ Воронежской ACT; Отчет/ ОКБМ, НИ АЭП, РНЦ "Курчатовский институт"; инв.№А63513, Н. Новгород. -2001.

119. A.M. Бахметьев , С П. Линьков, СВ. Гуреев и др.; Вероятностный анализ безопасности АСТ-500М Сибирского химкомбината: Отчет/ ОКБМ, НИ АЭП, РНЦ "Курчатовский институт"; инв.№А63585, Н. Новгород. -2001.

120. A.M. Бахметьев , С П. Линьков, Ю.А. Макеев и др.; Проект ГТ-МГР. Оценка вероятностного риска, книги 1-2: Отчет о НИР / ОКБМ; инв. №0103110.- Н. Новгород. -2002.

121. Клёмин A.H.I, Песков Р.А., Фролов Э.В. Структурная математическая модель надежности АЭС. Методика расчета. Атомная энергия, Т.51. -1981.

122. Антонов А.В., Острейковский В.А. Оценивание характеристик надежности элементов и систем ЯЭУ комбинированными методами. Москва, Энергоиз-дат. -1993.

123. Lioubarski А, Kouzmina I., Gordon В., Rozin V. Insiglnts from Level-1 PSA for Novovoronezh NPP (Unit 5) and PSA-based Modifications// Proceedings of the PSA"99 International Topical Meeting (USA, Washington D.C., 22-26 August 1999). P.21-28.

124. A.Liobarski, I. Kuzmina, «Comparison of some Results and Modeling Issues of PSAs For WER-1000», Transactions of Fourth International Information Exchange Forum, Obninsk, Russia, 11-15 October 1999. ^

125. INTERNATIONAL NUCLEAR SAFETY ADVISORY GROUP. Basic Safety Principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3. IAEA, Vienna. -1999.

126. RISK SPECTRUM, User"s Manual, Version 2.1, Relkon Teknik AB, Box 1288, S- 172 25 Sundbyberg, Sweden, April 1994.

127. CEC TACIS 91 Programme TACIS 3.1 Final Level 1 PSA Report C9225/AEP/REP/063 Issue V3, ATOMENERGOPROEKT, Moscow. -1996.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.


480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Швыряев Юрий Васильевич. Вероятностный анализ безопасности при проектировании и эксплуатации атомных станций с реакторами ВВЭР: Дис. ... д-ра техн. наук: 05.14.03: М., 2004 340 c. РГБ ОД, 71:05-5/598

Введение

1 Краткий обзор состояния проблемы 20

2 Методология вероятностного анализа безопасности АС 28

2.1 Общая вероятностная модель безопасности АС 28

2.3 Отбор и группировка инициирующих событий 37

2.3.1 Определение понятия и классификация инициирующих событий 37

2.3.2 Составление полного перечня внутренних ИС 38

2.3.3 Группирование ИС 43

2.4 Разработка деревьев событий 43

2.4.1 Основные понятия и порядок построения ДС 43

2.4.2 Основные принципы разработки ДС 46

2.5 Методология анализа надежности СБ 50

2.5.1 Общие положения 50

2.5.2 Классификация отказов элементов 56

2.5.3 Построение моделей надежности систем 59

2.5.4 Количественный анализ надежности СБ 65

2.6 Методика анализа зависимых отказов 111

2.6.1 Виды зависимых отказов 111

2.6.2 Анализ зависимостей при построении деревьев событий 116

2.6.3 Анализ зависимостей при разработке моделей надежности систем 120

2.6.4 Качественный анализ отказов общего вида 123

2.7 Анализ надежности персонала 134

2.7.1 Общие положения...134

2.7.2 Основные этапы выполнения анализа надежности персонала 138

2.8 Оценка параметров надежности элементов 146

2.8.1 Термины и определения используемые при анализе данных. 146

2.8.2 Определение групп компонентов для задачи анализа данных 149

2.8.3 Использованные источники данных 150

2.8.4 Определение границ компонентов 151

2.8.5 Определение видов отказов элементов 153

2.8.6 Классификация событий по условиям обнаружения и восстановления 155

2.8.7 Номенклатура показателей надежности 157

2.8.8 Моделирование отказов элементов на деревьях отказов 158

2.8.9 Методы применяемые для задачи оценки параметров надёжности 159

2.9 Подход к оценке и обоснованию безопасности АС на основе результатов ВАБ 163

2.9.1 Общие положения 163

2.9.2 Качественная оценка безопасности на основе результатов ВАБ 165

2.9.3 Количественная оценка безопасности на основе результатов ВАБ 170

2.10 Выводы по главе 2 171

3 Применение ВАБ при проектировании АЭС с реакторами ВВЭР нового поколения 173

3.1 Введение 173

3.2 Концепция безопасности... 174

3.2.1 Реакторная установка В-392 178

3.2.2 Системы безопасности АЭС-92 180

3.3 Оценка эффективности проектных решений для

АЭС-92 на основе результатов ВАБ 188

3.3.1 Краткая характеристика ВАБ уровня 1 188

3.3.2 Результаты ВАБ уровня 1 189

3.3.3 Анализ значимости 193

3.3.4 Анализ чувствительности 194

3.3.5 Анализ неопределенностей значений частоты ПАЗ 196

3.3.6 Оценка уровня безопасности АЭС «Куданкулам» на основе

результатов ВАБ 197

3.4 Проектные решения по повышению экономичности 202

3.4.1 Снижение затрат на сооружение АЭС 202

3.4.2 Повышение показателей надежности выработки энергии... 205

3.5 Выводы по главе 3 206

4 Применение ВАБ при проектировании АЭС «Бушер-1» 207

4.1 Краткая характеристика концепции безопасности проекта АЭС «Бушер-1» 207

4.2 Оценка уровня безопасности АЭС «Бушер» на основе результатов ВАБ уровня 1 208

4.2.1 Краткая характеристика ВАБ уровня 1 208

4.2.2 Исходные данные и предположения при проведении количественных оценок значений частот ПАЗ 212

4.2.3 Устранение логических петель 214

4.2.4 Результаты оценки частоты повреждения активной зоны 216

4.3 Оценка уровня безопасности АЭС «Бушер-1» на основе результатов ВАБ 218

4.4 Выводы по главе 4 221

5 Применение ВАБ для действующих АЭС с реакторами ВВЭР 222

5.1 Применение ВАБ для энергоблоков 3, 4 Нововоронежской АЭС 222

5.1.1 Введение 222

5.1.2 Результаты ВАБ по проекту 1.4.TACIS-91 222

5.1.3 Результаты ВАБ по проекту NOVISA 228

5.1.4 Результаты ВАБ по проекту R2.01/96 TACIS-96 236

5.1.5 Применение ВАБ при обосновании возможности продления назначенного срока службы энергоблоков 3,4 НВАЭС 246

5.1.6 Выводы по разделу 5.1 255

5.2 Разработка стратегии технического обслуживания СБ для АЭС с реакторами В-320 256

5.2.1 Выводы по разделу 5.2 261

5.3 Применение ВАБ для оптимизации регламентов технического обслуживания и ремонтов СБ АЭС с

реактором В-320 261

5.3.1 Обоснование внесения изменений в технологический регламент проведения капитальных ремонтов СБ 261

5.3.2 Оптимизация технического обслуживания и ремонтов систем безопасности АЭС с В-320 284

5.3.3 Выводы к разделу 5.3 290

6 Основные выводы и результаты работы 291

Литература

Введение к работе

Атомные станции (АС) вследствие накопления в процессе эксплуатации значительных количеств радиоактивных продуктов и наличия принципиальной возможности выхода их при авариях за предусмотренные границы представляют собой источник потенциальной опасности или источник риска радиационного воздействия на персонал, население и окружающую среду. Степень радиационного риска прямо зависит от уровня безопасности АС, которая является одним из основных свойств АС, определяющих возможность их использования в качестве источников тепловой и электрической энергии.

