План организации связи при чс. Краткая характеристика судна

СЛУЖБЫ ЧС И МОБИЛЬНАЯ СВЯЗЬ
Профессиональные системы мобильной радиосвязи (ПМР)
Сети ПМР, используемые службами ЧС могут быть как предельно простыми (например, радиоканал между двумя абонентами), так и очень сложными, вплоть до транкинговых многозональных радиосетей.
Системы ПМР позволяют реализовывать ряд специализированных сценариев, включая прямую связь между двумя радиостанциями без всякой инфраструктуры (или с минимальным ее использованием) и ограниченную работу одного сайта при отказе инфраструктуры.
По своим задачам такие мобильные радиосистемы целиком и полностью ориентируются на требования конкретного заказчика, которому предлагаются эксклюзивные преимущества. Именно это в корне отличает эти радиосистемы от сотовых систем, услуги которых предоставляются клиентам на коммерческой основе.
Преимущества систем ПМР:
Полный контроль над радиосетью.
Распределение права доступа и привилегий.
Возможность развертывания диспетчерских центров.
Высокая скорость соединения абонентов.
Возможность управляемого и «интеллектуального» перехода на аварийный режим в случае отказа системы.
Нужны ли службам ЧС сотовые сети?
Ведомственныемобильные радиосети, как правило, имеют солидный возраст, реже меняются на более современные системы. В США более трети, 37%, или около 20 000 подразделений безопасности при правительствах штатов и непосредственно на местах в ближайшие пять лет собираются заменять уже развернутые системы на новые.
Системы общего пользования, за счёт массового использования, имеют продуманный дружественный интерфейс, насыщенность дополнительными,в том числе развлекательными сервисами, используются более совершенные и высокоскоростные технологии передачи данных, ну и, наконец, огромный выбор абонентского оборудования. Кроме того, ключевыми вопросами при выборе коммуникационных решений может стать открытость технологии, ее соответствие стандартам, совместимость и доступность оборудования по приемлемой цене.
Таким образом, необходимость определённого использования сотовых сетей диктует объективная ситуация.
ТРЕБОВАНИЯ СЛУЖБ ЧС К МОБИЛЬНОЙ СВЯЗИ
Отказоустойчивость
Одним из ключевых требований к мобильной инфраструктуре является ее устойчивость к техническим сбоям при достаточном уровне резервирования. Нельзя допустить, чтобы выход из строя одного-единственного элемента повлек за собой нарушение работы всей сети. Защиту от перебоев в электроснабжении, например, обеспечивают аккумуляторные батареи большой емкости или резервные источники питания, позволяющие сохранить работоспособность коммуникационной системы при временном прекращении подачи электроэнергии как в обычных, так и – что еще важнее – в экстремальных условиях.
Необходимо встроенное резервирование элементов системы, обеспечивающее поддержание связи при катастрофахлюбого масштаба. Незначительное повреждение оборудования, вызванное, скажем, землетрясением или наводнением, не должно оказывать серьезного влияния на региональную связь. Следует предусмотреть различные способы взаимодействия отдельных элементов сети, но если передача информации все же будет прервана, локальная базовая станция должна по-прежнему обеспечивать связь в своей рабочей зоне. Данному требованию полностью соответствует предусмотренный в системахтранкинговой связирежим аварийной работы «Fall Back», в котором базовая станция продолжает обслуживание мобильных радиотерминалов внутри локальных ячеек.
На крайний случай у абонентов с мобильными станциями должна оставаться возможность поддерживать прямую связь между собой – как минимум, в местном масштабе - без участия сетевой инфраструктуры.
Зона обслуживания
Сотрудникам ЧС важно, чтобы мобильная связь обеспечивалась на больших площадях. Катастрофы, как правило, не ограничиваются одним районом и зачастую происходят в отдаленной местности. Поэтому необходимо обслуживаниена максимальнобольшой территории.
Существует также ряд стратегических и потенциально опасных объектов, которые не могут оставаться вне зоны обслуживания, таких какмедицинские учреждения, торговые центры, промышленные объекты повышенной опасности (включая химические предприятия и атомные электростанции) и т.д.
Обеспечение качественного радиопокрытиясводит к минимуму опасность работы в таких местах.
Доступность и пропускная способность
Другое ключевое требование служб ЧС – доступ пользователей к услугам с гарантированно высоким качеством. Обслуживание, предлагаемое мобильной системой связи, должно оставаться на приемлемом уровне даже в часы пик и вместе с тем обладать достаточно гибкой функциональностью для поддержания связи в экстренных условиях, когда объем трафика резко возрастает.
Для этого могут использоваться следующие механизмы:
преимущественное право на связь – когда сеть перегружена, у пользователя должна оставаться возможность устанавливать приоритетную голосовую связь за счет принудительного высвобождения сетевых ресурсов;
закрепление полосы пропускания за службами ЧС и предоставление им права управлять ею при сетевых перегрузках, как бы это ни было сложно реализовать при локальных и кратковременных скачках трафика;
обход возникающих «узких мест» сети за счет управляемого перехода на прямую связь локального уровня.
Быстрая организация вызовов
Для срочной связи в интересах служб ЧС важно обеспечить оперативность вызова абонента. Время подключения в такой системе мобильной связи не может превышать0,3- 1секкак внутри «ячейки», так и в локальной зоне.
Приоритетность
В мобильных коммуникационных системах должна быть предусмотрена структура приоритетного обслуживания абонентов ЧС при любой перегрузке сети. Приоритет при этом может предоставляться как отдельным абонентам, так и в рамках служб. При пожаре, например, экстренная связь нужна, в первую очередь, пожарной команде, однако к ликвидации его последствий могут привлекаться и другие службы, для эффективной работы которых также потребуется гарантированная связь. Таким образом, на первый план выходит гибкость распределения приоритетов и управления ими.
Для служб ЧС очень важна также способность обслуживания «экстренных вызовов», поэтому во всех системах ПМР, есть возможность предоставления наивысшего приоритет.
Прямая связь / ретрансляторы и шлюзы
Концепция прямой (непосредственной) связи предусматривает возможность вызова абонента по радио независимо от степени доступности развернутой инфраструктуры. Это очень важно для служб ЧС при работе в районах, где сеть мобильной связи еще не создана, слабо развита либо в аварийных режимах.
Если базовая станция, обслуживающая радиосвязь в конкретной зоне, становится недоступной, у ее абонентов должна оставаться возможность непосредственной связи друг с другом без подключения к основной коммуникационной инфраструктуре. Прямая связь нужна и там, где не гарантирован доступ к радиосети – в подвалах зданий, других замкнутых пространствах, вне зоны действия базовой станции.
Поддерживать прямую связь помогают специальные шлюзы и ретрансляторы. Шлюзы используются для охвата таких «затененных» мест, как здания, туннели, ущелья и т. д. Они создают своеобразный «мостик» между инфраструктурой и теми, кто действует вне зоны ее обслуживания, но в пределах прямой связи со шлюзом. Ретрансляторы же расширяют зону прямой связи внутри группы, выводя ее за пределы области обслуживания сетевой инфраструктуры.
Интеграция с пунктом управления
И для повседневной работы, и для действий в чрезвычайных ситуациях важно наличие пункта управления системой. Принимая вызов от абонентов и сотрудников организации, его операторы могут выделять ресурсы, необходимые для обработки вызова.Компьютерные системы, базы данных применяются для регистрации происшествий, отображения информации, ее распространения с целью управления и распределения ресурсов. Сегодня, когда мобильные среды все чаще используются для обмена информацией, интеграция таких систем и баз данных с системами мобильной связи становится одним из первоочередных требований служб ЧС.
Выводы
Службам ЧС нужна предельно отказоустойчивая и безопасная мобильная инфраструктура связи, обслуживающая большие территории и полностью отвечающая специфическим требованиям этих организаций. Кроме того, им необходимо специализированное терминальное и периферийное оборудование, созданное с учетом конкретных требований и предлагающее полный набор функций для их реализации.Этим условиям в полной мере отвечают разработанные системы ПМР –APCO25,TETRA,iDENи др.

2.4.1. Особенности организации связи при проведении АСР и ликвидации ЧС на акваториях.

2.4.1.1. Организация связи в указанных условиях осуществляется на основе использования судовых КВ средств связи и на основе судового (корабельного) оборудования спутниковой системы связи «Инмарсат». На расстоянии прямой видимости могут быть использованы сигнальные средства связи.

2.4.1.2. Поиск аварийных судов осуществляется по сигналам бедствия, которые передаются на единых международных частотах, а также по глобальной космической системе поиска аварийных судов (КОСПАС - САРСАТ).

2.4.1.3. Аварийный объект на море подает сигнал бедствия на специально отведенных международных радиочастотах, а также по космической системе «КОСПАС - САРСАТ».

2.4.1.4. Связь спасательных морских судов при поиске и проведении спасательных работ организуется на международных частотах бедствия с последующим переходом на рабочие частоты КВ и УКВ диапазона в соответствии с действующими в данном регионе руководящими документами по организации связи. Переговоры по радио осуществляются открытым способом по международным правилам радиообмена.

2.4.1.5. Радиоданные по аварийному судну (позывной, рабочие частоты и т.п.) на спасательные суда передаются береговыми радиоцентрами морских портов (военно-морских баз).

2.4.1.6. Связь спасательных судов с диспетчерскими пунктами морских портов, военно-морских баз, береговой охраны погранвойск организуется через свои узлы связи по установленным регламентам связи.

2.4.1.7. Организация связи при проведении АСР с применением морских судов осуществляется в соответствии с региональными планами взаимодействия аварийно-спасательных служб (далее – АСС) министерств, ведомств и организаций на море. Для организации связи используются сети связи общего пользования, МЧС России и других министерств и ведомств.

2.4.1.8. Связь при проведении подводных работ организуется АСС, выполняющими спасательные подводные работы. Для связи руководителя работ со спасателями, работающими под водой, используется телефонная и гидроакустическая связь.

2.4.2. Особенности организации связи при проведении АСР и ликвидации ЧС в горных районах.

2.4.2.1. Основу организации связи в горных районах составляет радиосвязь и особенно резко возрастает значение КВ радиосвязи. При достаточно высокой подготовке экипажей КВ радиостанций, подборе и своевременной смене частот, правильном использовании штатных антенн обеспечивается круглосуточная устойчивая КВ радиосвязь.

2.4.2.2. Дальность радиосвязи при использовании КВ радиостанции малой мощности может достичь 10-15 км при работе на штыревую антенну. Для связи в ближней зоне (до 500 км) рекомендуется использовать антенны зенитного излучения типа «Дельта», «Полудельта» и т.п. Для связи на большие расстояния рекомендуется использовать направленные антенны типа «Симметричный диполь».

2.4.2.3. При действиях в горных ущельях с крутыми склонами и резкими изломами может обеспечиваться дальняя УКВ радиосвязь по природному волноводу за счет многократного отражения волн от склонов. С увеличением длины рабочей волны уменьшается влияние горных препятствий на распространение радиоволн и увеличение дальности связи.

2.4.2.4. Исходя из условий обстановки, радиостанции целесообразно развертывать на вершинах холмов и склонов, обращенных к корреспонденту. Кроме того, за счет ретрансляторов связи, развернутых на вершинах, возможно увеличение дальности УКВ радиосвязи в горах. При выборе места развертывания радио и радиорелейных станций необходимо учитывать возможность обвалов, образования лавин, селевых потоков и др. Не допускается развертывание радиостанции в районах, затапливаемых при разливе рек, и в местах высохших горных водоемов.

2.4.2.5. При организации проводной связи необходимо учитывать снижение скорости прокладки и снятия полевых кабельных линий в 1,5-2 раза по сравнению с равнинной местностью, увеличение расхода линейных средств и усложнение ориентирования личного состава подразделений связи на местности.

2.4.2.6. Кроме применения средств КВ радиосвязи при ликвидации ЧС в горных условиях, целесообразно применение транкинговой связи. Для горных условий, где прокладка полевого кабеля затруднена, или нецелесообразна, возможно применение средств радиорелейной связи.

2.4.2.7. При организации спутниковой связи выбор мест развертывания станции спутниковой связи следует осуществлять с учетом обеспечения состояния "видимости" спутника связи и удобства пользования спутниковой связью должностными лицами ОГ.

2.4.3. Особенности организации связи при проведении АВР и ликвидации ЧС в пустынных районах.

2.4.3.1. При организации связи в пустынных районах следует учитывать следующие особенности:

влияние труднопроходимых песков, мокрых солончаков, каменистых грунтов, резких колебаний температуры в течение суток, частых ветров с перемещением песка и пыли отсутствие источников воды, топлива и строительных материалов на время развертывания подвижных (полевых) узлов связи;

песчаные (пылевые) бури изменяют электростатические свойства атмосферы, что приводит к образованию электростатических разрядов между облаками (слоями) песка (пыли), а также между ними и антенными устройствами радиостанции. При ударах заряженных песчинок (пылинок) об антенны радиостанции образуются электрические заряды, которые создают на выходах приемных устройств помехи в виде сильного треска, что приводит к срыву радиосвязи. При песчаных бурях вероятность нарушения КВ связи может превысить 50%, а дальность УКВ радиосвязи сокращается в 1,5-2 раза. Для повышения устойчивости радио и радиорелейной связи предусматривается применение направленных антенн, более мощных радиостанций, укрытие антенных устройств защитными чехлами или покрытие антенн изолирующими материалами, обладающими низкой поглощающей способностью, установка антенн в штабных палатках;

строительство кабельных линий в пустынной местности сопряжено с трудностями ориентирования, сложностями передвижения по пескам и солончакам личного состава и автомобильной техники. При использовании автомобилей необходимо их дооборудование для увеличения проходимости по песчаному грунту. Применение средств проводной, КВ и УКВ радиосвязи при ликвидации ЧС в пустынных районах возможно с учетом указанных условий.

2.4.3.2. Устойчивость системы связи, развернутой в пустынных районах, может быть обеспечена при комплексном применении средств радио, проводной и спутниковой связи.

2.4.4. Организация связи при применении авиации.

2.4.4.1. Организация связи при применении авиации МЧС России в спасательных операциях осуществляется в соответствии с Воздушным кодексом РФ, Федеральными авиационными правилами полетов в воздушном пространстве РФ, Наставлением по связи и РТО в ВВС, Наставлением по связи гражданской авиации.

2.4.4.2. В период подготовки экипажа воздушного судна (далее - ВС) к полету изучается порядок ведения радиосвязи в зоне аэродрома, на маршруте полета, в районе проведения спасательных операций, на аэродроме посадки. Данные и порядок работы средств радиосвязи органов организации воздушного движения (далее - ОрВД) указываются в сборниках аэронавигационной информации.

2.4.4.3. С момента получения разрешения на запуск двигателя ВС до завершения полета экипаж ВС поддерживает радиосвязь и находится под управлением органов ОрВД. Потеря связи с ВС рассматривается как особый (чрезвычайный) случай в полете.

2.4.4.4. Для каждого аэродрома разрабатывается схема организации радиосвязи и радиотехнического обеспечения полетов, которая должна предусматривать управление ВС при рулении, взлете (посадке), полете до рубежа передачи (приема) управления другому органу ОрВД, а также метеовещание, аварийно-спасательную связь. На схеме указываются радиочастоты, буквенные и цифровые позывные диспетчеров и руководителя полетов, радиоданные радиотехнических и навигационных средств обеспечения полетов.

2.4.4.5. Воздушное пространство имеет четкие границы зон (секторов) управления и ответственности органов ОрВД. Каждый орган ОрВД обеспечивается необходимыми средствами радиосвязи с ВС, радиотехническими средствами обзора воздушного пространства. Им назначается персональный радио позывной и выделяется рабочая радиочастота.

2.4.4.6. Все ВС осуществляют полет по установленным трассам, местным воздушным линиям или заявленным спрямленным маршрутам на установленных эшелонах высоты.

2.4.4.7. Основными средствами обеспечения управления воздушным движением на воздушных трассах, местных воздушных линиях (маршрутах) и в районах проведения спасательных операций являются средства радиосвязи того диапазона, которые обеспечивают управление на всю глубину полета ВС в данных конкретных условиях.

2.4.4.8. В районе проведения спасательных операций специалисты службы связи и радиотехнического обеспечения полетов разрабатывают схему связи и управления, которая учитывает рубежи передачи управления, выделенные средства радиосвязи и радиотехнического обеспечения полетов, позывные руководителя полетов и командиров воздушных судов, рабочие и запасные частоты управления. Схема связи и управления согласуется с руководителем органа ОрВД, в зоне ответственности которого ведутся спасательные работы, и утверждается старшим авиационным начальником МЧС России в районе проведения операции.