В соответствии с «Общими положениями обеспечения безопасности атомных станций» ОПБ-88/97 /3/ понятие (или термин) «Безопасность АС» определено как «свойство АС при нормальной эксплуатации и нарушениях нормальной эксплуатации, включая аварии, ограничивать радиационное воздействие на персонал, население и окружающую среду установленными пределами».

В соответствии с «Федеральным Законом о Техническом Регулировании» 121 понятие безопасности объектов определено как «состояние, при котором отсутствует недопустимый риск, связанный с причинением вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений». В свою очередь понятие риска в этом Законе определяется как «вероятность причинения вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений с учетом тяжести этого вреда».

По отношению к АС причинение вреда связано с радиационным воздействием. Поэтому приведенные в ОПБ-88/97 и «Федеральном За-

коне о Техническом Регулировании» определения понятия безопасности можно считать эквивалентными.

На большинстве эксплуатируемых в настоящее время АС используются реакторы водоводяного типа (ВВЭР, PWR). Как показывает мировой опыт, АС с такими реакторами представляют собой источники энергии, удовлетворяющие самым жестким экологическим требованиям в условиях их нормальной эксплуатации. Потенциальная опасность возникает при авариях, в процессе которых накопленные в тепловыделяющих элементах (ТВЭЛ) и теплоносителе 1-го контура радиоактивные продукты могут выходить за предусмотренные границы в количествах, превышающих установленные для нормальной эксплуатации пределы.

Аварии относятся к категории случайных событий, которые характеризуются размерами последствий и величинами вероятностей их реализации. Понятие аварии составляет фундаментальную основу безопасности, как внутреннего свойства АС, и определяет вероятностную природу этого свойства.

Следует отметить, что вероятностная природа безопасности заключена уже в приведенных выше определениях этого свойства.

Актуальность работы состоит в том, что оценка и обоснование достигаемого при проектировании и эксплуатации АС уровня безопасности должно проводиться на основе применения методов системного анализа, что может быть реализовано за счет разработки и применения методологии вероятностных анализов безопасности (ВАБ). ВАБ признаны как сторонниками, так и противниками использования атомной энергетики единственным практическим средством для комплексной качественной и количественной оценки безопасности АС.

Вероятностный анализ безопасности АС представляет собой комплексный, всесторонний системный анализ безопасности, в процессе которого разрабатываются вероятностные модели для определения конечных состояний с повреждением источников радиоактивности и конечных состояний АС с превышением установленных пределов по вы-

бросам радиоактивных продуктов и радиационному воздействию-на население и окружающую среду и определяются значения вероятностных показателей безопасности. Результаты ВАБ используются для качественных и количественных оценок достигнутого уровня безопасности, а также для выработки и принятия решений при проектировании и эксплуатации АС.

ВАБ могут выполняться на различных стадиях жизненного цикла АС, включая проектирование, сооружение, ввод в эксплуатацию, эксплуатацию и снятие с эксплуатации. Наиболее эффективно и со сравнительно небольшими затратами ВАБ могут использоваться на этапе проектирования АС, где их результаты могут служить основой для выработки технических решений, направленных на повышение безопасности и внедряемых непосредственно в проект АС. Применение ВАБ на этапе проектирования позволяет создать АС с заданным уровнем безопасности.

ВАБ могут быть эффективно использованы также для разработки мероприятий по повышению безопасности действующих АС.

ВАБ представляет собой итеративный процесс, который может включать несколько стадий, различающихся между собой по целям, объему, содержанию и глубине выполняемых анализов. Объем и содержание ВАБ определяют его полноту и, в конечном счете, уровень остаточного риска (т.е. риска, который не подвергся анализу), а глубина ВАБ определяет уровень реалистичности разработанных вероятностных моделей безопасности АС. Все это, в свою очередь, оказывает определяющее влияние на достоверность получаемых результатов и эффективность их использования в качестве основы для разработки проектных решений по управлению безопасностью.

Полнота ВАБ определяется перечнем рассмотренных исходных событий (ИС). Разработка полномасштабных ВАБ должна производиться для полных перечней внутренних (вызванных отказами систем, элементов или ошибочными действиями персонала АС), внутриплощадоч-

ных (вызванных воздействиями пожаров, затоплений, пароводяных струй, биений трубопроводов, летящих предметов, изменений температур, влажности в помещениях АС) и внешних (вызванных характерными для площадки АС воздействиями природного или техногенного характера) исходных событий.

В зависимости от объема, целей и возможного использования результатов различают несколько уровней вероятностных анализов безопасности /25,116/.

ВАБ АС уровня 1 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения конечных состояний с повреждением источников радиоактивности и оцениваются значения частот или вероятностей их реализации. В качестве основных источников радиоактивности для АС с ВВЭР рассматриваются ядерное топливо в активной зоне реактора и отработавшее ядерное топливо в бассейне выдержки.

ВАБ АС уровня 2 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения различных категорий выбросов радиоактивных продуктов в окружающую среду или различных значений экспозиционных доз в зоне планирования защитных мероприятий и оцениваются значения частот или вероятностей их реализации.

ВАБ АС уровня 3 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения видов и размеров ущербов, вызванных радиационным воздействием на население и окружающую среду.

Основываясь на приведенном в ОПБ-88/97 определении безопасности и целевых значениях вероятностей превышения предельных аварийных выбросов (п.1.2.17) и вероятностей запроектных аварий с тяжелым повреждением активной зоны реактора (п.4.2.2), можно сделать вывод о том, что для анализа, оценки и обоснования достигнутого при проектировании и эксплуатации АС уровня этого свойства необходимо и достаточно выполнение полномасштабных ВАБ уровней 1 и 2. Этот вывод подкрепляется также тем обстоятельством, что уже определение

вероятностных показателей для радиационных последствий по результатам ВАБ уровня 2 связано с большой степенью неопределенностей вследствие недостаточных значений о процессах при тяжелых запро-ектных авариях.

Выполнение ВАБ уровня 3 с оценкой показателей риска нанесения ущерба здоровью или жизни людей на окружающей АС территории требует определения условных вероятностей получения человеком соответствующих доз. Это связано с еще большими неопределенностями в оценках показателей риска, что приводит к практической бесполезности проведения таких оценок. Поэтому основные решения по безопасности принимаются по результатам ВАБ уровней 1 и 2.

Основные цели работы

Основные цели диссертационной работы заключаются в разработке методологии ВАБ и ее применении в качестве инструмента для анализа, оценки, выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

Применение ВАБ при проектировании обеспечивает реализацию комплексного системного подхода к анализу и обоснованию безопасности и позволяет создавать АС с заданным уровнем этого свойства для достижения приемлемо низкого уровня радиационного риска от использования АС.

Научная новизна работы

1. Впервые в отечественной практике с использованием методов теории вероятностей и теории надежности разработана методология выполнения вероятностных анализов безопасности и анализов надежности систем безопасности атомных станций, которая используется в качестве инструмента для выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

В процессе разработки методологии ВАБ решены следующие научные проблемы:

Предложена общая вероятностная модель безопасности АС, с использованием которой определен комплекс вероятностных показателей безопасности (ВПБ) и систематизированы задачи, решение которых необходимо для выполнения ВАБ;

Разработан комплекс инженерных методик и подходов для выполнения отдельных задач ВАБ, включая составление перечней инициирующих событий (ИС), построение вероятностных моделей для определения полного множества возможных состояний АС, построение моделей надежности систем, выполняющих функции безопасности, моделирование зависимых отказов и отказов по общей причине или отказов общего вида, моделирование ошибочных действий персонала, фор-мирование баз данных по значениям частот ИС и показателей надежно-" сти элементов и оборудования, построение интегральной вероятностной модели АС, выполнение количественных расчетов, анализов неопреде--"" ленностей, значимости и чувствительности значений ВПБ.

    Разработан подход комплексной оценки безопасности АС на * основе результатов ВАБ.

    Впервые в отечественной практике ВАБ применены для решения следующих вопросов безопасности при проектировании и эксплуатации АС:

    Разработана концепция безопасности АС с ВВЭР третьего поколения, которая обеспечивает переход на качественно новый уровень безопасности по сравнению с действующими АС;

    Разработана стратегия проведения периодического технического обслуживания и ремонтов систем безопасности;

    Разработан подход по обоснованию внесения изменений в действующие технологические регламенты безопасной эксплуатации АС с реакторами В-320.

3.4. Выполнена оптимизация структуры управляющих систем
безопасности для действующих АЭС с реакторами В-320.

3.5. Обоснована возможность продления на 10 лет назначенного
(проектного) срока эксплуатации энергоблоков 3, 4 Нововоронежской

АЭС с реакторами В-179.

Практическая ценность работы

Методология ВАБ используется в качестве инструмента по решению вопросов безопасности для действующих и проектируемых АС.

С ее применением были выполнены ВАБ уровня 1 для энергоблоков действующих и вновь проектируемых АЭС с реакторами ВВЭР, включая:

ВАБ уровня 1 для энергоблоков с реактором В-320 Балаков-
ской АЭС (1991-2001 гг.). Отчеты по ВАБ были включены в состав про
ектных материалов, представляемых концерном «Росэнергоатом» (РЭА)
в Госатомнадзор РФ (ГАН РФ) для получения лицензии на ввод энерго-

і р блока 4 в эксплуатацию и для получения лицензий на продолжение экс-

плуатации блоков 1-4 Балаковской АЭС;

ВАБ уровня 1 для энергоблоков 3 и 4 с реакторами ВВЭР-440 Нововоронежской АЭС, разработанные по проектам 1.4 и R.01/96 Программ TACIS-91, TACIS-96 и по проекту НОВИСА (по контракту, который финансировался Департаментом энергетики США). Результаты ВАБ использованы для разработки мер по модернизации с целью повышения уровня безопасности этих энергоблоков и для получения лицензии ГАН РФ на продление срока службы этих энергоблоков еще на 10 лет;

ВАБ уровней 1 и 2 для внутренних исходных событий, ВАБ для
^ пожаров в помещениях АЭС и ВАБ для сейсмических воздействий в со
ставе проекта достройки АЭС «Бушер» в Исламской Республике Иран с
реактором ВВЭР-1000 (РУ В-446). ВАБ уровня 1 был подвергнут экспер
тизе миссии МАГАТЭ и Иранского надзорного органа и использован
Иранской эксплуатирующей организацией для получения лицензии на

строительство АЭС «Бушер». В процессе проектирования энергоблока на основе результатов ВАБ были разработаны рекомендации по дополнительным проектным решениям по повышению безопасности, которые позволили снизить значения частоты ПАЗ более чем на порядок по сравнению с первоначальным вариантом проекта;

На основе результатов ВАБ для АЭС с РУ В-320 были определены слабые места этого проекта и сформулированы основные принципиальные решения по повышению безопасности, которые вошли в концепцию безопасности проектов энергоблоков АЭС с реакторами ВВЭР третьего поколения (проект АС-92). Применение этой концепции позволило создать энергоблок с качественно новым уровнем безопасности с одновременным снижением затрат на его сооружение и эксплуатацию. Основные решения по проекту АС-92 реализованы в проектах второй очереди Нововоронежской АЭС (НВАЭС-2) и в проекте АЭС «Куданку-лам» в Республике Индии. ВАБ для этих проектов использованы Индийской эксплуатирующей организацией и Росэнергоатомом для получения лицензий на сооружение. Строительство этих АЭС проводится в настоящее время;

Разработанная стратегия проведения технического обслуживания систем безопасности включена в технологические регламенты безопасной эксплуатации действующих АЭС с реакторной установкой В-320;

Методика анализа надежности систем безопасности включена в отраслевые руководящие материалы РТМ 95490-78 «Методика расчета структурной надежности АЭС и ее систем на этапе проектирования» и РТМ 95823-81 «Надежность оборудования реакторных установок АЭС. Методика расчета»;

Выполненное на основе ВАБ обоснование возможности проведения плановых ремонтов каналов систем безопасности при останове энергоблоков АЭС с В-320 для производства замены фильтров в баке-

13 приямке ГА-201 позволило сократить на 40 суток длительность останова энергоблока 2 Балаковской АЭС для проведения КПР в 2003 году.

Достоверность результатов работы

Достоверность научных положений, методологии и практических результатов работы подтверждается сравнением с современной методологией, широко применяемой в мировой практике, долговременным (на протяжении более 25 лет) использованием в отечественной практике, результатами экспертиз Госатомнадзора России, надзорных органов и эксплуатирующих АС организаций Индии, Ирана, Финляндии, миссии МАГАТЭ результатами экспертиз многих ведущих в области ВАБ организаций США (SAIC, ArgoneNL), Англии (NNC Limited), Германии (GRS, Westinghouse Reactor), Франции (EDF, IPSN). Практически все разработанные на основе ВАБ рекомендации по безопасности внедрены на действующих и в проекты новых и достраиваемых АС с ВВЭР.

Непосредственно автором в составе целостной методологии выполнения вероятностных анализов безопасности и анализов надежности систем безопасности АС разработаны общая вероятностная модель безопасности АС, комплекс вероятностных показателей безопасности, основы и общие подходы построения детальных вероятностных моделей для определения полного множества аварийных состояний, построения моделей надежности С Б, включая определение перечней исходных событий, систематизацию особенностей структуры, режимов использования, регламентов технического обслуживания и ремонтов, многообразия видов отказов, определение функций вероятностей отказов элементов, подход к анализу ошибочных действий персонала и подход к комплексной качественной и количественной оценке и обоснованию безопасности на основе результатов ВАБ.

Детальная разработка отдельных составных частей методологии ВАБ и анализов надежности систем производилась под руководством и при участии автора сотрудниками возглавляемых им подразделений.

Разработка ВАБ для действующих и проектируемых АС в России и за рубежом, включая работы по ВАБ по проектам Программ TACIS, финансируемых Комиссией Европейского Сообщества, и по контрактам с EDF, GRS, USDOE, была выполнена под руководством и при непосредственном участии автора сотрудниками БКП-5 совместно с сотрудниками других подразделений ФГУП «Атомэнергопроект» и сотрудниками ФГУП ОКБ «Гидропресс», РНЦ «Курчатовский институт», ВНИИАЭС. Автор, в частности, лично разрабатывал разделы по моделированию аварийных последовательностей, анализам результатов, выводам и рекомендациям.

Положения, выносимые на защиту

    Методология выполнения вероятностных анализов безопасности АС, включающая общую вероятностную модель безопасности и комплекс ВПБ, комплекс методик, подходов и принципов для построения детальных вероятностных моделей для определения полных множеств аварийных состояний АС, моделей надежности систем, подходы для моделирования зависимых отказов, ошибочных действий персонала, формирования баз данных, разработки интегральной вероятностной модели АС в целом и выполнения количественных расчетов ВПБ.

    Подход для проведения комплексной качественной и количественной оценки безопасности на основе результатов ВАБ.

    Результаты применения методологии ВАБ в качестве инструмента для выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

Основные положения и результаты диссертации докладывались и получили положительную оценку на внутренних и международных конференциях и семинарах: 17-й Всесоюзный семинар «Методологические вопросы исследования надежности больших систем энергетики», Паланга, 1982; Всесоюзный научный семинар «Методы комплексной автоматизации установок по преобразованию тепловой и атомной энергии в электрическую», Москва, 1984; 17-й отраслевой семинар «Надежность ядерных энергетических установок. Теория и практика», НИКИЭТ, 1984; Научно-практическая конференция ГПАН, Москва, 1991; Конференция «Практика разработки ВАБ и использование их результатов для действующих и вновь проектируемых АЭС с ВВЭР», Москва, «Атомэнергопро-ект», 2002; Советско-западногерманский семинар по вопросам безопасности, Москва, 1988; Советско-американские семинары в Москве (1989) и Вашингтоне (1990); Технический комитет МАГАТЭ «Применение ВАБ для новых проектов и систем снижения аварийных последствий», Вена, Австрия, 1989; Технический комитет МАГАТЭ «Достижения в анализах надежности и вероятностных анализах безопасности», Будапешт, Венгрия, 1992; Конференция МАГАТЭ, Вена, Австрия, 2001; Советско-английский семинар по «Проектированию АЭС с ВВЭР/PWR и применению ВАБ» в Москве (1991) и Натсфорде (1991).