2.4.4.9. Связь между экипажами ВС осуществляется при необходимости на радиочастоте органа ОрВД, под управлением которого находятся ВС.

2.4.5. Организация связи в метрополитенах (подземных объектах).

2.4.5.1. В начальный период возникновения ЧС в метрополитенах (подземных объектах) организация связи осуществляется начальником службы сигнализации и связи, который немедленно организует в зоне ЧС временный пункт связи или два пункта - с двух сторон зоны ЧС. Каждый пункт связи оснащается мегафонами. На пунктах организуется запись текстов информации для пассажиров и передача их в центральный узел связи. По требованию дежурного по метрополитену начальник службы сигнализации и связи обеспечивает включение уличных громкоговорителей.

2.4.5.2. Прибывшая в зону ЧС ОГ организует прямую проводную связь между оперативным пунктом управления по ликвидации ЧС и местом проведения АСР и радиосвязь с использованием ретрансляторов (переносные УКВ ретрансляторы подготавливаются для этих целей заблаговременно). При возможности связь с зоной ЧС может обеспечиваться с использованием средств сотовой связи. Для организации взаимодействия между спасателями в зоне ЧС используются индивидуальные средства радиосвязи.

2.4.5.3. Связь оперативного штаба ликвидации ЧС (далее – ОШ ЛЧС)с ЦУКС города организуется по сетям связи общего пользования и по ведомственным сетям проводной, радио и транкинговой связи.

2.4.6. Связь при перемещении противопожарных и поисково-спасательных формирований своим ходом.

2.4.6.1. В зависимости от условий совершения марша основными задачами связи являются: своевременное доведение до подразделений АСС команд о начале движения; непрерывное управление элементами походного порядка при движении и в местах отдыха; своевременное получение данных о состоянии маршрута передвижения; прием сигналов оповещения и немедленное их доведение до подразделений АСС. Выполнение стоящих задач по организации связи при совершении марша обеспечивается комплексным применением радио, радиорелейных, проводных, транкинговых (сотовых) и спутниковых средств связи.

2.4.6.2. При совершении марша поисково-спасательными формированиями МЧС России своим ходом организуется радиосеть взаимодействия между формированиями и соответствующими органами управления на маршруте движения. Для связи старшего колонны с транспортными средствами (объектами) организуется УКВ радиосвязь. При совершении марша подчиненные УКВ радиостанции работают в режиме дежурного приема в готовности к немедленному открытию работы на передачу.

2.4.6.3. В случае необходимости на маршрутах передвижения развертываются вспомогательные пункты управления, от которых организуется радио и проводная связь с соответствующим пунктом управления и радиосвязь с движущимися поисково-спасательными формированиями. Для связи с органом управления могут использоваться переговорные телефонные пункты, находящиеся на маршруте передвижения.

2.4.6.4. В полосе передвижения в случае необходимости могут оборудоваться ретрансляционные (переприемные) пункты. В качестве переприемных пунктов могут использоваться КШМ и отдельные радиостанции. Кроме того, может быть организована связь с вертолетами, осуществляющими контроль за ходом передислокации.

2.4.7. Связь при перевозке противопожарных и поисково-спасательных формирований железнодорожным, воздушным, морским и речным транспортом.

2.4.7.1. При перевозке противопожарных и поисково-спасательных формирований МЧС России железнодорожным, воздушным, морским и речным транспортом связь должна организовываться в соответствии с положениями (планами) по взаимодействию сил и средств связи МЧС России и соответствующих транспортных ведомств.

2.4.7.2. Связь в период погрузки подразделений АСС на соответствующие виды транспорта организуется от пункта управления, развертываемого в районе погрузки. Для этого используются линии и каналы проводной связи железнодорожных узлов связи, морских портов, аэродромов, а также средств радиосвязи подразделений АСС.

2.4.7.3. Связь внутри железнодорожного эшелона и передача сигналов оповещения (управления) осуществляется по проводной и по УКВ радиосвязи начальника эшелона. Связь начальника эшелона с пунктами управления РСЧС организуется по сетям связи железнодорожного транспорта.

2.4.7.4. Для передачи сигналов управления и оповещения при перевозке подразделений АСС морским и речным транспортом используются радиостанции и сигнальные средства судов. Связь с пунктом управления РСЧС осуществляется по сетям связи морского (речного) транспорта.

2.4.7.5. При перевозке подразделений АСС воздушным транспортом управление осуществляется по сетям связи авиации. Связь с пунктом управления РСЧС осуществляется через соответствующий командный пункт авиации.

2.4.7.6. Для организации управления в пункте выгрузки подразделений АСС используются линии проводной связи железнодорожной станции, морских и речных портов, аэродромов, а также средства радиосвязи подразделений АСС.

2.4.8. Связь при проведении спасательных работ и оказании гуманитарной помощи за пределами территории РФ.

2.4.8.1. Связь за пределами территории России организуется по согласованию с уполномоченными органами государства, по территории которых проходит маршрут доставки спасателей и гуманитарной помощи. Ответственность за организацию взаимодействия по вопросам управления и связи несут руководитель структурного подразделения, организующего международную деятельность МЧС России и начальник связи МЧС России. Непосредственную организацию связи ОГ по доставке спасателей и гуманитарной помощи за пределы России осуществляет начальник связи спасательного центра.

2.4.8.2. Для организации связи ОГ МЧС России, находящейся на территории другого государства, с узлами связи МЧС России, используются международные каналы проводной связи, международные и российские спутниковые системы связи, сети КВ радиосвязи, системы сотовой связи.

2.4.8.3. При передвижении ОГ своим ходом организуются КВ и УКВ-радиосети начальника колонны.

2.4.9. Связь в условиях локальных военных конфликтов и проведения контртеррористических операций.

2.4.9.1. Связь в условиях локальных военных конфликтов и проведения контртеррористических операций организуется по плану взаимодействия ОГ МЧС России с оперативной группировкой войск. При необходимости на КП оперативной группировки войск направляется представитель ОГ МЧС России со своими средствами связи.

2.4.9.2. При проведении гуманитарных операций в локальных военных конфликтах и контртеррористических операциях связь организуется решением: в ОГ МЧС России - начальника связи МЧС России; в ОГ РЦ МЧС России - начальника связи РЦ МЧС России.

2.4.9.3. В ОГ МЧС России организуются следующие виды связи: правительственная; закрытая телефонная и телеграфная; телефонная, факсимильная и телеграфная; передача данных. При этом могут использоваться средства проводной, радио, радиорелейной и спутниковой связи.

2.4.9.4. С помощью указанных средств и видов связи обеспечивается связь с МЧС России, ГШ ВС РФ и военным округом, взаимодействующими частями, подразделениями и службами (Минобороны России, МВД России, Федеральной пограничной службой и др.), подчиненными подразделениями и спасательными формированиями.

1. ВВЕДЕНИЕ

1.1 Общие сведения

Настоящий документ подготовлен фирмой Mason Communications по заказу TETRA MoU. Он представляет собой информационный доклад относительно применения сотовых сетей связи в интересах служб по действиям в чрезвычайных ситуациях (в дальнейшем - службы ЧС) и способности таких сетей обеспечить «критически важную» связь.

Организация TETRA Memorandum of Understanding (MoU), созданная в 1994 г., объединяет в своих рядах свыше 100 организаций из 30 с лишним стран мира. Ее главная задача – поддержка и развитие стандарта TETRA в мировом масштабе. С этой целью TETRA MoU ведет форум, где осуществляется активный обмен информацией и идеями ради совместного их использования.

Службы ЧС традиционно пользовались собственными мобильными системами радиосвязи, что гарантировало безопасную и надежную работу их сетей. Однако по мере того как мобильная телефония общего пользования (сотовая связь) пополнялась все более сложными коммуникационными сервисами, возникла идея ее применения в интересах служб ЧС. Начал активно обсуждаться вопрос, способна ли в данном случае сотовая связь заменить специализированную в экстренных условиях.

1.2 Рамки исследования

Настоящий документ составлен с учетом сформулированных TETRA MoU исходных факторов и требований, которые приведены ниже.

    В своей повседневной работе службы ЧС используют сотовые сети связи.

    Многие операторы мобильных коммуникационных сетей общего доступа утверждают, что сотовые технологии такие, как GSM и UMTS, способны полностью удовлетворить все требования всех служб ЧС.

    Необходимо проанализировать способность сотовых сетей продолжать оказание услуг в чрезвычайных ситуациях – то есть именно тогда, когда службы ЧС испытывают особенно острую необходимость в экстренной связи.

    Следует оценить, в какой степени повышенная надежность специализированных коммуникационных сетей влияет на эффективность работы служб ЧС, когда на первый план выходит оперативность связи.

1.3 Методы исследования

В настоящем документе представлены результаты проведенного фирмой Mason Communications анализа, в рамках которого рассматривалась потенциальная возможность использования сотовых сетей связи в качестве альтернативы специализированным (профессиональным) мобильным радиосистемам (ПМР). Для получения фактической информации и технических данных, необходимых для исследования, использовался целый ряд различных источников информации, включая:

    собственный опыт и информацию фирмы Mason;

    сведения, предоставленные организациями общественной безопасности и ассоциацией TETRA MoU.

Особо следует подчеркнуть, что приводимые примеры, несмотря на свою многочисленность, лишь иллюстрируют ту опубликованную в различных видах информацию, которая положена в основу исследования.

1.4 Структура документа

Раздел 2 содержит общую информацию по теме исследования.

Раздел 3 представляет требования служб ЧС к мобильной связи.

В разделе 4 описывается архитектура GSM и ее достоинства, а также рассматривается соответствие GSM требованиям служб ЧС.

Раздел 5 знакомит с крупнейшими глобальными катастрофами, авариями и инцидентами, а также дает оценку применению сотовых сетей в каждом конкретном случае.

И, наконец, раздел 6 предлагает выводы по проведенному исследованию.

2. СЛУЖБЫ ЧС И МОБИЛЬНАЯ СВЯЗЬ

2.1 Общая характеристика

Службы ЧС, включая пожарные команды, органы поддержания правопорядка, скорую медицинскую помощь, транспортную полицию, морскую и береговую охрану, несут основное бремя ответственности за жизнь и собственность населения больших и малых городов по всему миру. Именно эти организации, действуя индивидуально и профессионально, первыми реагируют на любые аварии и катастрофы.

Технология беспроводной связи, которая начала быстро развиваться после Второй мировой войны, стала одним из наиболее важных компонентов коммуникационной инфраструктуры служб ЧС. Этому в немалой степени способствовали ее мобильность и независимость от стационарных – и поэтому очень уязвимых – проводных систем передачи и приема информации.

Значение эффективной связи для решения повседневных задач служб ЧС переоценить невозможно. Для спасения человеческих жизней, охраны здоровья и обеспечения безопасности пожарные команды, скорая медицинская помощь, службы спасения и полиция должны как можно быстрее приходить на помощь. С учетом этого особое значение приобретает эффективная, надежная и постоянно готовая к применению мобильная коммуникационная инфраструктура, полностью отвечающая предъявляемым требованиям.

Ликвидировать последствия различных катастроф становится гораздо легче, когда поддерживается постоянная и доступная радиосвязь, позволяющая оперативно обмениваться самой свежей информацией. Международный союз электросвязи (ITU) считает предотвращение и облегчение человеческих страданий при стихийных и других бедствиях одной из главнейших задач современных технологий связи.

2.2 Профессиональные системы мобильной радиосвязи (ПМР)

По сложившейся традиции, службы ЧС развертывают собственные системы профессиональной мобильной радиосвязи (ПМР), что гарантирует безопасность и надежность ведомственных сетей. Под аббревиатурой ПМР скрывается широкий спектр самых разных систем двусторонней радиосвязи, от простых районных ретрансляторов до междугородних радиосетей, зачастую создаваемых для конкретных задач или сервисов. Сети ПМР еще называют профессиональноым или специализированным мобильным радио. Они могут быть как предельно простыми (например, радиоканал между двумя абонентами), так и очень сложными, вплоть до транковых радиосетей самой современной архитектуры, обеспечивающих связь не только между двумя абонентами, но и одного абонента со многими.

Системы ПМР позволяют реализовывать целый ряд специализированных сценариев, включая прямую связь между двумя радиостанциями без всякой инфраструктуры (или с минимальным ее использованием) и ограниченную работу одного сайта при отказе инфраструктуры.

По своим задачам такие мобильные радиосистемы целиком и полностью ориентируются на требования конкретного заказчика, которому предлагаются эксклюзивные преимущества. Именно это в корне отличает эти радиосистемы от сотовых систем, услуги которых предоставляются клиентам на коммерческой основе.

Мобильная радиосистема становится жизненно важной коммуникацией, обеспечивающей связь между сотрудниками служб ЧС. Развертывание собственных систем ПМР дает много преимуществ, часть которых приведена ниже.

    Владелец сети получает над ней полный контроль.

    Он может распределять различные права доступа и привилегии.

    У него появляется возможность развертывать диспетчерские центры.

    Обеспечивается очень высокая готовность связи.

    В случае отказа инфраструктуры или сбоев в ее работе появляется возможность управляемого и «интеллектуального» перехода на аварийный режим.

2.3 Нужны ли службам ЧС сотовые сети?

Как уже отмечалось, для удовлетворения своих требований к мобильности и непрерывности связи службы ЧС традиционно пользовались ведомственными мобильными радиосетями. Тем не менее, солидный возраст таких систем в сочетании с последними техническими достижениями и возрастающей сложностью требований заставляет организации обращать все более пристальное внимание на услуги альтернативных систем мобильной связи. В США, скажем, более трети (37%, или около 20 000) подразделений безопасности при правительствах штатов и непосредственно на местах в ближайшие пять лет собираются заменять уже развернутые системы на новые.

По оценке фирмы The Strategis Group, которая занимается анализом телекоммуникационного рынка, только в Европе к 2002 г. мобильными радиостанциями ПМР пользовалось около 11 млн. человек, а общий сбыт абонентского оборудования здесь составил примерно 4,1 млрд. долларов США.

Вот только до сих пор не ясно, окупятся ли капитальные затраты теми преимуществами, которые обещают вновь развертываемые специализированные системы. Поэтому рассматривается и альтернативный вариант – использование общедоступных сетей сотовой мобильной связи.

Технология ПМР занимает пустующую нишу рынка со сравнительно небольшим объемом терминального и инфраструктурного оборудования, что может серьезно повлиять на доступность конкурентоспособной аппаратуры. К тому же, если не принимать последовательных мер по разработке нового оборудования и технической модернизации систем ПМР, они будут устаревать быстрее, чем сотовые сети. А для конечных пользователей ключевыми вопросами при выборе коммуникационных решений может стать открытость технологии, ее соответствие стандартам, совместимость и доступность оборудования по приемлемой цене.

Еще одним фактором, стимулирующим изменения в данной области, служит государственная политика. Нововведения в области распределения частот и управления спектром, например, заставили службы ЧС пересмотреть порядок использования частотных ресурсов и структуру своих систем. Доступность услуг мобильной связи определяется наличием выделенных частот, поэтому для любой беспроводной системы этот вопрос крайне важен. Без достаточного диапазона частот обеспечить надежную и качественную связь просто невозможно. В докладе Консультативного комитета США по общественной безопасности беспроводной связи PSWAC от 11 сентября 1996 г. говорится о том, что пользователям систем общественной безопасности к 2010 году потребуется дополнительный диапазон 97,5 МГц, а до 2001 года нужно будет выделить для них диапазон 24 МГц. К несчастью, ровно пять лет спустя, 11 сентября 2001 г., диапазон 24 МГц все еще не был передан в распоряжение служб ЧС.

Таким образом, возникает настоятельная необходимость тщательно проанализировать нынешнюю архитектуру сотовых сетей и детально обсудить ее способность выполнять – как на техническом, так и на оперативном уровне – растущие требования служб ЧС.

3. ТРЕБОВАНИЯ СЛУЖБ ЧС К МОБИЛЬНОЙ СВЯЗИ

Прежде всего, крайне важно понять некоторые ключевые требования служб ЧС к мобильной связи.

Обстановка, в которой им приходится работать, требует все более быстрой, безопасной и мобильной связи между отдельными подразделениями, группами и центрами управления. Здесь необходимо обеспечить мгновенный беспроводной контакт как между отдельными абонентами, так и одного абонента со многими, гарантировать передачу голоса и данных с высочайшим уровнем безопасности, надежности и доступности.