Материалы по ВАБ уровня 1 для АЭС «Бушер» в Исламской Республике Иран докладывались на совещании с миссией МАГАТЭ, Москва, 2002. Материалы по проектам TACIS рассматривались на многочисленных рабочих совещаниях с консультантами западных фирм в процессе их выполнения и на итоговых совещаниях в Комиссии Европейского Сообщества.

Материалы диссертации обсуждались на заседаниях Научно-технического Совета ФГУП «Атомэнергопроект» и кафедры АСУ Обнинского технического университета атомной энергетики.

тов), в том числе основные:

1. Швыряев Ю.В. и др. «Вероятностный анализ безопасности атомных станций. Методика выполнения». Ядерное общество. Москва, 1992,266 стр.

2. [Клёмин А.И[ ., Поляков Е.Ф. Швыряев Ю.В. и др. «Методика расчета структурной надежности АЭС и ее систем на этапе проектирования». Руководящий Технический материал, РТМ 95490-78, НИКИЭТ, 1978, 128 стр.

3. [Клёмин А.И| ., Поляков Е.Ф. Швыряев Ю.В. и др. «Надежность
оборудования реакторных установок АЭС. Методика расчета». РТМ-
95823-81 НИКИЭТ, 1981, 231 стр.
и 4. Букринский A.M., Швыряев Ю.В. «Требования к надежности

систем безопасности АЭС». Электрические станции, № 3, 1981, стр. 12-16.

    Швыряев Ю.В., Барсуков А.Ф., Деревянкин А.А. «Обеспечение надежности наиболее ответственных систем АЭС». Электрические станции, № 1, 1982, стр. 4-8.

    Швыряев Ю.В., Барсуков А.Ф., Деревянкин А.А. «Влияние технического обслуживания на надежность систем безопасности АЭС». Электрические станции, № 6, 1984, стр. 12-13.

    Швыряев Ю.В., Трахтенберг М.Д. и др. «Расчет показателей надежности подсистемы управления блока ВВЭР-1000 ЗаАЭС». Отчет

М" АТЭП. Книги 1 и 2. 1985, 300 стр.

8. [Клёмин А.И| ., Швыряев Ю.В., Морозов В.Б., Барсуков А.Ф. «Количественный анализ надежности систем безопасности атомных стан-

ций при проектировании». Известия Академии Наук СССР. Энергетика и транспорт, №1, 1986, стр 28-36.

9. Швыряев Ю.В., [Клемин А.И.| «Вероятностные показатели и кри-
^. терии безопасности», Сборник «Вопросы обеспечения безопасности со
временных систем энергетики», Воронеж, 1987, 6 стр.

    Швыряев Ю.В., Федотов Д.К., Деревянкин А.А. «Оценка влияния надежности действий оперативного персонала на безопасность работы АЭС». Электрические станции, № 4, 1988, стр. 6-8.

    Швыряев Ю.В., Барсуков А.Ф., Токмачев Г.В. и др. «Оценка вероятностных показателей безопасности АС-У87 и АС-88». Проект АЭС с реакторами ВВЭР-1000 повышенной безопасности, АЭП, инв. № 11/0-89, 1988,370 стр.

    Швыряев Ю.В., Барсуков А.Ф., Деревянкин А.А., Морозов В.Б., Токмачев Г.В. «Применение вероятностных анализов безопасности для принятия решений при проектировании атомных станций». Безопасность атомных станций. Сборник трудов, ч.2. Москва, НТЦ БАЭ 1990, с.38-47.

^ 13. Швыряев Ю.В., Деревянкин А.А., Токмачев Г.В. «Вероятност-

ное моделирование аварийных последовательностей для АЭС с ВВЭР-440», «Атомная энергия», том 73, вып. 1, июль 1992, стр. 54-59.

14. Швыряев Ю.В. и др. Атомная электростанция Нововоронежская - 2. Проект, раздел 7. «Вероятностный анализ безопасности» (Том 1. Вероятностный анализ безопасности первого уровня, книги 1,2; Том 2. Вероятностный анализ безопасности второго уровня, книга 1; Том 3. Вероятностный анализ безопасности для пожаров в помещениях АЭС, книги 1-4; Том 4. Вероятностный анализ безопасности для сейсмических воздействий, книги 1-3), Москва, «Атомэнергопроект», 1998, 1243 стр.

А 15. Швыряев Ю.В. и др. Нововоронежская АЭС, блок 3. Отчет по

углубленной оценке безопасности. Приложение 3. Вероятностный анализ безопасности 1-го уровня. Москва, 2000, 681 стр.

16. Швыряев Ю.В., Барсуков А.Ф. и др. Проект TACIS R2.01/96. Вероятностный анализ безопасности 1-го уровня для проекта АЭС с

ВВЭР-230 Нововоронежская АЭС, блок 3: Стояночный режим: 21 отчет, 1999-2001, 928 стр.; Режим работы на мощности: 23 отчета, 2000-2001, 1421 стр.

    Беркович В.М., Швыряев Ю.В. «Применение ВАБ для выработки и принятия решений по обеспечению безопасности АЭС "Куданку-лам" в Республике Индия». Сборник трудов 2-ой всероссийской научно-технической конференции «Обеспечение безопасности АЭС с ВВЭР», г. Подольск, Московская область, 19-23 ноября 2001, том 3, стр. 208-213.

    Швыряев Ю.В. и др. Нововоронежская АЭС, блок 4. Отчет по углубленной оценке безопасности. Приложение 1. Вероятностный анализ безопасности (уровень 1). Москва, 2002, 647 стр.

    Швыряев Ю.В. и др. АЭС «Бушер». Вероятностный анализ безопасности. 18.BU.10.0.00.VAB.PR. «Атомэнергопроект», Москва 2003.

    Швыряев Ю.В. и др. АЭС «Куданкулам», блок 1. Предварительный отчет по обоснованию безопасности. Отчет по вероятностному анализу безопасности. Пакет St-2.18 K.K.0.0.0.VAB.PR 003, книги 1-6. «Атомэнергопроект», Москва, 2002.

    Швыряев Ю.В., Барсуков А.Ф., Краснорядцева О.О. «Обоснование возможности вывода в ремонт каналов СБ при выполнении капитального ремонта с реконструкцией бака ГА-201 энергоблоков АЭС с реактором В-320». «Атомэнергопроект», Москва, 2003, 147 стр.

    Беркович В.М., Малышев А.Б., Швыряев Ю.В. «Создание энергоблоков АЭС с реакторами ВВЭР нового поколения». Теплоэнергетика, № 11, 2003, стр. 2-Ю.

Структура и объем работы.

Диссертация состоит из введения, пяти глав, заключения, списка литературы из 187 наименований и четырех приложений. Общий объем работы составляет 341 страниц, основной текст изложен на 310 страницах, содержит 34 рисунка и 37 таблиц.

Автор выражает благодарность В.Б Морозову, А.Ф. Барсукову, Г.В. Токмачеву, А.А. Деревянкину, Е.В. Байковой, О.О. Краснорядцевой, которые внесли значительные вклады в разработку технологии ВАБ и выполнение ВАБ для действующих и проектируемых АЭС с реакторами ВВЭР, а также А.В. Фроловой и К.В. Елизаветиной за помощь в оформлении диссертации.

Отбор и группировка инициирующих событий

Под инициирующими событиями понимаются такие события, которые либо непосредственно вызывают повреждения источников радиоактивности, либо могут привести к таким событиям в случае невыполнения функций безопасности, предусмотренных для предотвращения таких повреждений или ограничения их размеров.

В соответствии с этим определением ИС разделяются на два класса.

В класс 1 входят ИС, возникновение которых непосредственно приводит к превышению установленных пределов повреждения ИР и установленных пределов радиационных показателей безопасности АС. К этому классу для АС с ВВЭР относятся ИС с катастрофическими разрушениями корпуса реактора и коллекторов парогенераторов (ПГ).

Для таких ИС производится разработка вероятностно-прочностных моделей для расчета значений вероятностей или частот их реализации. В класс 2 входят все остальные ИС, для которых производится разработка ДС. В зависимости от причин, которые могут привести к возникновению ИС, в классе 2 выделяются следующие категории ИС:

Внутренние ИС - ИС, вызванные единичными или множест- . венными отказами систем, оборудования, элементов или ошибочными действиями персонала АС.

Внутриплощадочные ИС - ИС, вызванные внутриплощадоч-ными воздействиями (пожары, затопления, пароводяные струи, запаривание, биение трубопроводов, летящие предметы, взрывы горючих газов) в помещениях энергоблока или на площадке АС.

Внешние ИС - ИС, вызванные характерными для площадки АС внешними воздействиями природного (землетрясения, ураганы, смерч, ливни, обледенение, снег, буран, высокие или низкие температуры, паводки и т.п.) или техногенного (аварии на воздушном, наземном, водном транспорте, аварии на магистральных трубопроводах, аварии на промышленных предприятиях и т.п.) происхождения.

Необходимо отметить, что основные особенности внутриплоща-дочных и внешних АС состоят в том, что они могут вызвать множественные зависимые отказы, которые могут привести к возникновению внутренних ИС и одновременно к отказам одного или нескольких каналов систем безопасности. Поэтому основные задачи при моделировании таких ИС заключаются в определении вероятностных распределений характеристик уровней воздействия, например, значений нагрузок на системы, оборудование, элементы и сооружения, параметров среды (температуры, влажности, давления) в помещениях АС, в составлении перечней приведенных выше вторичных событий для различных уровней воздействия и в определении вероятностных характеристик таких событий.

В этом разделе приводится подход к отбору, группировке и составлению перечней внутренних ИС, поскольку решение аналогичных задач для внутриплощадочных и внешних ИС требует специальных методов и подходов, разработка которых не входила в задачи диссертации.

Одной из основных задач при анализе и отборе ИС является составление полного перечня внутренних ИС, для которых в последующем разрабатываются ДС и которые используются при проведении анализов внутриплощадочных и внешних воздействий.

В соответствии с предлагаемым в этом разделе подходом составление полных перечней внутренних ИС основывается на приведен

ных выше определениях таких событий. В перечень включаются все единичные или множественные отказы систем, оборудования, элементов или ошибочные действия персонала АС, возникновение которых приводит к необходимости выполнения одной или нескольких функций безопасности или приводит к автоматическому или персоналом введению в действие одной или нескольких систем безопасности.

Поэтому первым этапом выполнения этой задачи является составление детализированных перечней функций безопасности (ФБ) и перечней систем безопасности (СБ), выполняющих каждую отдельную ФБ. Полезно также иметь перечень нейтронно-физических и технологических параметров и уставок или сигналов, по которым вводятся в действие отдельные СБ.

Типовой детализированный перечень ФБ и СБ для АЭС с реакто рами ВВЭР-1000 приведен в таблице 2.3.1. " На основе рассмотрения, представленных в таблице 2.3.1 ФБ, категорию внутренних ИС можно разделить на следующие обобщенные группы: - В группу 1 включаются ИС с неизолиуемыми течами из 1-го контура, возникновение которых требует выполнения функций поддержания запаса теплоносителя в активной зоне; - В группу 2 включаются ИС с изолируемыми течами из 1-го контура, возникновение которых требует выполнения функций изоляции течей; - В группу 3 включаются ИС с переходными процессами, возникновение которых требует введение в действие САЗ реактора и/или выполнения других ФБ кроме функций поддержания запаса теплоносителя в активной зоне и изоляции течей из 1-го контура.

Концепция безопасности

В составе проекта АЭС «Куданкулам» институтом «Атомэнерго-проект» совместно с ОКБ «Гидропресс» и РНЦ «Курчатовский институт» разработан ВАБ уровня 1 для внутренних ИС, перечень которых представлен в таблице 3.2.

Как видно из этой таблицы, этот перечень включает 15 групп внутренних ИС при работе реактора на мощности и 2 группы ИС для стояночных режимов. Проектная документация по ВАБ состоит из следующих частей: - основного отчета, в котором приведены разделы по описанию деревьев событий (моделирование аварийных последовательностей) для каждой группы ИС, результаты количественных расчетов средних значений частот реализации отдельных АП и среднего значения общей (суммарной по всем АП) частоты повреждения ядерного топлива в активной зоне реактора (ПАЗ), результаты анализов значимости, чувствительности и неопределенностей и оценка уровня безопасности; - отчетов по анализу систем, в которых представлены анализы надежности технологических, обеспечивающих и управляющих систем безопасности включая описания деревьев отказов и моделирование отказов по общей причине; 189 - отчет по моделированию ошибочных действий персонала, в котором представлены описания перечней доаварийных и послеава-рийных ошибочных действий, моделей и результатов оценки значений вероятностей реализации каждого из них; - отчеты по базам данных по значениям частот ИС и показа телям надежности оборудования и элементов СБ.

Разработка ВАБ производилась с применением изложенной в главе 1 методологии и компьютерной программы RISK SPECTRUM Professional/183/.

Были разработаны две редакции ВАБ, последняя из которых принята Индийской эксплуатирующей организацией и использована ею для получения лицензии Индийских надзорных органов на сооружение АЭС «Куданкулам».

Результаты ВАБ уровня 1

В таблице 3.2 и на рисунке 3.3 представлены распределения вкладов в среднее значение общей частоты ПАЗ от отдельных групп внутренних ИС для АЭС «Куданкулам». В таблице 3.2. приведены также аналогичные результаты ВАБ уровня 1 для Балаковской АЭС. В таблице 3.3 приведены результаты оценки минимальных сечений (МС), которые дают наибольшие вклады в общую частоту повреждения активной зоны. Были выполнены также аналогичные оценки частот для доминантных МС, которые дают наибольшие вклады в частоты ПАЗ для отдельных групп ИС. Значение общей частоты ПАЗ для АЭС «Куданкулам» составляет 2,38Е-07 на реактор в год.

Вклады в значение общей частоты ПАЗ от ИС при работе на мощности и стояночных режимов распределяются как 87,1% для работы на мощности и 12,9% для стояночных режимов.

Наибольшее вклады в значение общей частоты ПАЗ дают большие (37,8%) и малые (17,5%) течи из первого контура внутри контайнмента, течи из первого контура во второй (14,9%), малые течи из первого контура за пределы контайнмента (6,1%), течи паропроводов в неизолируемой (7,3%) и изолируемой (1,3%) от ПГ частях и обесточивание при работе блока на мощности (1%) и в стояночных режимах (12,9%). Вклады от остальных групп ИС составляют меньше 1%. Вклад от ошибочных действий персонала составляет примерно 20%.

Основные причины больших вкладов в значение общей частоты ПАЗ от больших течей связаны со следующими факторами:

Избыточно высокие значения частот таких событий. Например, в ВАБ для проекта АЭС «Тяньвань» в Китае (разработчики СПб АЭП и ОКБ «Гидропресс») частоты больших течей из 1-го контура более чем на порядок ниже, чем для АЭС «Куданкулам», хотя конструкция РУ для обоих проектов одинакова с точки зрения возникновения больших течей. Этот вывод основывается также на результатах анализов чувствительности, которые показывают, что изменение значений частот больших течей из первого контура имеют большие факторы чувствительности 3,1 или 2,5. Снижение вклада от больших течей может быть достигнуто путем выполнения оценок частот больших течей с использованием вероятностно-прочностных моделей, принимая во внимание концепцию «течь перед разрывом».