За прошедшие годы изменилсь сам характер действий служб ЧС, а нарастающая угроза безопасности и меняющиеся требования к ее обеспечению возложили на такие организации еще большую ответственность.

3.1 Отказоустойчивость

Одним из ключевых требований к мобильной инфраструктуре является ее устойчивость к техническим сбоям при достаточном уровне резервирования. Здесь нельзя допустить, чтобы выход из строя одного-единственного элемента повлек за собой нарушение работы всей сети. Для выполнения этого требования предлагаются различные пути. Защиту от перебоев в электроснабжении, например, обеспечивают аккумуляторные батареи большой емкости или резервные источники питания (дизель-генераторы), позволяющие сохранить работоспособность коммуникационной системы при временном прекращении подачи электроэнергии как в обычных, так и – что еще важнее – в экстремальных условиях.

Необходимо встроенное резервирование элементов системы, обеспечивающее поддержание связи при катастрофах едва ли не любого масштаба. Незначительное повреждение оборудования, вызванное, скажем, землетрясением или наводнением, не должно оказывать серьезного влияния на региональную связь. Следует предусмотреть различные способы взаимодействия отдельных элементов сети, но если передача информации все же будет прервана, локальная базовая станция должна по-прежнему обеспечивать связь в своей рабочей зоне. Данному требованию, например, полностью соответствует предусмотренный в системах TETRA режим аварийной работы «Fall Back», в котором базовая станция продолжает обслуживание мобильных радиотерминалов внутри локальных ячеек.

А на крайний случай у абонентов с мобильными станциями должна оставаться возможность поддерживать прямую связь между собой – как минимум, в местном масштабе - без участия сетевой инфраструктуры.

3.2 Зона обслуживания

Одной из главнейших характеристик любой радиосистемы является зона обслуживания. Сотрудникам ЧС крайне важно, чтобы мобильная связь обеспечивалась на очень больших пространствах. Катастрофы, как правило, не ограничиваются одним районом и зачастую происходят в отдаленной сельской местности. Поэтому необходимо, чтобы коммуникационные сети могли обслуживать как можно большую часть территории и не были ограничены такими внешними факторами, как, например, гористость местности.

Связь должна быть одинаково надежной и качественной в городских и сельских районах, внутри автомобилей и зданий, на море и в воздухе.

Малая зона обслуживания неизбежно снижает эффективность работы системы, мешает оперативному реагированию на аварии и катастрофы. Более того, возникает угроза личной безопасности специалистов ЧС, для которых единственным средством связи в опасных зонах зачастую остается радиостанция. Время от времени возникает необходимость расширить зону обслуживания, причем иногда – в кратчайшие сроки, с целью обеспечения безопасности больших групп людей и мероприятий, в которых те участвуют.

Существует также ряд стратегических и потенциально опасных объектов, которые не могут оставаться вне зоны обслуживания. В их число, например, входят:

    медицинские учреждения;

    торговые центры;

    автомобильные и железнодорожные туннели;

    туннели на крупных автомагистралях;

    промышленные объекты повышенной опасности (включая химические предприятия и атомные электростанции);

    высокогорье, где есть большая вероятность проведения спасательных операций.

Сам характер подобных территорий и объектов заставляет тщательно планировать их обслуживание. Только так можно предельно расширить зону радиопокрытия и тем самым свести к минимуму опасность работы в таких местах.

3.3 Доступность и пропускная способность

Другое ключевое требование служб ЧС – доступ пользователей к услугам по передаче голоса и данных с гарантированно высоким качеством. Обслуживание, предлагаемое мобильной системой связи, должно оставаться на приемлемом уровне даже в часы пик и вместе с тем обладать достаточно гибкой функциональностью для поддержания связи в экстренных условиях, когда объем трафика резко возрастает.

Но одного только качества обслуживания недостаточно. Мобильная система должна предоставлять службам ЧС гарантированный доступ к услугам по передаче голоса и данных. Для этого могут использоваться следующие механизмы:

Преимущественное право на связь – когда сеть перегружена, у пользователя должна оставаться возможность устанавливать приоритетную голосовую связь за счет принудительного высвобождения сетевых ресурсов;

Закрепление полосы пропускания за службами ЧС и предоставление им права управлять ею при сетевых перегрузках, как бы это ни было сложно реализовать при локальных и кратковременных скачках трафика;

Обход возникающих «узких мест» сети за счет управляемого перехода на прямую связь локального уровня.

3.4 Безопасность

Роль служб ЧС в современном обществе такова, что безопасность и конфиденциальность информации становятся фундаментальным требованием их работы. Развитие же технологии не только невероятно расширяет возможности подобных организаций, но и создает серьезную угрозу несанкционированного проникновения в их радиосети.

Сегодня проблемы защиты становятся сложными и всеобъемлющими как никогда раньше. Взаимосвязь между различными системами открывает доступ к информации все большему числу пользователей, а это повышает опасность подслушивания. Растущая угроза взлома коммуникационных сетей в сочетании с быстрым распространением местного и международного терроризма особенно остро ставит перед руководством служб ЧС проблему защиты информации.

Сети приходится оберегать от несанкционированного доступа к трафику и командам управления, не допускать их искажения. А достичь этого можно более активным применением технологий шифрования и аутентификации пользователей.

В Европе мощным импульсом к ускоренному развитию безопасности и стандартизации мобильной связи послужило Шенгенское соглашение, разрешившее свободное перемещение граждан через границы и предусмотревшее стирание самих этих границ. В его рамках был разрешен обмен речевой информацией и данными посредством Шенгенской информационной системы, а также проведение полицейских мероприятий без учета границ между странам. А это потребовало более тесного взаимодействия и сотрудничества между службами ЧС разных государств Шенгенской зоны.

Кроме того, сейчас многие европейские страны всерьез рассматривают вопрос об использовании сетей своих спецслужб в интересах военных ведомств. А для этого потребуется дальнейшее развитие инфраструктуры, создание наземных сайтов, физически защищенных от проникновения извне. После недавних террористических актов такая защита вошла в число стандартных требований служб ЧС к системам связи.

3.5 Законодательство

Международный охват и стандартизация стали фундаментальными требованиями для любой коммуникационной системы общественной безопасности, проводной или беспроводной. Развертываемые сети связи должны полностью соответствовать строгим правительственным положениям и стандартам, что не позволяет создавать их на базе локальных узкоспециализированных решений.

3.6 Групповая связь

В работе служб ЧС участвует множество сотрудников, а это предъявляет повышенные требования к логистике. Для эффективной и безопасной координации действий специалистам ЧС необходимо поддерживать постоянную связь друг с другом, четко представлять себе, что делается в каждый момент их коллегами и сотрудниками других организаций. Таким образом, коммуникационные решения должны обеспечивать абонентов полной информацией, как статичной, так и динамично изменяющейся, а для этого у каждого сотрудника должна быть возможность связываться с другими членами своей группы или команды.

3.7 Быстрая организация вызовов

Для срочной связи в интересах служб ЧС крайне важно обеспечить оперативность вызова абонента. Время подключения в такой системе мобильной связи не может превышать 300 мс как внутри «ячейки», так и в локальной зоне.

3.8 Приоритетность

В мобильных коммуникационных системах должна быть предусмотрена единая общенациональная структура приоритетного обслуживания абонентов ЧС в экстраординарных условиях при любой перегрузке сети. Приоритет при этом может предоставляться как отдельным организациям, так и в рамках целой службы. При пожаре, например, экстренная связь нужна, в первую очередь, пожарной команде, однако к ликвидации его последствий могут привлекаться и другие службы, для эффективной работы которых также потребуется гарантированная связь. Таким образом, на первый план выходит гибкость распределения приоритетов и управления ими.

Для служб ЧС очень важна также способность обслуживать «экстренные вызовы», поэтому во всех системах ПМР, включая TETRA, им предоставляется наивысший приоритет.

Концепция прямой связи (между парами радиостанций) предусматривает возможность непосредственного вызова абонента по радио независимо от степени доступности развернутой инфраструктуры. Это очень важно для служб ЧС при работе в районах, где сеть мобильной связи еще не создана либо слабо развита.

Если базовая станция, обслуживающая радиосвязь в конкретной зоне, становится недоступной, у ее абонентов должна оставаться возможность непосредственной связи друг с другом без подключения к основной коммуникационной инфраструктуре. Прямая связь очень нужна и там, где не гарантирован доступ к радиосети – в подвалах зданий, туннелях и других замкнутых пространствах.

Поддерживать прямую связь помогают специальные шлюзы и ретрансляторы. Шлюзы используются для охвата таких «затененных» мест, как здания, туннели, ущелья и т. д. Они создают своеобразный «мостик» между инфраструктурой и теми, кто действует вне зоны ее обслуживания, но в пределах прямой связи со шлюзом. Ретрансляторы же расширяют зону прямой связи внутри группы, выводя ее за пределы области обслуживания сетевой инфраструктуры.

3.10 Интеграция с пунктом управления

И для повседневной работы, и для действий в чрезвычайных ситуациях крайне важно наличие пункта управления системой. Принимая вызов от абонентов и сотрудников организации, его операторы могут выделять ресурсы, необходимые для обработки вызова.
Системы ИТ и базы данных применяются для регистрации происшествий, отображения информации, ее распространения с целью управления и распределения ресурсов. Сегодня, когда мобильные среды все чаще используются для обмена информацией, интеграция таких систем и баз данных с системами мобильной связи становится одним из первоочередных требований служб ЧС.

Голосовая связь и дальше сохранит свое первостепенное значение для служб ЧС при работе в экстренных ситуациях. Условия передачи голоса по сетям связи могут изменяться в самых широких пределах, однако нужно быть готовым к тому, что в чрезвычайной обстановке уровень шума окажется намного выше обычного. При выработке стандартов на специализированные мобильные радиосети следует обязательно учитывать, в каких условиях приходится работать и поддерживать связь конечным пользователям. Стандарт TETRA, например, использует специально разработанный кодек, который подавляет фоновые помехи и позволяет хорошо слышать голос собеседника даже в самой шумной среде. В результате повышается разборчивость речи, что очень важно для служб ЧС, где уделяется особое внимание быстрой и успешной передаче информации.

3.12 Выводы

Службам ЧС нужна предельно отказоустойчивая и безопасная мобильная инфраструктура связи, обслуживающая большие территории и полностью отвечающая специфическим требованиям этих организаций. Кроме того, им необходимо специализированное терминальное и периферийное оборудование, созданное с учетом конкретных требований и предлагающее полный набор функций для их реализации.
Этим условиям в полной мере отвечают уже разработанные системы ПМР, которые все шире используются на практике. За последние десять лет те немногие пользователи служб ЧС, которые сначала взяли на вооружение аналоговые транковые системы, начали активно осваивать более сложные средства. В результате наметилась тенденция к переходу на цифровые транковые системы ПМР, в том числе и на стандарт TETRA, где наиболее полно используются возможности цифровых технологий.

4. СОТОВЫЕ СЕТИ

В мире существует целый ряд стандартов на общедоступные сети мобильной радиосвязи, однако в настоящем документе будет рассмотрен лишь один из них – GSM, который получил наиболее широкое распространение.

4.1 Общие сведения о GSM

GSM (Global System for Mobile Communications – Глобальная система мобильной связи) – это стандарт второго поколения на цифровую мобильную телефонную связь. Созданные на его основе решения преобразуют речевую информацию в цифровую форму, сжимают ее, а затем пересылают в таком виде по каналу параллельно с двумя другими потоками пользовательских данных, для каждого из которых здесь выделяется собственный временной интервал. Сейчас технология GSM реализована для частотных диапазонов 900, 1 800 и 1 900 МГц.

На сегодняшний день GSM представляет собой наиболее распространенный в мировых масштабах и быстро растущий стандарт цифровой сотовой связи.

    Сети GSM развернуты в 184 странах мира.

    На долю GSM приходится 71,2% глобального цифрового радиорынка и 69,2% рынка региональных беспроводных систем.

    Услугами сетей GSM пользуется 747,5 млн. абонентов.

    Согласно отраслевым прогнозам к декабрю 2006 г. их число возрастет до 1 279,8 млн.

Первоначально спецификация GSM разрабатывалась под эгидой ETSI в качестве общеевропейского стандарта связи с целью обеспечить роуминг на территории всех стран-участниц. Ее преимущество заключается в том, что многие сетевые операторы связаны взаимными роуминговыми соглашениями, благодаря чему мобильные телефоны пользователей работают в различных сетях многих стран.

4.2 Архитектура и технология

В сети GSM можно условно выделить три основные составляющие:

    абонент с мобильной радиостанцией;

    базовая станция, управляющая каналом связи с мобильной радиостанцией;

    сетевая подсистема, соединяющая мобильных пользователей с абонентами других мобильных и стационарных сетей.

Мобильная радиостанция, в свою очередь, сочетает в себе мобильное устройство (например, ручное) и смарт-карту SIM (Subscriber Identity Module – модуль идентификации абонента).

Подсистема базовой станции содержит два компонента: базовую приемо-передающую станцию и контроллер базовой станции. Между собой они взаимодействуют через стандартный интерфейс Abis, благодаря чему обеспечивается совместимость продукции различных поставщиков. В состав базовой приемо-передающей станции входит несколько трансиверов, которые создают ячейку связи (так называемую «соту») и управляют протоколами радиосвязи с мобильной станцией. Контроллер базовой станции служит для управления ресурсами одной или нескольких базовых приемо-передающих станций. В его функции входит обеспечение связи между мобильной станцией и центральным коммутационным центром обслуживания мобильных абонентов.

Ядром сетевой подсистемы является коммутационный центр обслуживания мобильных абонентов, который выполняет те же функции, что и коммутаторы обычных телефонных сетей общего пользования и цифровых сетей ISDN (Integrated Services Digital Network – цифровая сеть с комплексными услугами). Он является шлюзом между мобильной и стационарными телефонными сетями. Кроме того, на коммутационном центре выполняются все операции, необходимые для обслуживания мобильных абонентов, – их регистрация, аутентификация, слежение за местоположением, передача с одного ретранслятора на другой и маршрутизация вызовов при роуминге.
Передающая архитектура сотовых систем построена по иерархическому принципу. Она оптимизирована для централизованного подключения и подтверждения вызовов при каждой транзакции на региональном и даже общенациональном уровне. К числу побочных эффектов такого подхода следует отнести сравнительно долгое время установления связи (оно измеряется секундами), довольно высокие расходы ресурсов на обратную связь и относительно слабую отказоустойчивость, поскольку выход из строя одного-единственного элемента способен привести к серьезным нарушениям в обслуживании. В результате возникает необходимость в сложном дублировании и резервировании функций, что приводит к увеличению стоимости системы.

Для сравнения можно отметить, что цифровые транковые системы ПМР – и TETRA в их числе – оптимизированы на обслуживание, главным образом, локального трафика. Здесь интеллектуальные ресурсы распределяются по всей сети, передающая архитектура нацелена на обслуживание локальных вызовов, а проверка абонентов производится лишь один раз за сеанс. Подобной архитектуре присущи низкая стоимость транзакций, значительно меньшее время установления связи и высокая отказоустойчивость.

Распределенная архитектура транковых систем наподобие TETRA предъявляет более высокие, чем GSM, требования к интеллектуальности оборудования базовых сайтов, но это, кроме всего прочего, намного повышает ее масштабируемость. По существу, оснащение базового сайта представляет собой разновидность цифровой транковой радиоинфраструктуры. С учетом функциональности и наличия необходимых интерфейсов здесь есть все, что только может потребоваться для организации полномасштабной транковой радиосистемы с одним сайтом.

4.3 Маршрутизация мобильных вызовов

В отличие от абонентов стационарных проводных сетей, где терминальное оборудование практически постоянно подключено к центральному коммутатору, клиенты GSM могут перемещаться не только по своей стране, но и за ее пределами. Чтобы обеспечить такой уровень роуминга, необходимы сложная структура номеров и система аутентификации, ключевым элементом которых являются коммутационные центры мобильного обслуживания.

В процессе маршрутизации вызовов эти центры, известные под аббревиатурой MSSC, коммутируют цифровые пакеты с речевой информацией из одного сетевого канала в другой. Выполняют коммутационные центры и некоторые другие функции, необходимые для обслуживания мобильных абонентов: регистрацию пользователей, их аутентификацию и определение местоположения. Здесь же осуществляются фиксированные подключения к стационарным телефонным сетям общего пользования и сетям ISDN.