Консервативные предположения, что отказы гидроаккумуляторов первой ступени (НА1) приводят к повреждению активной зоны. Необходимо отметить, что отказ ГЕ1 может привести к кратковременному увеличению температуры оболочек тепловыделяющих элементов выше 1200 С (что является критерием для определения состояний ПАЗ, который принят в этом анализе), но отказ ГЕ1 не может привести к тяжелому повреждению активной зоны или к ее расплавлению при успешной работе систем аварийного охлаждения низкого давления. Определение состояний с повреждением активной зоны необходимо включить в ВАБ второго уровня. Основной вклад в вероятность отказа на требование для НА1 дают отказы по общей причине обратных клапанов.

Основные причины большого вклада от малых течей из первого контура внутри контайнмента связаны с отказами по общей причине обеспечивающих систем (систем вентиляции, холодильных установок, систем электроснабжения, управляющих систем промконтура и системы технической воды), которые являются общими частями для САОЗ ВД и НД, и с ошибочными действиями оператора или отказами по общей причине на открытие предохранительных клапанов компенсатора

Исходные данные и предположения при проведении количественных оценок значений частот ПАЗ

Уровень безопасности АЭС «Бушер», характеризуемый такой величиной ЧПАЗ, оценивается как приемлемый. Вклад в значение общей ЧПАЗ от ИС при работе на мощности составляет около 88%, а от режимов останова - около 12%. Вклад от ИС, с потерей теплоносителя внутри гермооболочки, составляет около 24%. Вклад от ИС с течами теплоносителя из первого во второй контур составляет около 13%. Вклад от ИС с потерей теплоносителя за пределы гермооболочки составляет менее 1%. Вклад от переходных режимов при работе на мощности составляет около 51%.

На основе результатов таблицы 4.1 можно сделать заключение о том, что проект АЭС Бушер является достаточно хорошо сбалансированным, поскольку вклады в значение обшей ЧПАЗ от отдельных групп ИС являются приблизительно одинаковыми.

На основе результатов анализа значимости и чувствительности можно сделать следующие выводы: 1) Включение в проект общеблочного дизель-генератора и подключение к нему системы вспомогательной питательной воды и других систем, которые могут выполнять функции расхолаживания при отказе дизель-генераторов систем безопасности является очень эффективной мерой для снижения значений ЧПАЗ, поскольку значение общей ЧПАЗ могло бы быть увеличена приблизительно в 20 раз в случае исключения этого проектного решения. Необходимо отметить, что влияние потери внешних источников электроснабжения на величину ЧПАЗ остается относительно высоким даже при наличии общеблочного дизель-генератора. Поскольку потеря внешних источников электроснабжения с отказом всех дизель-генераторов систем безопасности и общеблочного дизель-генератора приводит к возникновению событий, связанных с полным обесточиванием, необходимо предусмотреть дополнительные меры для управления такой запроектнои аварией. В качестве такой меры можно рассмотреть вариант с восстановлением электропитания от энергосистемы. Дополнительные меры могут быть определены в окончательном ВАБ уровня 1 на стадии заключительного отчета по анализу безопасности.

2) Второй эффективной мерой по снижению значения общей ЧПАЗ является подача теплоносителя из системы ТН10...40 в систему ТН15...45, что позволяет обеспечить длительную работу системы ТН15...45 от приямка гермооболочки и использовать режим сброс-подпитка, поскольку величина ЧПАЗ могла бы увеличиться в два раза в случае исключения этого проектного решения.

3) Следующей эффективной мерой снижения значения общей ЧПАЗ является восстановление подачи теплоносителя в первый контур при компенсируемой течи из 1-го контура в течение 72 часов после отказа, системы ТА и системы ТН. Использование резерва времени для этого случая позволяет уменьшить значение общей ЧПАЗ в 3 раза по сравнению со случаем исключения этой меры.

4) Следующей эффективной мерой снижения значения общей ЧПАЗ является восстановление электроснабжения из энергосистемы в режиме останова при минимальном уровне теплоносителя в разгер-метезированном реакторе, поскольку общая величина ЧПАЗ могла бы быть увеличена в 1,6 раз по сравнению с вариантом исключения этой меры.

5) Снижение значений общей ЧПАЗ могло бы быть обеспечено с использованием результатов дополнительного анализа развития аварии для ожидаемых переходных режимов без срабатывания системы аварийного останова ядерного реактора и путем разработки мер, исключающих повреждение активной зоны при таких событиях. Величина ЧПАЗ могла бы быть снижена до 7.27Е-6 на реактор в год.

6) Результаты анализа чувствительности показывают существенное влияние критериев успеха для систем защиты реактора. Использование чрезвычайно консервативных критериев, определенных, как застревание в крайнем верхнем положении 2 из 121 органов системы аварийной защиты реактора приводит к увеличению величины ЧПАЗ до 5,9Е-5 на реактор в год (в 6 раз по сравнению с использованием реалистических критериев). Необходимо отметить, что использование реалистических критериев позволяет исключить необходимость выполнения анализов ожидаемых переходных режимов без срабатывания системы аварийной защиты реактора (ATWS).

7) Результаты анализа значимости и чувствительности показывают существенное влияние отказов по общей причине элементов СБ в послеаварийный период. Исключение такого отказа по общей причине могло бы привести к общему снижению величины ЧПАЗ до 4.64Е-6 на реактор в год.

8) Результаты анализа значимости и чувствительности показывают существенное влияние ошибочных действий персонала в послеаварийный период.

На основе изложенного выше можно сделать выводы о том, что применение ВАБ в процессе проектирования АЭС «Бушер» позволило разработать проектные решения, обеспечивающие снижение значений общей частоты ПАЗ до величины ниже 1.0Е-5 1/год и разработать проект этого блока, который соответствует в основном требованиям современной концепции глубокоэшелонированной защиты. ВАБ АЭС «Бушер» был подвергнут экспертизе миссии МАГАТЭ и иранского надзорного органа NNSD и с его использованием была получена лицензия NNSD на сооружение этого энергоблока, строительство которого завершается в настоящее время.

Применение ВАБ при обосновании возможности продления назначенного срока службы энергоблоков 3,4 НВАЭС

Материалы ВАБ уровня 1 для блоков 3, 4 НВАЭС, разработанные по проектам TACIS и NOVISA, были использованы для подготовки ВАБ в составе отчетов по углубленной оценке безопасности (ОУОБ) этих энергоблоков, представляемых эксплуатирующей организацией Росэнергоатом в Госатомнадзор России для получения лицензии на продление проектного срока службы. Проектные сроки службы составляют 30 лет и исчерпывались соответственно в 2001 для энергоблока 3 и в 2002 годах для энергоблока 4.

Ниже приводятся результаты ВАБ для блока 4, которые разрабатывались с учетом дополнительных мероприятий первого этапа модернизации реализованных в 2002 году, и с учетом замечаний экспертизы ГАН РФ по ВАБ блока 3 НВАЭС. ОУОБ для 4-го блока Нововоронежской АЭС был выпущен в 2002 году. Отчет содержит обзор и оценку всех факторов, определяющих текущий уровень безопасности энергоблока 4 НВАЭС с учетом реализации мер по повышению безопасности блока. ОУОБ разработан эксплуатирующей организацией с привлечением предприятий -разработчиков проектной и конструкторской документации. Он вошёл в комплект документов для получения долгосрочной лицензии.

Экспертиза ВАБ в составе ОУОБ для 4-го блока была проведена специалистами НТЦ Госатомнадзора РФ. Экспертиза не выявила замечаний, которые препятствуют выдаче лицензии на продление срока эксплуатации.

ВАБ 1 уровня по внутренним событиям для Ново воронежской АЭС был разделен на семь следующих основных задач:

1) Определение и группирование исходных событий. Был разработан полный перечень исходных событий (44 исходных события) для работы энергоблока на мощности, которые были сгруппированы в 33 группы исходных событий (Приложение таблица П4-1). Признаком исходного события было срабатывание аварийной защиты реактора и/или какой-либо системы безопасности. Перечень исходных событий разрабатывался на основе обобщенного перечня МАГАТЭ, анализа последствий отказов, инженерных оценок конструкции блока, опыта эксплуатации блоков 3,4 НВАЭС и блоков 1,2 Кольской АЭС, а также разработанных ранее ВАБ для блоков НВАЭС, Богунице V1, блоков 1,2 АЭС Козлодуй.