Централизованный характер маршрутизации вызовов в мобильной сети требует предельной отказоустойчивости коммутационного центра, от которого зависит работоспособность всей сети. Каждый вызов здесь проходит через целый ряд сетевых элементов – с базовой станции на коммутатор, а затем назад, - что серьезно сказывается на времени установления связи. Отказ этого критического элемента сразу же выводит сеть из строя, так как без MSSC мобильная связь в системе GSM становится невозможной.

4.4 Удовлетворяет ли GSM требованиям служб ЧС?

Область сотовых услуг сейчас быстро развивается, и можно привести немало примеров использования этой технологии в повседневной деятельности персонала служб ЧС.
Например, в недавно опубликованном докладе норвежского министерства юстиции и полиции приводится глубокий анализ применения коммерческих сотовых сетей мобильной связи в интересах таких подразделений в Норвегии. Основное внимание здесь уделено тому, в какой мере существующие мобильные сети общего пользования (как в стандартной, так и в расширенной конфигурации) отвечают требованиям пользователей из служб ЧС. Изучив специальные потребности специалистов по действиям в чрезвычайных ситуациях, составители документа приходят к выводу, что данный тип сетей не отвечает требованиям служб общественной безопасности к мобильной связи. Особенно наглядно это проявляется в таких аспектах, как групповая работа, приоритетность и оперативность установления связи, безопасность и функционирование центров управления.

Тем не менее, нельзя не учитывать коммерческий размах GSM по сравнению с решениями ПМР. Как следует из данных, приведенных в разделе 4.1, услугами сотовой связи пользуется сегодня огромное количество людей по всему миру, и их численность продолжает расти. Абонентов же систем ПМР несравнимо меньше. Технология GSM, в дополнение ко всему, активно развивается, в коммерческие мобильные сервисы делаются большие инвестиции, хотя операторы мобильных сетей далеко не всегда проявляют энтузиазм в отношении новинок, если недостаточно ясны коммерческие выгоды от их применения.

Огромные масштабы выпуска портативных и мобильных терминалов, где счет идет на миллионы, открывают богатые возможности для разработки наборов микросхем с высокой степенью интеграции. У терминалов же ПМР рынок сбыта не столь велик, поэтому довести их размеры и стоимость до уровня устройств GSM удастся едва ли. То же можно сказать о стандартных принадлежностях – аккумуляторах, зарядных устройствах, передающем оборудовании и так далее. Не стоит упускать из виду также широкую распространенность терминалов GSM и их массовую доступность. Если спрос на на них внезапно возрастет (такое может случиться, в частности, в чрезвычайных ситуациях), его можно будет удовлетворить довольно быстро.

Нельзя сбрасывать со счетов и другие потенциальные достоинства общедоступных мобильных сетей, а именно:

    доступ и зона обслуживания не ограничены рамками какой-либо одной организации, что обеспечивает высокий уровень совместимости;

    при определенных условиях некоторые провайдеры могут развернуть подвижные сотовые сайты, расширив тем самым свою зону обслуживания (рассчитывать на мгновенную их установку, правда, не приходится);

    постоянное техническое совершенствование системы позволяет предоставлять самые современные мультимедийные возможности;

    широкое распространение GSM среди обычных пользователей и применение этой технологии большинством сотрудников служб ЧС делают ее хорошо знакомой и привычной.

Многие службы ЧС по всему миру используют связь GSM в своей повседневной работе, когда нет особой срочности. Созданному на базе этой технологии оборудованию присущи гибкость применения, портативность и транспортабельность, что делает его очень удобным для повседневного применения в обычных условиях.

Мобильная связь уже стала неотъемлемой частью нашей жизни и поэтому хорошо знакома многим. В Великобритании, например, значительная часть полицейских используют собственные мобильные телефоны как дополнение к специализированным радиостанциям полиции.

В Гонконге в 2001 году управление полиции раздало 3,5 тысячи мобильных телефонов тем своим сотрудникам, которые работают в городе. Это было сделано, чтобы повысить оперативность связи и улучшить качество работы. Сотовая связь в данном случае не заменяла специальную радиосеть, которая по-прежнему оставалась главным коммуникационным средством, а предоставляла сотрудникам полиции удобную альтернативу. Хотя данный шаг носил временный характер (сотовые телефоны планировалось использовать лишь до ввода в строй новой цифровой радиосистемы), полицейским он пришелся по душе и, к тому же, позволил на практике проверить возможности такой схемы.

4.5 Выводы

Стандарт сотовой связи GSM получил самое широкое распространение, что может дать определенные преимущества службам ЧС, и многие ресурсы этой технологии уже входят в повседневную жизнь таких организаций.

Распространение сетей GSM и развитие их мультимедийных возможностей открывают дополнительные перспективы перед операторами сотовой связи. Сотовые сети общего пользования теперь могут использоваться не только для телефонии, но и для оказания более сложных телекоммуникационных услуг – пересылки мгновенных сообщений и определения присутствия абонента, предоставления доступа к электронной почте, Интернету и базам данных, для обмена видеофрагментами и проведения телеконференций.
Тем не менее, следует постоянно иметь в виду, что GSM не в состоянии стать единственным средством мобильной связи служб ЧС из-за присущей этому стандарту ограниченности. Основания для такого заключения дает не только сравнение функциональности сотовых сетей с требованиями служб ЧС, но и анализ их работы в условиях природных и техногенных катаклизмов, при резких скачках нагрузки и системных сбоях.

Поведению сотовых сетей в подобных условиях посвящен следующий раздел.

5 ПРИМЕРЫ ФУНКЦИОНИРОВАНИЯ СОТОВЫХ СЕТЕЙ

5.1 Краткий обзор

Надежность связи – одно из фундаментальных требований на всех этапах управления в чрезвычайных ситуациях, от проведения предупредительных и подготовительных мероприятий до оперативного реагирования на происходящее и устранения последствий катастроф. В своей работе службы ЧС активно применяют радиосвязь, которая обеспечивает полномасштабное комплексное управление, столь необходимое для координации усилий и четких совместных действий в любых чрезвычайных ситуациях.

При проведении аварийно-спасательных работ значение связи переоценить невозможно. Плохая связь может создать массу проблем как при подготовке к возможным чрезвычайным ситуациям, так и при их возникновении. Мобильная связь крайне важна для выявления доступных службам ЧС ресурсов и согласованного их использования.

Чтобы понять, насколько эффективны сотовые сети в различных условиях, целесообразно изучить их работу при крупных авариях, катаклизмах и катастрофах, когда службам ЧС больше всего нужна срочная связь. Результаты такого анализа наглядно покажут, смогут ли коммерческие операторы связи обеспечить в подобных условиях необходимую отказоустойчивость своих систем и сохранить их зону обслуживания.

Ниже приводится примеры природных катаклизмов (наводнений, землетрясений и т. п.)и техногенных катастроф (взрывов и пожаров).

Рассматриваются также случаи отказа оборудования и инфраструктуры операторов коммерческой связи, - например, при неполадках в электроснабжении, - которые также могут помешать действиям служб ЧС.

5.2 Техногенные катастрофы

При катастрофах такого рода зачастую нарушается связь именно в том районе, где больше всего требуются скоординированные действия служб ЧС. Это может быть вызвано и повреждением телекоммуникационной инфраструктуры, и быстрой перегрузкой наличных ресурсов связи. Из приведенных ниже примеров видно, где и почему сотовые сети становились либо недоступными службам ЧС, либо бесполезными для них.

Атака террористов на Всемирный торговый центр (ВТЦ) 11 сентября 2001 года повлекла за собой многочисленные человеческие жертвы и нанесла большой материальный ущерб.
Врезавшиеся в здания самолеты не только нанесли ущерб общедоступным наземным и мобильным сетям связи, но и привели к сильной перегрузке тех из них, которые все же сохранили работоспособность.

Фирма Verizon, крупнейший оператор связи в Манхэттене, где произошли теракты, после того, как обрушились здания, потеряла множество коммутационных станций. Была повреждена, уничтожена или затоплена масса кабелепроводов с медными и волоконно-оптическими кабелями вблизи комплекса ВТЦ, вплотную к которому тауже примыкал корпоративный центр фирмы с многочисленными кабельными колодцами и целым этажом коммутационного оборудования. Это здание было сильно повреждено упавшими обломками башен.

За считанные минуты Verizon утратила 200 тыс. телефонных линий, 150 тыс. магистралей частных АТС, 3,7 млн. каналов передачи данных и 10 ретрансляционных сотовых сайтов. В результате была нарушена связь у 14 тыс. частных и 20 тыс. корпоративных клиентов.

Положение усугубилось тем, что в первые 24 часа после терактов оказались сильно перегружены мобильные коммутационные центры другого оператора – компании Sprint. Этот провайдер попытался заменить утраченные сайты мобильными установками COW (Cellular on Wheels – "ячейки на колесах"), которые одновременно должны были увеличить пропускную способность сети. Однако в городских условиях Нижнего Манхэттена сделать это оказалось не просто.

Перегрузка сотовых сетей создала серьезные проблемы не только для частных пользователей, но и для служб ЧС. В октябре 2001 г. NCS (National Communication System – национальная коммуникационная система) – организация, консультирующая правительство США по вопросам связи – выдвинула инициативу создания системы приоритетных вызовов, которая бы гарантировала мобильную связь службам ЧС и правительственным чиновникам в чрезвычайных обстоятельствах.

Стало совершенно ясно, что коммерческие сети общего пользования не обладают ни отказоустойчивостью, ни емкостью каналов связи, которые необходимы в подобных случаях. Проявились, правда, слабые места и аналоговых радиосистем, используемых службами ЧС. Ряд серьезных недостатков подобных средств был отмечен в докладе МакКинси, подготовленном пять месяцев спустя по заказу службы пожарной охраны Нью-Йорка. Отдельные его выводы приводятся ниже.

    Портативные радиостанции пожарных оказались очень ненадежными в высотных зданиях, где не было возможности усилить сигнал и передать его на систему ретрансляторов.

    Оказался полностью забит эфир, так как на одной частоте начали работать сразу два канала экстренной связи, один из которых предназначался для высшего руководства пожарной службы, а другой – для поддержания контакта с машинами скорой медицинской помощи в масштабах всего города.

    На диспетчеров пожарной службы обрушилось огромное количество вызовов, которые поступали по самым разным каналам – телефону, радио, электронной почте.
    На основании проведенного анализа составители доклада выработали ряд следующих рекомендаций.

    Расширить спектр для радиоканалов.

    Увеличить возможности использования системы управления и улучшить подготовку диспетчеров.

    Провести оценку зданий и инфраструктуры городской радиосвязи на предмет их соответствия требованиям служб ЧС.

    При возникновении крупных инцидентов наладить совместное планирование и координацию действий служб ЧС с организациями общественной безопасности.

5.2.2 Атака на Пентагон. Вашингтон, сентябрь 2001 г.

В тот же день, 11 сентября 2001 г., пилотируемый террористами самолет врезался в здание министерства обороны США в Вашингтоне.

Сразу после катастрофы сотовая связь в этом районе стала совершенно бесполезной – в ответ на вызовы раздавались лишь короткие гудки. Трафик в сетях Verizon возрос по сравнению с обычным для Америки уровнем в полтора-два раза, а компания Cingular Wireless – второй по величине оператор беспроводной связи – отметила в своей вашингтонской сети даже четырехкратное увеличение вызовов. В дополнение к этому невероятно повысилось количество разговоров в обычной телефонной сети, по которой частично проходит мобильный трафик. Скачок спроса на телефонные услуги привел к тому, что пользователям, включая сотрудников служб ЧС, приходилось подолгу дожидаться соединения, уже установленная связь внезапно прерывалась.

Чтобы исправить положение и обеспечить мобильную связь для управления операциями спасения, Verizon развернула вблизи Пентагона уже упоминавшиеся мобильные центры сотовой связи COW и раздала сотрудникам служб безопасности мобильные телефоны. В сетях фирмы Nextel в первые часы после теракта отказала лишь сотовая связь, но услуга прямого подключения Direct Connect, позволяющая устанавливать двустороннюю связь между владельцами телефонов, и двухсторонний обмен текстовыми сообщениями остались доступными. Оба эти сервиса нисколько не зависят от обычной телефонной сети общего пользования, что в немалой степени способствует их надежности и доступности.

Единственным средством, обеспечившим надежную и устойчивую связь служб ЧС в этих условиях, оказались их собственные системы ПМР. Вот что говорится по этому поводу в докладе организации беспроводных программ общественной безопасности PSWN, озаглавленном «Answering The Call: Communication Lessons Learned From The Pentagon Attack» ("Ответ на вызов: уроки связи, извлеченные из атаки на Пентагон"):
«Крупные инциденты, где бы они ни происходили, наглядно демонстрируют, что коммерческие сети просто не рассчитаны на то колоссальное увеличение вызовов, которое происходит в месте действия и вблизи него. Из результатов опроса следует, что надежную связь в таких условиях смогли обеспечить лишь наземные радиосистемы мобильной связи Land Mobile Radio Systems. Единственным исключением стала услуга Nextel Direct Connection».

Доклад содержит также некоторые другие выводы и рекомендации.

    Необходим план приоритетного доступа PAS к сотовой связи правительственных чиновников и сотрудников служб общественной безопасности в чрезвычайных условиях.

    Нужно разрабатывать новые региональные/общенациональные системы для решения проблем совместимости.

    Все перспективные коммуникационные системы следует конструировать, выпускать и развертывать на основе общих технических стандартов.

5.2.3 Взрыв в финском торговом центре. Окрестности Хельсинки, октябрь 2002 г.

11 октября 2002 года в торговом центре Myyrmanni, расположенном в пригороде Вантаа города Миирмяки вблизи столицы Финляндии Хельсинки, произошел взрыв бомбы, унесший несколько человеческих жизней.

Когда тысячи людей попытались одновременно дозвониться до служб безопасности по номеру 112, до своих друзей и родственников, работа сетей GSM, обслуживавших этот район, была полностью блокирована. Это серьезно помешало проведению спасательных операций, так как организовать размещение раненых в больницах можно было только при помощи сотовой связи. Сложности возникли и у пожарных, которые для связи с другими службами ЧС пользовались каналами GSM.

5.2.4 Авиационная катастрофа. Милан, апрель 2002 г.

В апреле 2002 г. небольшой самолет врезался в здание компании Pirelli (известное как Pirellone) в самом центре Милана.

Сразу же после катастрофы сети сотовой связи были перегружены множеством звонков, что сильно помешало проведению спасательных операций.

Поддерживать радиосвязь удавалось лишь по системе ПМР, однако радиооборудование различных ведомств оказалось несовместимым, в результате чего работы велись не так быстро и оперативно, как того требовала обстановка.

5.2.5 Пожар в Стокгольме. Март 2001 г.

Сильный пожар в стокгольмском туннеле, произошедший в марте 2001 г., привел к нарушениям энергоснабжения и связи. Он лишил электричества 50 тыс. городских жителей, серьезно сказался на деловом сообществе и телекоммуникационной инфраструктуре. Перебои в электропитании, начавшиеся в воскресенье утром, удалось устранить лишь к вечеру понедельника.

Крупнейший работодатель этого региона фирма Ericsson предложила 11 тысячам своих сотрудников не выходить в понедельник на работу, так как их рабочие места были обесточены. Такое же решение приняла и корпорации IBM в отношении 2 тысяч своих местных служащих.

В столице Швеции была сильно нарушена стационарная и мобильная связь, на восстановление которой ушло более 2 суток.

5.2.6 Действия террористов-смертников в Шри-Ланке

В столице Шри-Ланки городе Коломбо за последние годы террористами-смертниками было проведено несколько терактов, которые показали неспособность сотовых сетей обеспечить в таких условиях срочную связь.

Каждая из этих атак приводила к серьезным перебоям в работе мобильных сетей из-за огромного количества вызовов. Операторы связи, нагрузка на которых ежегодно возрастает примерно в полтора раза, были вынуждены задействовать свои резервные ресурсы, и когда после первых известий о терактах люди начинали звонить по телефону, система оказывалась заблокированной. Этого, возможно, не случилось бы, если бы в сетях были предусмотрены механизмы распределения нагрузки. Избежать подобного развития событий помогла бы и система приоритетов, способная блокировать работу всех абонентов сети, кроме сотрудников служб ЧС. Однако отсутствовала и она.

Еще более усугубляют проблему каналы связи между мобильными сетями общего доступа и обычными АТС. Те, кто пользовались услугами нескольких операторов связи, обнаруживали, что могут связаться с абонентами только внутри одной сети.

Для решения проблемы машины скорой медицинской помощи крупных травматологических больниц, куда доставлялись жертвы взрывов, были оснащены радиостанциями транковой системы, не связанной с другими сетями.

5.2.7 Угроза взрыва на скачках Grand National. Эйнтри, Великобритания, апрель 1997 г.

В апреле 1997 года скачки Grand National были срочно прекращены из-за угрозы Ирландской республиканской армии взорвать ипподром. Это вызвало самую крупномасштабную эвакуацию людей со времен Второй мировой войны.

В такой ситуации наземные и сотовые сети связи оказались полностью забитыми. Чтобы обеспечить правительственным чиновникам и военным связь по общедоступным сетям, было решено привести в действие государственную систему GTPS (Government Telephone Preference Scheme – правительственную схему приоритетной телефонии), призванную обеспечить приоритетную обработку вызовов высшего руководства страны за счет сокращения доступа обычных абонентов.

К сожалению, это не дало желаемого результата. Правительственные чиновники так и не получили доступ в одну из мобильных сетей из-за перегрузки каналов связи, а военные саперы не смогли воспользоваться своими мобильными телефонами, так как те не были зарегистрированы.

5.2.8 Пожар в Волендаме. Нидерланды, январь 2001 г.

В первые часы 2001 года вспыхнул пожар на заполненной сотнями подростков дискотеке голландского города Волендам. Причиной возгорания стали, по-видимому, бенгальские огни, пламя с которых перекинулось на свисавшие с потолка гирлянды, не обработанные огнеупорным составом. Погибли 10 подростков, более 150 получили серьезные травмы.

На сообщение о пожаре службы ЧС отреагировали мгновенно: уже через 6 минут пожарная команда и полиция были на месте происшествия. Однако их эффективной работе же помешали проблемы со связью. Представители различных структур остались без общего оперативного руководства, действовали разрозненно, по-разному представляли себе ситуацию.

5.2.9 Взрыв на складе фейерверков. Эншеде, Нидерланды, май 2000 года.

13 мая 2000 года на складе фейерверков в голландском городе Эншеде произошел взрыв, последствия которого сказались в зоне диаметром более километра, где проживало 5 300 человек. Прямыми последствиями инцидента стала гибель 22 человек, ранение еще 800 и полное разрушение не менее 400 жилищ.

Все службы ЧС, включая пожарные команды, полицию и скорую медицинскую помощь, выехали немедленно, однако не смогли действовать достаточно решительно и эффективно из-за целого ряда коммуникационных проблем. Связь между отдельными структурами оказалась явно недостаточной, а пожарная команда так и не смогла взять на себя общее оперативное руководство и обеспечить четкую координацию действий.
Серьезные трудности были отмечены в центрах управления, призванных выделять и распределять ресурсы. Их операторы оказались не в состоянии обрабатывать огромные потоки вызовов от людей, которые сообщали о происходящем и хотели получить информацию. В центрах управления не оказалось ни нужного оборудования, ни подготовленных специалистов, необходимых для работы при катастрофах такого масштаба. Более того, многие руководители так и не получили из своих центров управления сообщения о взрыве, а сигналы тревоги подавались безо всякой системы и без особого контроля.

5.2.10 Железнодорожная катастрофа. Аста, Норвегия, январь 2000 г.

Столкновение поездов в норвежском городе Аста 4 января 2000 года и возникший после этого пожар унесли жизни 19 человек. Еще 67 пассажиров получили травмы.

Расследование так и не смогло установить истинную причину катастрофы - остались под подозрением как неисправность сигнализации, так и человеческий фактор.

Проведению спасательных операций и здесь сильно мешали проблемы со связью. Службы ЧС оказались не в состоянии передавать конфиденциальную информацию по сотовым сетям, так как те были полностью перегруженными. Оставшиеся в живых пассажиры начали активно звонить родственникам и знакомым, а когда к месту аварии подъехали корреспонденты, ситуация стала еще сложнее.

Не удалось также организовать четкого взаимодействия между различными службами, принимавшими участие в ликвидации последствий катастрофы, так как их системы оказались несовместимыми. Даже руководителю операции это помешало общаться с руководством других ведомств, чтобы координировать работу всех команд. В результате руководство операцией производилось далеко не так эффективно, как требовалось.

При этом инциденте вскрылись и недостатки системы радиосвязи: поездные радиостанции не смогли работать в одном из каналов, и контакт между контроллерами поездов отсутствовал. С учетом этого было внесено предложение усовершенствовать радиосеть железной дороги.

5.3 Природные катаклизмы

Природные катаклизмы, как правило, охватывают большие территории и влияют на жизнь очень многих людей в течение долгого времени. Оказывая серьезное воздействие на коммунальную инфраструктуру, они способны вывести из строя ее ключевые элементы, включая системы электроснабжения и связи. Чтобы поддерживать закон и порядок при стихийных бедствиях, защищать человеческую жизнь и помогать в ликвидации последствий, службам ЧС необходима надежная связь. Однако, как видно из приводимых ниже примеров, коммуникационные системы общего пользования также зачастую становятся жертвами разгулявшейся стихии.

5.3.1 Бури во Франции. Зима 1999 г.

В последние дни 1999 года по Франции, как и по многим другим европейским странам, пронеслись две снежные бури. Скорость ветра в некоторых районах достигала 200 км/час, что вызвало серьезные повреждения сетей электроснабжения и связи. Сильный шторм нарушил даже движение по железным дорогам и подачу воды в здания.

Перебои в электроснабжении были вызваны падением мачт и столбов на линиях электропередач, обрывами проводов под действием ветра и падающих деревьев. Когда буря утихла, без света осталось 3,5 млн. домов.

Серьезные повреждения получила обычная телефонная сеть общего пользования. Буря вывела из строя множество телефонных линий, лишив их электропитания и оборвав висящие в воздухе провода.

На территории Франции развернуто 3 сети GSM, одна из которых работает в диапазоне 1 800 МГц, а две другие – в диапазоне 900 МГц. Все они были сильно повреждены. Главной причиной прекращения мобильной связи стало отсутствие электроснабжения, из-за чего отключились очень многие ретрансляционные станции. Это еще раз подчеркнуло, что отказоустойчивость сетей GSM обеспечивается лишь при кратковременном исчезновении электричества.

Конечно, в данном случае последствия снежных бурь оказались специфичными для условий Франции, где для связи используется комбинация подземных, воздушных и радиолиний, городские районы чередуются с сельской местностью, а конструирование систем ведется на основе общепринятых правил. Тем не менее, опыт Electricite de France показал, что надежность сетей GSM гораздо ниже, чем специализированной системы ПМР, развернутой этой компанией электроснабжения.

5.3.2 Землетрясение в Афинах. Сентябрь 1999 г.

В столице Греции 7 сентября 1999 года произошло сильное землетрясение силой 5,9 баллов по шкале Рихтера. Оно длилось всего 10 секунд, но за это короткое время погибли и были ранены люди, многие здания были разрушены. Самые тревожные сообщения поступали из районов Мениди, Лиосия, Зефири, Тракомакедонес, Филадельфия, К. Кифиссия, Метаморфози, Петроуполи, Северная Иония, Северная Эритрея, Перистери, Аг Анаргири, Хайдари и Галатси. Подземные толчки ощущались даже в Коринфе, расположенном на 100 км южнее. В результате землетрясения обрушилось 65 зданий, из которых почти все были жилыми, и под их обломками погибло 143 человека. Раненых насчитывалось около 7 тыс.

Сразу же были мобилизованы все службы ЧС. К операции подключился Национальный центр по действиям в чрезвычайных ситуациях при Генеральном секретариате гражданской защиты, равно как и оперативные центры других ведомств – полиции, пожарной охраны, скорой медицинской помощи (EKAB), организации по планированию и защите от землетрясений (EPPO).

Прежде всего, было крайне важно восстановить линии связи и наладить оповещение населения. Как и в других случаях, описанных выше, в первые часы после землетрясения было просто невозможно использовать для управления ни проводные, ни мобильные телекоммуникационные сети. Вся информация о происходящем передавалась по радиоканалам полиции и пожарной охраны, а телефонные сети, в том числе и сотовые, оказались полностью блокированными. Пришлось срочно организовать команды оценки обстановки, снабдить их карманными радиостанциями ПМР и направить во все районы бедствия, а для наблюдения с воздуха поднять вертолеты.

5.3.3 Землетрясение в Кобе. Япония, январь 1995 г.

17 января 1995 года на юге центральной Японии произошло землетрясение силой 7,2 балла, эпицентр которого лежал между городами Кобе и Осака. Разбушевавшаяся стихия унесла более 5 тыс. жизней и разрушила почти 180 тыс. зданий.

Для коммуникационной инфраструктуры последствия оказались беспрецедентными. Из-за прекращения подачи электроэнергии 285 тыс. абонентов телефонной сети общего пользования лишились связи, вместе с домами было уничтожено 100 тыс. линий связи и еще столько же было разорвано вне зданий. В дополнение к этому в сети возникли страшные заторы. В первый день после землетрясения трафик в Кобе превысил пиковое значение в 50 раз, выйдя за рамки возможностей телекоммуникационной системы. Ведущий оператор внутренней связи Японии корпорация NTT блокировала 95% всех входящих вызовов, чтобы обеспечить связью полицейские участки, правительственные организации и телефоны общего доступа. Однако очень многие пытались звонить по платным телефонам, и это быстро привело к перегрузке каналов связи.

Приоритет был предоставлен и службам спасения, но их работе сильно мешали перегрузка сети и недостаточное число операторов.

Серьезные заторы и повреждения коснулись также мобильных систем общего пользования – трафик в них в 7 раз превысил обычное пиковое значение. Были повреждены ретрансляционные вышки операторов мобильной связи, очень быстро иссякла энергия в резервных аккумуляторах. Узким местом оказались и каналы связи с локальными проводными сетями.

5.3.4 Землетрясение Чи-чи на Тайване. Сентябрь 1999 г.

Сильное и разрушительное землетрясение потрясло 20 сентября 1999 г. северо-запад Тайваня. Его эпицентр находился неглубоко от поверхности земли, вблизи небольшого городка Чи-чи в 150 км к юго-западу от Тайпея. Это вызвало серьезные разрушения и жертвы в городах Чунляо, Мейшан, Тайчунг, Фонгуен и Донгсю. Сообщения о гибели людей и разрушении зданий поступали даже из густонаселенной столицы Тайпея. По сообщению тайваньского телевидения, в тот день погибло 2 100 человек и еще 8 000 было ранено.

Сильные повреждения получили кабельные колодцы, однако проложенные в них кабели не пострадали. Тем не менее, и сотовая, и обычная телефонная связь прервалась, что было вызвано частично повреждением зданий базовых станций, их оборудования и сотовых сайтов, а частично – прекращением подачи электроэнергии.
5.3.5 Ледяной шторм в Нью-Йорке. Январь 1998 г.

Беспрецедентный по своим масштабам ледяной шторм, прокатившийся по северо-востоку США в январе 1998 г., нанес огромный ущерб лесопаркам в городах и сельской местности на площади 18 млн. акров. Пострадали штаты Мэн, Нью-Гэмпшир, Вермонт и Нью-Йорк. Особенно сильный урон понесли компании, общественные здания и коммунальная инфраструктура Нью-Йорка, который оставался без электроснабжения в течение 23 дней. Дело дошло до того, что 10 января президент США Билл Клинтон объявил графства Клинтон, Эссекс, Франклин, Джефферсон, Льюис и Сент-Лоренс зоной бедствия.

Входящая и исходящая связь в этих районах была прервана по целому ряду причин. Линии связи, локальные телефонные станции и сотовые ретрансляторы из-за отсутствия электропитания оказались неработоспособными. По этой же причине не могли использовать свою связь и компании, где также замолчали офисные АТС.

Те системы, где имелись резервные электрогенераторы, проработали недолго - они лишились питания, как только иссякли запасы топлива. Еще быстрее разрядились запасные аккумуляторы, специально установленные на случай перебоев в подаче электроэнергии. В результате некоторые районы в течение долгого времени оставались без связи, если не считать любительских радиостанций. А без этого было очень трудно принимать необходимые меры.

На опыте шторма Федеральное агентство США по действиям в чрезвычайных ситуациях выработало ряд рекомендаций. Было предложено, в частности, развернуть в сотовых сетях систему приоритетов, обеспечивающую управление службами ЧС даже при перегрузке общедоступных каналов.

5.4 Отказы инфраструктуры общедоступных сетей

Сотовые системы имеют иерархическую структуру сетевых элементов, которая обладает недостаточной стойкостью к отказам и требует резервирования. Ниже приводится ряд примеров, из которых видно, насколько серьезно выход из строя отдельных компонентов сказывается на работе общедоступной сети и как долго длятся такие перебои. Все приведенные факты довольно свежи – они имели место за последние несколько лет. Таким образом, по ним вполне можно судить, что в работе сотовых сетей могут случаться – и случаются – серьезные перебои.

5.4.1 Обесточивание коммутатора в Гэмпшире. Великобритания, апрель 2002 г.

Серьезная авария, произошедшая в Саутхэмптоне на телефонном коммутаторе компании British Telecom 25 апреля 2002 г., имела катастрофические последствия. Без телефонной связи остались весь юго-запад графства Гэмпшир и юг графства Уилтшир. Жители обоих графств лишились возможности звонить в службу спасения. В течение вечера без телефона оставалось свыше 400 тыс. жителей на большей части Гэмпшира.

Из-за потери коммутатора в районе сохранила работоспособность только одна сотовая сеть Orange, которая не зависела от инфраструктуры British Telecom. В результате полиция графства осталась без наземной связи, электронной почты, факса, мобильных телефонов и большинства УКВ-радиостанций. Восстановить нормальную связь удалось лишь после ремонта коммутатора, который длился 5 часов. Все это время полицейские могли поддерживать связь лишь по тем УКВ-радиостанциям, которые не зависели от проводной инфраструктуры.

5.4.2 Пожар на телефонном коммутаторе в Ройтлингене. Германия, август 1998 г.

Пожар в передающем зале коммутатора Deutsche Telecom, вспыхнувший 1 августа 1998 года, вывел из строя две трети городских телефонных линий, лишив связи 54 тыс. абонентов. При этом была нарушена не только обычная телефонная связь, но и мобильная, которая частично проходила по общедоступной телефонной сети. В дополнение ко всему на 6 с лишним часов замолчали телефоны аварийных служб.

Чтобы исправить положение, Deutsche Telekom раздала части абонентов, которым была необходима постоянная связь, мобильные телефоны. Помимо этого в центре Ройтлингена была установлена мачта с мобильным передатчиком для сети D1, удвоившая общее число радиоканалов. Однако полностью компенсировать потерю коммутатора не удалось, так как ограниченная полоса разрешенных частот не позволяла организовать требуемое число каналов.

Телефонное обслуживание вернулось в норму лишь через 2 недели после пожара.

5.4.3 Пожар на телефонном коммутаторе в Хинсдейле. США, 1988 г.

9 мая 1988 года на центральном коммутаторе компании Illinois Bell Telephone из-за короткого замыкания возник пожар. Произошло это в небольшом американском городке Хинсдейл, расположенном в 32 км к юго-западу от Чикаго. Телефонная связь прервалась сразу же после возгорания, что помешало оперативно сообщить о происшествии в аварийные службы. В результате пожарная команда прибыла только через 45 минут. Работать ей пришлось в особенно сложных условиях, поскольку на коммутаторе не оказалось системы аварийного отключения электроснабжения.

Пожар не только нанес физический ущерб зданию и оборудованию коммутатора, но и надолго нарушил телефонную связь. Больше недели 38 тыс. абонентов не могли позвонить не только в другой город, но и в соседний офис, что, конечно же, серьезно повредило местному бизнесу.

Сильно пострадала и связь с аварийными службами, которая была восстановлена только не следующий день после пожара. Полностью же возобновить телефонное обслуживание удалось лишь к 20 мая.

5.4.4 Перегрузка сети. Великобритания, январь 2000 г.

Встреча нового тысячелетия ознаменовалась в Великобритании тем, что сети всех четырех операторов мобильной связи оказались перегружены – многие хотели поздравить своих родственников и знакомых. Особенно остро эту проблему ощутили абоненты сети Vodafone в Шотландии и Северной Ирландии.

5.4.5 Отказ сети Vodafone. Великобритания, 2002 г.

Полный выход из строя АТС мобильной связи, который произошел в январе 2002 года, вызвал перегрузку и даже временное отключение сотовой сети компании Vodafone в Великобритании.