2) Анализ критериев успеха. На основе имеющихся и специально выполненных анализов аварийных процессов были определены критерии успеха в терминах минимальной конфигурации систем и действий персонала, необходимых и достаточных для выполнения отдельных функций безопасности, включённых в анализ. В поддержку анализа критериев успеха были проведены теплогидравлические расчеты по проекту НОВИСА (РНЦ «Курчатовский институт», ОКБ «Гид ропресс»), а также - дополнительные специальные анализы изменения температуры в баке Б-8/3 и изменения параметров в герметичных помещениях при течах из первого контура размером ДуЮО (Атомэнер-гопроект, Москва).

3) Анализ аварийных последовательностей. Для моделирования аварийных последовательностей в каждой группе исходных событий использовались основные и трансферные (при необходимости) деревья событий. В рамках этой задачи была выявлена, описана и документально оформлена каждая аварийная последовательность, которая может привести к повреждению активной зоны. Деревья событий разрабатывались на основе анализа критериев успеха.

4) Анализ систем. Эта задача включала подготовку деревьев отказов систем, анализ видов отказов элементов систем и их последствий и выпуск окончательных вариантов описаний проекта систем. Было проанализировано двадцать три системы, включая новые системы (дополнительная система аварийной питательной воды, передвижная насосная установка с дизельным приводом, мобильный дизель-генератор).

5) Анализ данных. Эта задача включала:

Сбор и анализ данных по частотам исходных событий, требуемых для количественной оценки моделей ВАБ Нововоронежской АЭС. Для расчета частот переходных процессов были собраны данные по истории эксплуатации с остановами блоков 3 и 4 НВ АЭС за период с 1986 по 2001 гг. включительно. Остановы блоков разделялись по категориям в соответствии с определенными группами исходных событий. Частоты ряда течей из первого контура оценивались с учетом результатов обоснования концепции «течь перед разрушением», внедренной на 4-ом энергоблоке Нововоронежской АЭС;

Анализ данных по надежности оборудования, собранных за последние шесть лет (с 1992 по 1998 год) на основе опыта эксплуатации 3 и 4 блоков Нововоронежской АЭС, включая параметры надеж 249

ности оборудования, и данные по неготовности оборудования вследствие испытаний, техобслуживания и ремонта;

Адаптацию оценок параметров отказов по общей причине, полученных по опыту эксплуатации США, для 4-го энергоблока Нововоронежской АЭС. При моделировании отказов по общей причине использована многопараметрическая модель альфа-фактора. Поэтому были получены параметры модели для отказов различной размерности в группах элементов различной размерности;

Оценку вероятности особых событий, таких как забивание приямка бокса ПГ-ГЦН при течах первого контура различного размера.

6) Анализ надежности персонала. Эта задача включала определение, моделирование, отбор и количественную оценку событий с ошибками персонала в ВАБ Нововоронежской АЭС. В рамках этой задачи были проанализированы существующие станционные эксплуатационные инструкции. Были также проведены интервью с оперативным персоналом для лучшего понимания предполагаемого реагирования блока в конкретных аварийных условиях, определенных в процессе разработки ВАБ. Был проведен анализ как до-аварийных, так и послеаварийных ошибок персонала, включая восстановительные действия и зависимые ошибки.

- 640.50 Кб

ВАБ используют в течение срока службы станции в качестве источника исходной информации для процесса принятия решений. В течение срока эксплуатации атомной электростанции часто проводятся модификации конструкции или способов эксплуатации, как, например, изменения конфигурации станции во время обслуживания и испытаний. Эти модификации могут влиять на уровень риска от станции. В ходе эксплуатации станции появляются статистические данные по частотам исходных событий и вероятностям отказа компонентов. Так же могут появиться новая информация и более совершенные методы и средства анализа, которые могут изменить некоторые допущения, сделанные в анализе, и, следовательно, оценки риска, полученные в ВАБ .

Следовательно, ВАБ следует поддерживать обновляемым в течение всего срока службы станции, чтобы он был полезен в процессе принятия решений. При обновлении следует учитывать изменения в конструкции и эксплуатации станции, новую техническую информацию, более совершенные методы и средства анализа, которые становятся доступными, и новые данные, полученные из эксплуатации станции. Состояние ВАБ следует пересматривать регулярно, чтобы гарантировать, что он является представительной моделью станции.

ВАБ является ключевой частью процесса оценки проекта и анализа безопасности, поскольку он обеспечивает интегральную модель риска для станции в целом и позволяет последовательно оценивать как частоту, так и последствия возможных сценариев аварий. Однако в ВАБ имеются ограничения, которые необходимо понимать.

В частности, в ВАБ не следует видеть замену инженерным проектным оценкам и детерминистскому подходу к проектированию. Скорее ВАБ следует видеть как источник знаний об уровне риска происходящего от станции. Эти знания о риске следует использовать в процессе принятия решений для дополнения знаний, полученных из детерминистского анализа .

Имеются неопределенности в моделях и данных, используемых в ВАБ. Эта неопределенность относительно мала для вероятности отказа компонентов, полученной из большой статистической базы данных или из соответствующего опыта эксплуатации. Однако, она может быть много большей и даже неисчислимой во многих других случаях, включая следующие:

  1. Частоты исходных событий и интенсивности отказов компонентов, для которых нет данных из опыта эксплуатации;
  2. Частота и перемещения грунта, связанные с сильными землетрясениями;
  3. Моделирование отказов по общей причине;
  4. Моделирование ошибок персонала;
  5. Моделирование явлений, возможных при тяжелых авариях;
  6. Оценка внешних последствий выбросов радиоактивных веществ со станции.

Эту неопределенность необходимо осознавать при использовании результатов ВАБ в процессе принятия решений. Результаты ВАБ следует дополнять анализом неопределенности или, по крайней мере, исследованием чувствительности .

2.2.7 Вероятностные критерии безопасности

Если результаты ВАБ планируется использовать в поддержку процесса принятия решений, то для этого следует устанавливать формальную структуру. Детали этого процесса будут зависеть от цели конкретного применения ВАБ, природы решения и результатов ВАБ, намеченных к использованию. Если планируется использовать численные результаты ВАБ, то следует установить некие эталонные значения, с которыми эти результаты можно сравнивать.

Если целью ВАБ является выявление доминантных вкладчиков в риск или выбор между различными вариантами конструкции и конфигурации станции, то эталонное значение может не понадобиться .

Однако если целью ВАБ является оказание помощи в оценке того, приемлем ли рассчитанный риск, приемлемо ли предложенное изменение в конструкции или эксплуатации станции либо, необходимы ли изменения для снижения уровня риска, то следует разработать вероятностные критерии безопасности в качестве руководства для проектантов, служб эксплуатации и регулирующих органов в отношении желательного уровня безопасности станции. Эти критерии будут также служить для определения целей, которые должны будут достичь проектанты, службы эксплуатации и регулирующие органы, выполняя свои соответствующие роли в производстве безопасной ядерной энергии.

ВАБ дает количественные мерки риска на различных уровнях согласно уровню рассчитанных последствий. Вероятностные критерии безопасности могут быть поставлены в соотношение с любой из следующих мерок:

  1. Вероятность отказа функций или систем безопасности (Уровень 0);
  2. Частота повреждения активной зоны (Уровень 1);
  3. Частота конкретного выброса (т.е. количество, изотопы) радиоактивных веществ со станции или частота в зависимости от его величины (Уровень 2);
  4. Частота конкретных последствий для здоровья населения или последствий для окружающей среды (уровень 3).

Основываясь на опыте проектирования и эксплуатации атомных электростанций, было предложено численные значения, которые могут быть достигнуты в существующих и разрабатываемых проектах атомных станций.