Это случилось из-за аппаратной неисправности коммутатора, которая заставила направлять весь входящий и исходящий трафик северо-западных областей Англии через общенациональную сеть оператора. В результате на протяжении 11 часов телефонные услуги были либо вовсе недоступны, либо предоставлялись с большой задержкой.

5.4.6 Отказ сети O2. Шотландия, ноябрь 2002 г.

29 ноября 2002 года мобильные телефоны тысяч абонентов сети О2 в Шотландии и Северной Ирландии замолчали. Как оказалось, при проведении технического обслуживания коммутатора вблизи шотландского города Глазго внезапно прекратилась подача питающего напряжения, и сеть полностью вышла из строя. Частично восстановить связь удалось через час, а на возобновление телефонного обслуживания в полном объеме ушло более 5 часов.

5.4.7 Отказ сети Orange. Великобритания, август 2001 г.

В августе 2001 года возникли серьезные перебои в работе мобильной сети Orange, в результате чего остались без сотовой связи абоненты в графствах Ридинг и Беркшир.
Неисправность возникла при проведении технического обслуживания на коммутационном центре из-за дефектной платы.

5.4.8 Отказ сети O2. Великобритания, август 2001 г.

Еще один серьезный сбой в работе сети О2 произошел 26 августа 2001 года из-за отключения питания регионального коммутационного центра в Йейте пригороде Бристоля. Мобильной телефонной связи тогда лишились многие абоненты юго-запада Англии и некоторых районов Уэльса.

Хотя электроснабжение удалось восстановить уже через 3 часа, в полном объеме услуги связи стали доступны лишь через 6 часов, так как потребовалось время на проверку базы данных. Но и после этого в течение некоторого времени сеть оставалась перегруженной из-за множества коротких сообщений SMS и уведомлений голосовой почты.

5.4.9 Отказ сети Orange. Великобритания, март 2002 г.

В течение почти всего вторника 19 марта 2002 года тысячи абонентов мобильной сети Orange не могли ни позвонить, ни ответить на вызов. Это произошло из-за отказа оборудования на коммутационном центре в районе Мерсейсайд, но последствия затронули всю территорию страны.

5.4.10 Выход из строя сети Vodafone. Испания, февраль 2003 г.

20 февраля 2003 года на протяжении 7 часов без связи оставалось 8,7 млн. абонентов мобильной сети Vodafone в Испании.

Вероятно это было связано с неполадками в центральном коммутационном центре, однако никакого внешнего воздействия, которое могло бы привести к такому отказу, выявлено не было. Сразу же после устранения неисправности на службу технической поддержки Vodafone обрушился такой поток вызовов, что она оказалась полностью блокированной.

5.5 Выводы

Как показывает анализ последних катастроф и аварий, существует множество факторов, препятствующих использованию сотовых сетей в интересах служб ЧС. К их числу необходимо отнести вероятность физического уничтожения или повреждения оборудования, перегрузку каналов связи, отсутствие приоритетного доступа, ограниченный территориальный охват, недостаточные возможности подключения, проблемы совместимости различных систем.

Катастрофы, как правило, наносят серьезный урон телекоммуникационной инфраструктуре общего пользования и провоцируют резкое возрастание нагрузки на каналы связи. А возникающие при этом внешние факторы намного затрудняют управление спасательными работами по таким сетям и координацию действия спасателей. Повреждение инфраструктуры, в свою очередь, приводит к перегрузке оставшихся ресурсов общего пользования, в результате устанавливать и поддерживать эффективную связь становится еще сложнее.

Нельзя не отметить и того, что проблемы связи при многих катаклизмах усугубляются несовместимостью систем различных организаций. Эффективность действия спасательных команд зачастую снижается из-за отсутствия сотрудничества между службами ЧС и неспособностью некоторых из них осуществлять четкое оперативное управление.

И, наконец, совершенно очевидна опасность отказа телекоммуникационных инфраструктур общего пользования по техническим причинам. Это делает их малопригодными для служб ЧС, где необходима очень высокая отказоустойчивость и надежность связи.

Представленная в настоящем документе информация является интеллектуальной собственностью ассоциации The TETRA MoU Association Ltd.
http://www.tetramou.com/facts/index.asp?pagereq=Market/market.asp
Статья - Analysis in the ability of Public Communications to support Mission Critical Emergency service use.

Организация связи формирований в зонах ЧС зависит от следующих основных факторов: характера и масштаба ЧС, структуры системы управления, состава, задач и возможностей формирований, их места в составе группировки сил, мобильности и способов восстановления готовности.

Связь в каждом формировании осуществляется силами и средствами подразделений связи (рот, взводов, отделений) и служб связи с использованием технических средств основных формирований (подразделений) в соответствии с ранее разработанной структурой управления.

Развертывание связи осуществляется поэтапно по мере прибытия формирований в зону ЧС. На начальном этапе работ связь аварийно-спасательных формирований объектов (объединений), поисково-спасательных отрядов, противопожарных и других специальных формирований МВД, бригад скорой медицинской помощи осуществляется по ведомственной принадлежности и координируется местными комиссиями по ЧС и штабами ГОЧС, а при объектовых авариях - администрацией (КЧС) объекта.

С прибытием дополнительных сил для ликвидации глобальных (региональных) ЧС общую координацию использования сил и средств связи в зоне работ осуществляет оперативная группа МЧС или РЦ.

Основные направления связи, организуемые при проведении аварийно-спасательных работ в зонах ЧС, приведены в табл. 4.4-1.

Таблица 4.4-1

Основные направления связи

Формиро- Наименование инфор Род Дальность связи, км Приме- вания мационного обмена связи на месте в движении чания ОГ РЦ (МЧС) радио

(напр.) 1 500 40 Отдельный батальон радио (напр. сеть), проводная 300 40 Соеди- Разведка радио

(напр. сеть) 300 60 нение (полк) ГО Взаимодействующие соединения, части МО, МВД радио (сеть) РРЛ* проводная 40

30 до 5 *) при не- возможности организации проводной связи Приданные и взаимодействующие силы РСЧС радио (сеть), проводная 25 до 5 Рота радио (сеть), проводная 40 до 5 40 Батальон Разведка радио

(напр. сеть) 300 40 Приданные и взаимодействующие силы РСЧС радио (сеть), проводная 40 до 5 - Є

Формиро Наименование инфор Род Дальность связи, км Приме- вания мационного раздела связи на месте в движении чания Взвод радио (сеть), проводная 40 до 5 Рота Разведка радио (сеть) 40 20 Приданные и взаимодействующие силы РСЧС радио (сеть) 5 5 Взвод Отделение радио (сеть) 1 1 Личный состав радио (сеть) 1 1 База радио (напр.), РРЛ к ОГСТФ, проводная 200 40 - космическая без ограничения Отделение ЦЕНТРО- ОГ МУС

(РЦ) радио (сеть), проводная 300 до 5 40 СПАС Группы спасателей радио (сеть) 300 40 Службы радио (сеть), проводная 300 до 5 40 до 5 Взаимодействующие силы РСЧ радио (сеть) проводная 40 до 5 40 Группы ЦЕНТРО- СПАСА Спасатели радио (сеть) 40 10 Є

Формиро- Наименование инфор Род Дальность связи, км Приме- вания мационного раздела связи на месте в движении чания Отдельные аварийно- База отряда радио (напр.), проводная, (привязана к ближайшему УС) 500 до 5 30 Развертывается при необходимости спасательные отряды Подразделения спасателей радио (сеть), проводная 30 до 5 30 Взаимодействующие силы РСЧС радио (сеть), проводная до 5 25 1 Подразделения спасателей в составе отряда и фор- Диспетчерская служба объекта радио (сеть) 40 5-30 Дальность связи определяется в зависимости от параметров объекта работ мирова- ния объектов Спасатели радио (сеть) 40 1-5 Дальность связи определяется в зависимости от мест работ

Кроме направлений и сетей связи, организуемых собственными силами, используются имеющиеся в зоне ЧС государственные и ведомственные (объектовые) сети связи. Для подключения к их станциям коммутации прокладываются соединительные линии. Ведение должностными лицами междугородных телефонных переговоров и передача телеграмм осуществляется с ближайших территориальных предприятий связи.

При выдвижении в зону ЧС радиосвязь обеспечивается с использованием КВ и УКВ радиостанций из КШМ или других транспортных средств. Порядок ведения радиопереговоров устанавливается заблаговременно и доводится до станций, командиров экипажей, и операторов связи.

Связь при совершении марша должна обеспечивать: -

своевременную передачу распоряжений формированиям; -

непрерывное управление в движении, в пунктах погрузки и выгрузки (на всех видах транспорта), в местах отдыха; -

своевременное получение данных об обстановке в зоне ЧС от подразделений разведки, непрерывное управление разведорганами; -

управление подразделениями технического и материального обеспечения; -

прием и доведение до всех формирований сигналов оповещения и распоряжений.

В ходе проведения работ развертывание узлов и станций связи5 проводится, как правило, с ходу. Все элементы УС развертываются одновременно, при этом и инженерное оборудование мест размещения должно обеспечивать: -

защиту средств связи и личного состава от поражающих факторов ЧС; -

своевременное установление необходимых связей и предоставление их должностным лицам; -

удобство пользования средствами связи должностными лицами; -

возможность быстрой эвакуации персонала и средств связи в случае опасности.

До полного развертывания УС и установки выносных и абонентских телефонов в зданиях и сооружениях (палатках, блиндажах) управление формированиями осуществляется непосредственно из КШМ, комбинированных радиостанций и штабных автобусов. Для быстрого развертывания УС в заданных местах задачи экипажам ставятся перед перемещением, а по прибытии в места развертывания - уточняются в соответствии со сложившейся обстановкой. Перед развертыванием УС, как правило, проводится рекогносцировка. При выборе места размещения УС и его элементов учитываются условия обеспечения радио, радиорелейной и проводной связи, возможность размещения средств связи, их охрана.

Радиосвязь является основным видом связи в районе ЧС. Она организуется по радионаправлениям и радиосетям круглосуточно или сеансами. Главный вид коротковолновой радиосвязи - телефонная в режиме однополюсной модуляции (ТФ ОМ), а ультра- коротковолновой радиосвязи - телефонная в режиме частотной модуляции (ТФ ЧМ). Для обеспечения связи между формированиями используются радиостанции малой (0,1-500 Вт) и средней (500-1000 Вт) мощности.

Радиостанции малой мощности используются во всех формированиях; в зависимости от диапазона рабочих частот они подразделяются на коротковолновые (КВ) (1,5-30 МГц) и ультракоротковолновые (УКВ) (30-800 МГц). Радиостанции средней мощности используются, как правило, в соединениях частях ГО.

Основные тактико-технические характеристики наиболее распространенных радиостанций приведены в табл. 4.4-2.

Основные тактико-технические характеристики радиостанций № п/п Наименование Назначение

(звено управления) Диапазон частот, МГц Шаг сети частот, КГц/3 ПЧ Мощность передатчика, Вт Дальность связи, км Масса, кг Вид связи на стоянке/ в движении А.

РАДИОСТАНЦИИ СРЕД НЕЙ МОЩНОСТИ 1 Р-140-05 (ГАЗ-66) Соединение, часть (отряд) 1,5-30 1 /- 500 до 1 500/300 ТФОМ, ЧТ, AT, БПЧ ЗАС 2 Р-140М (ЗИЛ-131) Соединение, часть (отряд) 1,5-30 0,1/10 1 000 до 2 000/300 ТФОМ, ЧТ, AT, БПЧ ЗАС 3 Р-161-А2М1 (ЗИЛ-131) Соединение, часть (отряд) 1,5-60 0,1/10 УВК 10 KB 1 000 до 2 000/300 (KB) 150/75 (УКВ) ТФОМ, ЧТ, AT, БПЧ ЗАС Б. РАДИОСТАНЦИИ МАЛОЙ МОЩНОСТИ ВС 1 Р-147 Отд., группа 44-52 -/4 0,13 1/1 0,65 ТФЧМ 2 Р-162-01 Отд., группа 44-54 -/5 0,15 1/1 1,0 ТФЧМ 3 Р-157 Взвод, отдел. 44-54 100/- 0,15 1/1 1,6 ТФЧМ 4 Р-148 Рота, взвод 37-51,95 1,0 6/6 3,0 ТФЧМ 5 Р-158 Рота, взвод 30-79,975 25/- 1,0 15/5 3,6 ТФЧМ 6 P-163-IV Рота, взвод 30-79,999 1 /- 1,0 15/5 4,6 ТФЧМ, ПД 16 кбит/с 7 Р-159М Батальон, рота 30-75,999 1 /- 5,0 45/12 11,3 ТФЧМ, ТГАТ, ПД 16 кбит/с № п/п Наименование Назначение

(звено управления) Диапазон частот, МГц Шаг сети частот, КГц/3 ПЧ Мощность передатчика, Вт Дальность связи, км Масса, кг Вид связи на стоянке/ в движении 8 Р-111 КШМ 20-52 25/4 75 70/35 100 ТФЧМ 9 Р-123М КШМ 20-51,5 25/4 20 20/20 43 ТФЧМ 10 Р-130 КШМ 1,5-10,99 100/- 20-50 350/50 100 ТФОМ, AM, ТГАТ, ЧТ 11 Р-171 КШМ 30-76 1/10 80-100 70/35 70 ТФЧМ, АТ 12 Р-173 КШМ 376-30-76 1/10 30 20/20 25 ТФЧМ 13 Р-134 КШМ 1,5-30 1/8 50 350/50 85 ТФОМ, ТГАТ, ЧТ, БД 14 Р-163-50V КШМ 30-70,999 1/10 50 60/20 30 ТФЧМ, ТГАТ, ПД 16 кбит/с 15 Р-143 Разведгруппа, батальон, отр. 1,5-20 1 /- 8-10 300/20 11 ТФОМ, ЧТ, ТГАТ, БД 16 Р-152 Отдельный отр. 2-30 1 /- 30 до 2 000/- 68 ТФОМ, ЧТ, ШПС В. РАДИОСТАНЦИИ МАЛОЙ МОЩНОСТИ ВВС 1 Р-832 Самолет, верт. 118-139,95/ 220-389,5 5/10/10 15 более 300 28 ТФАМ, ЧМ 2 Р-853 Переносная 100-150/ 220-389,5 25/- 0,5 более 7 2,5 ТФАМ, ЧМ

№ п/п Наименование Назначение

(звено управления) Диапазон частот, МГц Шаг сети частот, КГц/ЗПЧ Мощность передатчика, Вт Дальность связи, км Масса, кг Вид связи на стоянке/ в движении 3 Р-862 Самолет, верт. 100-149,975/ 220-389,975 25/20/20 30 более 300 20 ТФАМ, ЧМ 4 Р-828 Самолет, верт. 20/60 25/10 10 более 50 12 ТФЧМ Г. РАДИОСТАНЦИИ МАЛОЙ МОЩНОСТИ, ПРИМЕНЯЕМЫЕ В НАРОДНОМ ХОЗЯЙСТВЕ 1 "Ангара-1" Переносная, мобильная (суда, автомобили) 1,6-8,0 1/10 10 до 500 8 ТФОМ, чт 2 "Транспорт-Н" 148-149; 171-173 -/1 1,2 4 1,9 ТФЧМ 3 "Кристалл- Н(НМ)" Носимая, мобильная (суда, автомобили) 2-9,999 1 /- 30/50 28 (18) ТФОМ 4 "Каштан" Стационарная 2-11,999 1 /- 100 80 ТФОМ, AM 5 "Лен" Стационарная, мобильная (автомобили) 33-46 -/1 8 15-30 4,5 ТФЧМ 6 "Карат-М" Носимая 1,5-5,9 -/1 2 до 30 3,6 ТФОМ 7 "Яшма" Носимая 1,5-5,9 -/6 2 до 30 4,1 ТФОМ 8 "Кактус-М" Носимая 33-46 -/1 1 4 2,0 ТФЧМ 9 "Кактус-2" Носимая 33-46 -/1 0,1 1 0,95 ТФЧМ 10 "Виола-Н" Носимая 148-149 -/4 1 4 1,2 ТФЧМ Для привязки линий узлов связи пунктов управления (командных пунктов) к узлам связи госсети, Министерства обороны, других министерств (ведомств), а также линий связи между УС в зоне ЧС используются радиорелейные станции.

Связь радиорелейными средствами в зоне ЧС организуется, как правило, по направлениям; их работа обеспечивается силами и средствами подразделений связи органов управления РСЧС и соединений (частей) ГО.

Основные тактико-технические характеристики радиорелейных станций приведены в таблице 4.4-3.

Основные тактико-технические характеристики радиорелейных станций

Наименование станции, база Условное наименование диапазона, МГц Сетка частот Мощность передатчика Тип антенны Высота мачты, м Число каналов в режиме Протяж. интер. Количество частот, кГц Понижен., Вт ТФЛ ТГ Линии, км Р-405 А (60-60) Д (390-420) 74/134 900/100 25/2,5 10/1,5 Волновой канал АШ-2,18 - обр. 16,5 2 2 45/120 Р-409 (ЗИЛ-131) А (60-120) Б (120-240) В (240-480) 100/601 400/300 800/300 40/3-20

н н Логопедич. - обр. 19,5 3 6 6 - 38/150 28-36/250 28-36/250 Р-415-ЗА (ГАЗ-66) Н (180-120) В (390-430) 50/800 300/134 10/2,5 6/1,3 Синфаз. решетка, штырь 16,6 2 2 2 2 30/80 П (160-240) 100/800 10/2 Синфаз. решетка, дисконусн. 19,5 6 - 40/300 Р-419А III (240-320) IV

(480-645) 150/534 200/800 300/550 10/0,3-1,3 6/0,3-1,3 6/0,3-1,3 н н н 6 6 6 Для обеспечения привязки пункта управления к ОГСТф используется радиоудлинитель телефонной линии типа "РАУТ", который обеспечивает по УКВ радиолинии дуплексную связь и подключение к ОГСТф двух абонентов. Таблица 4.4-4 Наименование Показатели Диапазон рабочих частот 307-350 МГц (через 25 кГц) Излучающая мощность передатчика 10 Вт Вид работы ЧС Режим работы непрерывный дуплекс Дальность связи 30-40 км Источники питания 12 В Потребляемая мощность 100 Вт Габариты 300x216x400 мм Масса 45 кг

Основные тактико-технические характеристики радиоудлинителя "РАУТ"

Связь проводными средствами организуется по направлениям и по оси. Проводная связь по направлениям организуется, как правило, между ПУ соединений, частей, отдельных подразделений и формирований с прокладкой полевых кабельных линий силами и средствами своих подразделений (служб) связи. Проводная связь по оси организуется между несколькими ПУ с использованием одной кабельной линии. Основной вид связи - телефонная.

Для обеспечения проводной телефонной связи в зонах ЧС применяются коммутаторы, полевой кабель, телефонные аппараты; их основные характеристики даны в табл. 4.4-5, 4.4-6.

Таблица 4.4-5 Наименование Показатели П-193МІ П-194М Линейная емкость (возможность включения): радиостанций каналов ТЧ 10 10 40 10

10 (через блок удлинителей) Количество абонентских линий МБ 10 40 Количество абонентских линий ЦБ или АТС - 3 Число пар 10 12 Источник питания ГБ-1-У-1,3 ГБ-1-У-1,3 Вызывной прибор индуктор индуктор (АКБ 12 В, 220 В) Перекрываемое затухание, дБ: разговорного прибора индиктора

генератора вызывного тока сети переменного тока 47,8 17,3 39,1 21,7 17,3 19,1 Переходное затухание, дБ 0,87 1,7 Диапазон рабочих температур,

°С -40...+50 -10...+50 Масса, кг:

коммутатора

комплекта 13 22 90 365 Основные тактико-технические характеристики полевых коммутаторов

Таблица 4.4-6

Наименование Показатели Конструкция двухпроводный (ЧМх0,3) (ЗСх0,3) Диаметр, мм 2,3 Стандартная длина одной катушки, м 500+10 Масса 1 км кабеля, кг 15 Сопротивление при 20 °С, Ом/см2: цепи постоянного тока изоляции 130 1000 Ассиметрия 3,5 Диапазон частот, Кгц до 16

Основные тактико-технические характеристики полевого кабеля П-274М

В качестве оконечного устройства в полевых условиях используется телефонный аппарат ТА-57, работающий в системах МБ (ЦБ) с индукторным вызовом. ТА-57 включается в коммутатор МБ или ЦБ, а также используется для дистанционного управления радиостанциями. Питание - от ГБ-10У-1,3 (на 5-6 месяцев работы). Диапазон рабочих температур от -40 до +50 °С. Масса - 2,8 кг.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.сайт/

ФГОУ ВПО "Балтийская государственная академия

рыбопромыслового флота"

Кафедра "защита в чрезвычайных ситуациях"

Курсовая работа по дисциплине

"Системы связи и оповещения"

Обоснование организации связи в районе чрезвычайной ситуации

Выполнил: Адамчук Р.Л.

Руководитель: Наруш Ю.А.

Калининград 2013г.

План

Задание на курсовую работу по дисциплине "Системы связи и оповещения"

Введение

1.1 Оценка обстановки в районе проведения спасательной операции

1.2 Оценка РЭО (радиоэлектронной обстановки) в районе ликвидации чрезвычайной ситуации

1.3 Определение количества сил и средств связи, привлекаемых для обеспечения управления проведением спасательной операции

2. Организация связи в районе чрезвычайной ситуации

2.1 Тактико-специальные требования к подвижному узлу связи

2.2 Разработка схем организации связи на предлагаемые этапы операции

2.3 Определение пропускной способности канала связи

2.4 Задача 1

2.5 Определение пропускной способности канала связи с помехами

2.6 Задача 2

2.7 Расчет и оценка достоверности связи

2.8 Задача 3

2.9 Задача 4

2.10 Разработка схемы-приказа подвижному центру связи оперативной группы

2.11 Разработка схемы служебной связи для управления подчиненными подразделениями

2.12 Оформление карты обстановки

Заключение

Список использованной литературы

Задание на курсовую работу по дисциплине " Системы связи и оповещения "

Тема работы: "Обоснование организации связи в районе ЧС"

Систематизировать знания требований руководящих документов;

Углубить знания по материальной части;

Развить навыки самостоятельной работы с технической и научной литературой;

Закрепить навыки самостоятельного решения задачи организации и обеспечения связи в районе проведения спасательной операции.

1. 13 марта 2013 года в период с 06.00 до 23.00 на территории Калининградской области проводится учение по ликвидации ЧС: первой группой в районе базы отдыха озера Виштынецкое, второй на Балтийской косе в районе м. Высокий. Оперативная группа комиссии по ЧС дислоцируется в районе м. Гвардейский п. Заостровье. Группы ликвидации ЧС изначально в г. Калининграде.

2. Определить необходимый состав средств связи для организации 2-х телефонных и одного телеграфного канала в направлениях: группы ликвидации ЧС - оперативная группа комиссии по ЧС, группа ликвидации ЧС-1 группа ликвидации ЧС-2.

3. В группах ликвидации ЧС-1,2 спланировать боевое, техническое и тыловое обеспечение.

4. Разработать схему организации связи в районе ЧС на три этапа.

5. Произвести оценку РЭО при:P п.п.=1 G п.п.= 20 0 , Д F пр = 100 ; н п = 0,5 ; P п.с. =0 , 5 , G п.с.= 20 , (Д f п > Д f пр) ; D п= 5 00; Д f п = 1500 ; D св .-расчитать по карте.

6. Определить пропускную способность канала связи, способного передавать К =110 м = 0,02 .

7. Выяснить, достаточна ли пропускная способность каналов для передачи информации, поставляемой источником, если имеются источник информации с энтропией в единицу времени = 110(дв. ед.) и количество каналов связи n =2 К = 71 м=0,1 .

8. Задана вероятность передачи сообщения без искажения p = 0,00 5 n =10000 сообщений, к = 40 окажутся без искажений.

При тех же условиях определить вероятность того, что из n =10000 сообщений не более X =71 искажено.

Отрабатываемые вопросы:

Оценка обстановки в районе проведения спасательной операции.

Определение количества сил и средств, привлекаемых для проведения спасательной операции.

Оценка радиоэлектронной обстановки в районе выполнения задач.

Тактико-специальные требования к подвижному узлу связи.

Разработка схем организации связи на предполагаемые этапы операции.

Определение пропускной способности канала связи.

Определение пропускной способности канала связи с помехами.

Расчет и оценка достоверности связи.

Разработка схемы приказ подвижному центру связи оперативной группы.

Введение

Для подразделений МЧС в условиях чрезвычайной ситуации важное значение имеет организация связи. Она позволяет обеспечить обмен информацией между подразделениями, находящимися в зоне аварии, и пунктом управления силами ликвидации последствий чрезвычайной ситуации. спасательный связь чрезвычайный

Важнейшим элементом системы связи в условиях чрезвычайной ситуации является узел связи. Именно от узла связи зависит уровень качества связи и эффективность управления подразделениями.

Узел связи - организационно-техническое объединение сил и средств связи и автоматизации управления, развернутых на пункте управления или в пункте распределения (коммутации) каналов (сообщений) для обеспечения обмена информации в процессе управления войсками. Вся совокупность аппаратных, станций, средств и комплексов обеспечивают целостность узла связи и называются и называются организационно-техническим построением узла связи.

Передачу и распространение сигналов от передатчика к приемнику обеспечивает совокупность технических устройств и физической среды - линия связи.

Организация связи является обязательным условием для успешного проведения аварийно-спасательных и других неотложных работ.

Целью данной работы является произвести оценку смоделированной чрезвычайной ситуации, определить средства связи для организации двух телефонных и одного телеграфного канала связи в двух направлениях.

В ходе курсовой работы перед нами была поставлена задача провести исследование характеристик выбранных средств связи для организации заданного количества каналов связи Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). и выявить целесообразные пути модернизации состава и оптимального применения с целью улучшения качественных параметров связи.

Для успешного выполнения поставленной задачи были отработанны следующие вопросы:

Оценка обстановки в районе проведения спасательной операции;

Определение количества сил и средств, привлекаемых для проведения спасательной операции;

Оценка радиоэлектронной обстановки в районе выполнения задачи;

Тактико-специальные требования к подвижному узлу связи;

Разработка схем организации связи на предполагаемые этапы операции;

Определение пропускной способность канала связи;

Определение пропускной способности канала связи с помехами;

Расчёт и оценка достоверности связи;

Разработка схемы приказ подвижному центру связи оперативной группы;

Оформление карты обстановки.

1 . Содержательное описание исследуемого объекта

1.1 Оценка обстановки в районе проведения спасательной операции

13 марта 2013 года в 6:00 на территории Калининградской области, а именно на Балтийской косе в районе м. Высокий произошла чрезвычайная ситуация локального характера. Из-за шторма рыболовецкое судно МРС-150 получило повреждение, в результате чего произошло возгорание в машинном отделении. Количество пострадавших - 4 человека, один из которых получил тяжелую травму головы.

Краткая характеристика судна

Тип судна: Малый рыболовный сейнер-траулер типа МРС-150. Стальное, морское, однопалубное, самоходное судно, с кормовым расположением ходовой рубки, кубриком на 6 спальных мест в носовой части.

Назначение: лов рыбы и кальмара снюрреводом, тралом, кошельковым неводом, сайровой ловушкой на электросвет, ярусом, ставным неводом. Транспортирование и сдача улова на береговые базы

Технические данные: Длина - 21,94м. Ширина - 6,00м. Высота борта до верхней палубы - 2,65м. Грузоподъемность -39,7т. Водоизмещение в грузу - 104 т. Осадка средняя в грузу -1,64м. Скорость хода - 10 узлов. Экипаж судна - 6 человек.

Для проведения спасательной операции группе ликвидации ЧС г. Калининграда понадобится примерно 120 минут, чтобы добраться до места происшествия. Первоначально на место происшествия будут привлекаться службы и формирования г. Балтийска.

Радиационная и химическая обстановка в районе ликвидации благоприятная, поэтому средства индивидуальной защиты спасательным формированиям не понадобятся.

Для проведения спасательной операции необходимо привлечь:

1. Службу ГОСАКВАСПАС (г. Балтийска);

2. Спасательный отряд для проведения аварийно-спасательных и других неотложных работ (г. Калининград);

3. Пожарные службы для ликвидации пожара и его последствий (г. Балтийск);

4. Формирования МВД РФ для оцепления территории происшествия, контроля за порядком во время ведения аварийно-спасательных и других неотложных работ;

5. Медицинские формирования для оказания первой помощи пострадавшим, а также для определения их в ближайшие медицинские пункты (г. Балтийск);

6. Службы связи.

Для подразделений МЧС России поставлены следующие задачи:

1. Эвакуация пострадавших с места происшествия

2. Оказание первой помощи пострадавшим (при необходимости)

3. Проведение аварийно-спасательных и других неотложных работ (тушение пожара);

4. Ликвидация последствий чрезвычайной ситуации.

Технические средства для проведения аварийно-спасательных и других неотложных работ и для организации связи должны обеспечивать быстрое и своевременное реагирование формирований, подразделений, высокую организацию управления, а также соответствовать погодным условиям.

Техника участвующая в спасательной операции :

· Спасательный катер КС - 701

· Лодка "Стрингер - 550Р"

· Пожарный автомобиль АЦМ - 0,8 - 4

· Автомобиль связи АСО - 20

Расчет сил и средств производится руководителем спасательных работ.

На период проведения аварийно-спасательных и других неотложных работ должен быть развернут подвижный пункт управления, который обеспечивает двухстороннюю связь руководителя ликвидации чрезвычайной ситуации с руководителями аварийно-спасательных и других неотложных работ, с вышестоящими, подчиненными и взаимодействующими органами управления. Время развертывания узла связи - 150 минут.

1.2 Оценка РЭО (радиоэлектронной обстановки) в районе ликвидации чрезвычайной ситуации

Дальность радиоэлектронной передачи зависит от многих факторов, в том числе от мощности радиопередающих устройств радиоэлектронных сигналов и средств радиоэлектронной передачи, характеристик их антенных систем, чувствительности приемных устройств, условий распространения электромагнитных волн, видов излучения и способов обработки сигнала, длины рабочей волны, способов помехозащиты. Кроме того, на дальность радиоэлектронной передачи оказывают влияние интенсивность помех от местных предметов, земной (водной) поверхности и внеземных источников, характер излучения и рассеяния электромагнитных волн целями, наблюдаемыми радиоэлектронными сигналами. Учесть все перечисленные факторы чрезвычайно трудно. В связи с этим дальность подавления радиоэлектронных сигналов и необходимая мощность средств радиоэлектронной передачи оцениваются математически по усредненным параметрам и уточняются в процессе натурных испытаний и смешанного моделирования.

Радиоэлектронные сигналы могут подавляться средствами радиоэлектронной передачи только в том случае, когда отношение мощности помехи, попадающей в полосу пропускания радиоприемника, к мощности сигнала превышает некоторое минимально необходимое значение, характерное для данного вида помехи исигнала.

Минимально необходимое отношение мощностей маскирующей помехи Рп и сигнала Рс на входе подавляемого приемника в пределах полосы пропускания его линейной части, при котором достигается требуемая степень подавления радиоэлектронной связи, называют коэффициентом подавления по мощности

На практике иногда применяют понятие "коэффициент подавления по напряжению"

Помеха считается эффективной, если отношение ее мощности к мощности полезного на входе приемного устройства

больше коэффициента подавления. Значение зависит от вида помехи и сигнала, а также от характеристик приемника подавляемого радиоэлектронного сигнала. Чем меньше , тем при прочих равных условиях легче подавить радиоэлектронный сигнал помехой. Пространство, в пределах которого , называется зоной подавления радиоэлектронного сигнала, а при ? зоной неподавления. Граница этих зон проходит на уровне, когда . Зоной подавления считают область пространства, в пределах которой радиоэлектронная связь подавлена с заданной эффективностью.

Если известен , то можно определить зону подавления, в пределах которой создаются эффективные помехи данному радиоэлектронному сигналу. Для этого надо установить зависимость К от параметров и взаимного пространственного положения станции помех и подавляемого радиоэлектронного сигнала.

Определим значение

на входе радиоприемного устройства, находящегося в п. Заостровье при воздействии помех на линию радиосвязи. =183 км.

Подставив в данное выражение формулы для Рпвх и Рсвх получим отношение мощности помехи к мощности сигнала на входе приемного устройства РЭС в полосе пропускания:

Сравнивая значения полученного коэффициента подавления с нормальным соотношением уровня сигнала и помехи, необходимым для качественного осуществления заданных видов связи, определенное Сборником временных и эксплуатационных норм на телефонные и телеграфные каналы проводных, радиорелейных, тропосферных линий связи (Приложение 2), делаю вывод, что т.к. ЕС/ЕП = 11,1, т.е. выше заданных в таблице - то телефонная и телеграфная связи между ОШ и группой №1 существует, хорошего качества.