Вероятностные цели устанавливаются на уровне функций или систем безопасности. Они полезны для проверки соответствия обеспеченного уровня избыточности и разнообразия. Такие цели будут зависеть от конкретной станции, поэтому здесь нет общего руководства. В оценке безопасности следует проверять достигнуты ли эти цели. Если нет, то проект может еще быть приемлемым при условии выполнения критериев более высокого уровня; однако особое внимание следует уделять системам безопасности, о которых идет речь, чтобы понять могут ли быть выполнены разумно осуществимые улучшения .

Частота повреждения активной зоны представляет собой наиболее общепринятую мерку риска, поскольку большая часть атомных электростанций подверглась, по меньшей мере, ВАБ уровня 1 и методология хорошо установилась. Во многих странах эти численные значения использованы формально либо неформально как вероятностные критерии безопасности .

Большой выброс радиоактивных веществ: большой выброс радиоактивных веществ, который может иметь тяжелые последствия для общества и может потребовать применения внешних противоаварийных мер, можно определить различными способами, включая следующие:

  1. Как абсолютные значения (в Беккерелях) выброса наиболее значимых нуклидов;
  2. Как доля содержимого активной зоны;
  3. Как определенная доза наиболее облученного человека за пределами площадки;
  4. Как выброс, дающий «неприемлемые последствия».

Хотя по поводу того, что составляет большой выброс, консенсуса нет, во многих странах определены похожие количественные критерии .

2.3 Распределение Пуассона

В реальных условиях эксплуатирования ядерных установок реализация опасных событий, может быть рассмотрена как исключительно редкое явление. Тогда, характер распределения таких событий будет соответствовать распределению Пуассона .

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который носит название закона Пуассона .

Рассмотрим прерывную случайную величину Х, которая может принимать только целые, неотрицательные значения: 0, 1, 2, … , n, …; причем последовательность этих значений теоретически не ограничена.

Говорят, что случайная величина Х распределена по закону Пуассона, если вероятность того, что она примет определенное значение n, выражается формулой :

где – некоторая положительная величина, называемая параметром закона Пуассона.

На рисунке 2.1. представлены многоугольники распределения случайной величины Х по закону Пуассона, соответствующие различным значениям параметра.

Рисунок 2.1. Распределение Пуассона

Простейшим (пуассоновским) потоком событий называется поток событий, обладающий свойствами :

  1. Стационарности (вероятность появления n событий на любом промежутке времени зависит только от числа n событий и от длительности t промежутка времени и не зависит от начала и конца отсчета времени);
  2. Отсутствия последействия (вероятность появления событий на любом промежутке времени не зависит от того, появлялись или не появлялись события в моменты времени, предшествующие началу рассматриваемого промежутка);
  3. Ординарности (появление двух или более событий за малый промежуток времени практически невозможно).

2.3.1 Основные характеристики распределения Пуассона

Для начала убедимся, что последовательность вероятностей, может представлять собой ряд распределения, т.е. что сумма всех вероятностей P n равна единице .

Используем разложение функции e x в ряд Маклорена :

Известно, что этот ряд сходится при любом значении x, поэтому, взяв x= , получим :

Следовательно

Определим основные характеристики – математическое ожидание и дисперсию – случайной величины Х, распределенной по закону Пуассона.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности .

По определению, когда дискретная случайная величина принимает счетное множество значений :

Первый член суммы (соответствующий n=0) равен нулю, следовательно, суммирование можно начинать с n=1 :

Таким образом, параметр представляет собой не что иное, как математическое ожидание случайной величины Х .

Дисперсией случайной величины Х называют математической ожидание квадрата отклонения случайной величины от ее математического ожидания :

Однако удобнее ее вычислять по формуле :

Поэтому найдем сначала второй начальный момент величины Х:

По ранее доказанному

кроме того,


Таким образом, дисперсия случайной величины, распределенной по закону Пуассона, равна ее математическому ожиданию .

Это свойство распределения Пуассона часто применяют на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики – математическое ожидание и дисперсию – случайной величины. Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против подобной гипотезы.

3 ОПРЕДЕЛЕНИЕ ТЯЖЕСТИ СОБЫТИЙ НА АЭС И ОЦЕНКА ИХ УРОВНЯ БЕЗОПАСНОСТИ

На любом промышленном объекте происходили, происходят и будут происходить различные происшествия, связанные с отклонением от технологического процесса и которые могут иметь негативные последствия. АЭС является сложным техническим объектом, на котором одновременно функционируют тысячи систем и элементов различного назначения, обслуживаемых и управляемых людьми. Периодическое возникновение нарушений в работе станции вследствие неисправностей или отказов в отдельных системах и элементах, а также возможных ошибок персонала для АЭС нормально, как и для любого другого сложного технического объекта. Эти происшествия, естественно, имеют разные последствия. Конечно, органам центральной и местной власти, как и населению, нужна объективная информация о масштабах и возможных последствиях инцидентов (происшествий) в промышленности. Первым – для принятия адекватных и своевременных решений по противоаварийным мероприятиям, в том числе эвакуации населения из угрожаемой зоны. Вторых интересует лишь оценка случившегося с точки зрения ущерба или степени риска для окружающей среды и населения в ближайшее время и определенном будущем .

Понятно, что нет смысла сообщать технические подробности происшествия, интересные лишь специалистам и не имеющие существенных последствий для людей и природы. Напротив, представление в информации для населения полного перечня нарушений без выделения важных для безопасности по существу дезинформирует население и создает впечатление плохой работы АЭС. Конечно же, на АЭС может сгореть трансформатор, выйти из строя турбина, лопнуть паропровод или произойти еще что-нибудь в этом роде. Но все подобные случаи, не связанные с радиоактивными веществами, в принципе не могут создать радиационную опасность. Такие именно аварии на АЭС обычно и происходят. Кроме того, так как на АЭС нет в больших количествах горючих и взрывоопасных веществ типа нефти или газа, а также из-за повышенных требований к качеству оборудования и квалификации персонала, то такие «обычные» аварии, как показывает практика, на АЭС происходят значительно реже, чем на станциях других типов. Станция проектируется с учетом возможности инцидентов таким образом, чтобы их возникновение не влияло на безопасность. Поэтому, прежде всего, и следует информировать население о таких нарушениях в работе станции, которые могут оказать серьезное воздействие на людей и окружающую среду.

Поскольку нарушения в работе АЭС могут по-разному влиять на безопасность, то их следует ранжировать по степени воздействия. С целью классификации и унификации событий на АЭС с точки зрения их тяжести в 1989-1990 гг. под эгидой МАГАТЭ была разработана международная шкала ядерных событий (INES – International Nuclear Event Scale). INES позволяет оперативно и согласованно оповещать общественность о значимости с точки зрения безопасности событий на ядерных установках, о которых поступают сообщения. Реально характеризуя эти события, шкала может облегчить понимание их ядерным сообществом, средствами массовой информации и общественностью. В шкале отражен опыт, накопленный в результате использования аналогичных шкал во Франции и Японии, а также итоги рассмотрения других шкал в ряде стран. Общие принципы, лежащие в основе такой шкалы, обсуждались на международных совещаниях. Первоначально шкала применялась для классификации событий на атомных электростанциях в течение пробного времени, причем в этом эксперименте приняли участие 32 страны, а международные агентства и страны, использующие шкалу, контролировали полученные результаты. В 1992 г. она с несущественными модернизациями была распространена на все ядерные объекты, связанные с гражданской ядерной промышленностью, и к любым событиям, происходящим во время перевозки радиоактивных материалов .

Краткое описание

Целью данной работы является изучение основных методов анализа безопасности АЭС и определение уровня безопасности современных АЭС.
Для атомной станции обеспечение безопасности основывается на концепции глубокоэшелонированной защиты и означает наличие многоуровневой защиты. Главной задачей обеспечения безопасности является предупреждение аварий. В случае возникновения аварии предусматриваются мероприятия по ее смягчению. Глубокоэшелонированная защита представляет собой широкий круг мер – от предотвращения и контроля незначительных событий и отклонений от нормальных эксплуатационных условий в нормальных условиях – до управления авариями, причиняющими крупный ущерб АЭС.



Просмотров