Определим значение на входе радиоприемного устройства, находящегося на Виштынце при воздействии помех на линию радиосвязи (как и для первого случая. =220 км).

Ес/Еп=7,69, т.е., согласно Сборнику временных и эксплуатационных норм на телефонные и телеграфные каналы то телефонная и телеграфная связи между ОШ и группой №2 существует, для буквопечатающего хорошего качества, а для радиотелефонной среднего качества.

Для успешной организации связи можно:

Использовать методы пространственной, амплитудной, поляризационной и частотно-временной селекции полезных сигналов;

Использовать антенны с высокой направленностью и низким уровнем боковых лепестков диаграмм направленности, обеспечивающих улучшение отношения мощностей сигнал/помеха на входе радиоприемных устройств;

Применить адаптивные средства радиосвязи, обеспечивающие автоматическое вхождение в связь и ее поддержание в условиях воздействия радиопомех;

Выбрав коэффициенты подавления Кп для определённых видов связи можно найти минимально необходимую для подавления РЭС мощность передатчика помех:

Для РТФ связи =6 - 9.

Для БПЧ связи =2 - 2,5.

Рассчитаем дальность подавления линий радиосвязи по формуле:

Dп.с.1 = = 1405 км

Dп.с.2 = = 798 км

Если подкоренное выражение формулы обозначить через в, то при в<1, когда энергетический потенциал станции помех меньше, чем потенциал радиопередатчика линии связи, зона подавления радиосвязи Dп.с. представляет собой окружность радиусом

Rп.=DAB в/(1? в2).

Если подкоренное выражение формулы обозначить через в, то при в>1, когда энергетический потенциал ПП превосходит потенциал передатчика радиостанции, зона подавления занимает всю плоскость, за исключением окружности радиусом

Rн.п.=DAB в/(в2?1),

т.е. зоны неподавления. Центр окружности в этом случае смещён относительно местоположения передатчика подавляемой линии радиосвязи в сторону, противоположную направлению на передатчик помех, на величину: dн.п.=R н.п./в.

Итак DAB=532 км

для БПЧ Кп =1/1.9, т.к. в=4,36>1, тогда

Rн.п.=DAB в/(в2?1)

Rн.п.=532*4,36/(4,362?1)=129 км

dн.п.=129/4,36=30 км

для РТФ Кп =1/5.9, т.к. в=7,68>1, тогда

Rн.п.=DAB в/(в2?1)

Rн.п.=532*7,68/(7,682?1)=70 км

dн.п.=70/7,68=9,11 км

1.3 Определение количества сил и средств связи, привлекаемых для обеспечения управления проведением спасательной операции

Для выполнения конкретных задач по обеспечению связи нет необходимости задействования всего штатного состава узла связи. Поэтому определяют потребное количество сил и средств связи, а остальные средства перенацеливают на выполнение других задач. Состав узла связи и его структура определяется исходными данными на курсовую работу и на основе анализа и оценки обстановки в районе проведения спасательной операции, и в дальнейшем может корректироваться с учетом результатов вероятностной оценки качественных параметров связи.

В данной спасательной операции используется ПРЦ радиосвязь. Мной выбрана отдельная приемная машина "Орион" Р-161ПУ.

От Балтийской косы необходимо обеспечить связь в двух направлениях, поэтому нужно поставить по станции на озере Виштынец и командном пункте в п. Заостровье, а также две станции на Балтийской косе, которые будут работать в направлении Балтийская коса-Заостровье, Балтийская коса-озеро Виштынец.

В состав средств связи также будут входить:

Телефонный центр П - 178 - 1,

Телефонный и телеграфный кросс П - 247К,

Комплексная аппаратная связи П - 241ТМ,

Радиостанция средней мощности Р-140 (6-шт).

В качестве командно-штабной машины используется Р-142Н на шасси ГАЗ-66. Время сбора оперативной группы, включая инструктаж - 30 минут, прибытие к месту происшествия- 180 минут, время развертывания- 150 минут. Итого получаем общее время 360 минут или 6 часов.

Расчет сил средств должен производится с учетом масштабов предстоящей работы, исходя из следующих основных показателей производительности расчетов аварийно-спасательной службы:

Непрерывная работа расчета должна составлять не более 45 минут;

Продолжительность рабочей смены должна составлять не более 10 часов.

Эвакуация пострадавших осуществляется с помощью спасательного катера КС - 701 и лодки "Стрингер - 550Р" (проводится одновременно с тушением пожара). Далее проводятся работы по ликвидации данной чрезвычайной ситуации.

2 . Организация связи в районе чрезвычайной ситуации

2.1 Тактико-специальные требования к подвижному узлу связи

При определении требований к узлу связи необходимо учитывать два положения:

Узлы связи - важнейшие элементы системы связи;

На узлах связи пунктов управления (ПУ) выполняются задачи по обеспечению связи, то есть должны выполняться требования к связи, как процессу передачи информации (сообщений).

С этих позиций к УС ПУ можно предъявить следующие требования:

Постоянная готовность к немедленной передаче (приему) информации (обеспечению переговоров) в заданные сроки с требуемой достоверностью и безопасностью;

Обеспечение максимальных удобств пользования средствами связи и автоматизации должностным лицам ПУ;

Высокие живучесть, разведзащищенность и надежность;

Возможность широкого маневра средствами, каналами и видами связи;

Удовлетворение требований ЭМС всех РЭС, развернутых в составе УС.

Полевые узлы связи должны быстро развертываться (свертываться), в короткие сроки устанавливать связь и обеспечивать бесперебойное ее действие, т.е. обладать высокой мобильностью.

Требование постоянной готовности УС к немедленной передаче (приему) информации (обеспечению переговоров) в заданные сроки с требуемой достоверностью и безопасностью охватывает несколько составляющих:

Своевременное установление запланированных связей;

Обеспечение своевременного прохождения сообщений (ведения переговоров) с требуемой достоверностью и безопасностью;

Пропускную способность УС, рассчитанную на передачу (прием) заданного потока сообщений (переговоров).

Своевременность установления запланированных связей обеспечивает готовность узлов связи к обмену сообщениями в заданные сроки, а следовательно, и способность узлов связи выполнять задачу по обеспечению связи в интересах управления силами МЧС в соответствии с оперативной обстановкой.

В общем виде в качестве показателя оценки своевременности установления запланированных связей может быть применена вероятность того, что на УС заданное количество связей будет установлено за время, не превышающее требуемого (нормативного), т.е.

Pсву = P(tуст < tдоп) (2.1)

Вероятность установления связей за нормативное время должна быть:

Для направлений связи 1-ой категории важности не ниже 0,99;

Своевременное установление запланированных связей достигается:

Совершенствованием выучки личного состава узловых подразделений;

Систематическими тренировками по приведению узлов связи в различные степени готовности;

Совершенствованием способов распределения и сокращением времени приема (набора) каналов и установления связей;

Заблаговременной подготовкой на важнейших информационных направлениях нескольких видов связей, а также резерва средств связи и каналов;

Применением дистанционно управляемых кроссов на ОУС и УС ПУ;

Четкой организацией управления узлами связи и оперативно-технической службы на них.

Своевременность прохождения всех видов сообщений характеризует способность УС обеспечить передачу заданных потоков информации по управлению силами МЧС в установленные сроки с требуемой достоверностью и безопасностью. Количественно данное требование принято оценивать вероятностью своевременной передачи сообщений, под которой понимают вероятность того, что время прохождения документальных сообщений и обеспечения переговоров не превышает нормативного срока, т.е.

P = P(tпдс и оп < tдоп) (2.2)

Требования по вероятности своевременной передачи потоков информации составляют:

Для сообщений первого приоритета - 0,95;

Второго - 0,9; третьего - 0,85.

В целях обеспечения своевременной передачи (приема) наиболее важных телеграфных сообщений установлены категории срочности:

- "Монолит",

- "Воздух",

- "Ракета",

- "Самолет"

- "Обыкновенная".

Пропускная способность УС характеризуется его возможностью осуществлять обмен заданным количеством сообщений за единицу времени.

Одним из факторов, в значительной мере определяющих пропускную способность, а, следовательно, и постоянную готовность узла связи к немедленной передаче (приему) информации (обеспечению переговоров) в заданные сроки с требуемой достоверностью и безопасностью - устойчивость функционирования направлений связи.

2.2 Разработка схем организации связи на предлагаемые этапы операции

Организация связи в районе ЧС зависит от типа ЧС: ее масштабов, поврежденности средств связи, необходимости эвакуации населения. Например, при объектовой ЧС организация связи потребует значительно меньше времени и средств, чем при региональной ЧС. Организация связи проводится в 3 этапа.

Первый этап проводится в течение нескольких часов после наступления ЧС. В это время предусматривается организация очень небольшого числа связей между оперативной группой, направленной МЧС, и постоянной комиссией (центром связи МЧС), а также между оперативной группой МЧС и аварийно-спасательными отрядами. Первая линия связи организуется с использованием спутниковых или коротковолновых систем связи, а вторая с помощью УКВ радиосвязи. В организации связи на первом этапе участвуют только подразделения МЧС и гражданской обороны. Схема организации связи на первом этапе представлена на рис. 2.1.

Размещено на http://www.сайт/

Рис.2.1. Схема организации связи при ЧС на первом этапе.

На втором этапе схема организации связи предусматривает предоставление услуг не только аварийно-спасательным бригадам, но также администрации района, где произошло ЧС, и небольшому количеству населения. Связь организуется уже с использованием подвижных, мобильных аппаратных, узлов связи, которые располагаются в местах концентрации абонентов (районах) и соединяются с аналогичными комплексами, находящимися в верхнем звене сети (областной центр), через подвижные радиорелейные станции или спутниковые системы связи. Подсоединение сети связи, организованной в зоне ЧС, к ближайшему узлу стационарной сети называется взаимоувязанной сетью связи ВСС (или единой сетью эксплуатации-ЕСЭ) может осуществляться как организацией временной кабельной линии, так и с использованием спутниковых и радиорелейных систем передачи. Схема одного из вариантов организации связи на втором этапе представлена на рис. 2.2.

Рис. 2.2. Схема организации связи в зоне ЧС на втором этапе взаимоувязанной сетью связи.

Организация связи на третьем этапе характеризуется наращиванием технических средств, увеличением их пропускной способности с целью увеличения объема предоставляемых услуг связи, главным образом, в интересах населения.

Подсистема управления.

Подсистема управления по определению является частью системы восстановления ВСС. Однако одновременно она является составной частью и системы управления ВСС, точнее, центральных органов управления ВСС, ответственных за функционирование ВСС в чрезвычайных ситуациях и в особый период.

Особенностями подсистемы управления:

1. Время ее активного функционирования ограничивается временем устранения последствий чрезвычайных ситуаций и особым периодом;

2. Ее управляемыми объектами являются подвижные, мобильные объекты связи, большую часть своего существования находящиеся в местах хранения.

Во время отсутствия ЧС должны решаться задачи, связанные с подготовкой средств восстановления к выполнению своих функций в момент возникновения ЧС.

В режиме ожидания ЧС подсистема управления должна обеспечивать:

– оперативное управление созданием в районе ЧС отдельной сети связи и ее привязку к узлам и станциям магистральной и зоновой сетей с использованием мобильных средств связи;

– контроль за ходом восстановления разрушенной стационарной сети с помощью подвижных контейнерных средств связи и по возможности с помощью стационарных технических средств связи;

– уточнение перечня аппаратуры, кабельной продукции, строительных и других материалов, необходимых для восстановления работоспособности объектов связи и контроль за их поставкой в район ЧС;

– подготовку необходимой проектно-сметной документации по установке и монтажу аппаратуры и ремонту сооружений связи.

Подсистема управления должна обеспечивать эффективное управление мероприятиями, связанными с использованием подвижных технических средств электросвязи для замены разрушенных стационарных сетевых узлов (станций): хранением; техническим обслуживанием; ремонтом; контролем технического состояния; вводом в эксплуатацию; использованием по назначению; сбором данных; ведением учета; материальным обеспечением.

Наиболее важными являются мероприятия, связанные с комплектованием, размещением и хранением в течение длительного времени технических средств, развертыванием и эксплуатацией их в условиях ЧС.

Структурой подсистемы управления является центральная вертикаль управления системы управления ВСС в составе НЦУ(национальный)-РЦУ-ЗЦУ-МЦУ. В период ЧС НЦУ взаимодействует с МЧС по административной линии через комиссию по гражданской обороне и чрезвычайным ситуациям при Администрации связи, по технологической линии - с ситуационным центром МЧС.

На региональном, зоновом и местном уровнях РЦУ, ЗЦУ и МЦУ осуществляют аналогичные взаимодействия с группами по гражданской обороне и чрезвычайным ситуациям, созданными в регионах и на местах, и с их техническими средствами. На каждом иерархическом уровне центральной вертикали управления подсистема управления в ЧС взаимодействует также со специальными потребителями и центрами управления операторов ведомственных сетей и сетей общего пользования, управляя ими по командам вышестоящего органа управления.

Пункты хранения средств восстановления и сами средства восстановления в период функционирования в составе стационарной сети либо как элементы образуемой ими новой сети в зоне ЧС являются сетевыми элементами управления подсистемы управления.

Средства, используемые для организации связи:

Р -161ПУ "Орион" - КВ-УКВ приемная аппаратная (узловая) сетей ГШ на шасси автомобиля Урал-43203

Входит в состав комплекса Р-161 стратегического звена управления. Является КВ-УКВ радиоприемной станцией (узловой) сетей Генерального штаба и фронта.

Основные характеристики: Диапазон частот, МГц 1,5 - 60

Количество: РПУ, компл. 6; каналов дистанционного управления 5 тлф, 6 тлг.

Виды работы: однополосный телефон;

Телеграфирование со скоростью, Бод: амплитудное до 49; частотное до 150;

Время: вхождения в связь, мин. не более 3; перестройки передатчика, не более 40;

Электропитание от: внешней трехфазной сети переменного тока, 380В; электроустановки ЭУ-4320-15-Т/400

Состав основного оборудования:

1. Р-160п = 6 шт.

2. Р-016в = 3 шт.

3. Р-151ВЧ = 1 п/к.

6. АБ-481 = 3 шт.

7. "Сигнал-2м" = 3 шт.

8. Р-010 = 2 шт.

9. ТЛГ ключ = 2 шт.

10. ЭУ-375-16-Т/400

Командно- штабная машина Р-142Н

Аппаратура Р-142Н обеспечивает симплексную радио-телефонную связь в открытом и закрытом режиме. Так же имеет возможность ведения радио-телефонной связи с выносного телефонного аппарата типа ТА-57 по линии до 500 м. от Р-142Н. Плюс ведение телеграфной связи.

Командно-штабная машина Р-142Н может работать как в УКВ, так и в КВ диапазонах. Обеспечивает совместную работу с радиостанциями средней и большой мощности, такими как "Полюс", Р-140, Р-161А 2, ПС и другими.

В условиях среднепересеченной местности в любое время суток и года на частотах, свободных от радиопомех, выбранных в соответствии с применяемой антенной, радиостанции обеспечивают прием и передачу информации на различные расстояния.

В состав оборудования командно-штабной машины Р-142Н входит:

1. Радиостанция Р-111 (РС-1 и РС-2) - 2 шт.;

2. Блок питания радиостанции Р-111 (БП-УМ) - 2 шт.;

3. Согласующее антенное устройство радиостанции Р-111 - 1 шт.;

4. Радиостанция Р-130М (РС-3) - 1 шт.;

5. Блок питания радиостанции Р-130М (БП-260) - 1 шт.;

6. Выносное согласующее устройство - 1 шт.;

7. Радиостанции Р-130М (ВСУ-А) - 1 шт.;

8. Блок согласования - 1 шт.;

9. Блок регулировки - 1 шт.;

10. Радиостанция Р-123МТ (РС-4) - 1 шт.;

11. Блок питания радиостанции Р-123МТ (БП-26) - 1 шт.;

12. Телефонный аппарат ТА-57 - 2 шт.;

13. Антенна зенитного излучения (ази);

14. Бензоэлектрический агрегат (АБ-1/О 12);

15. Генератор отбора мощности (габ);

16. Аппаратура засекречивания (Т-219 "Яхта");

17. Аппаратура определения свой - чужой "Вишня";

18. Штыревая антенна 3 - 4 метра (АШ 3- 4);

19. Комбинированная штыревая антенна на 11 метровой мачте;

20. Диполь.

П-178-1 - автоматическая телефонная станция внутренней и режимной связи для обеспечения абонентов ПУ МЧС автоматической, внутренней и режимной телефонной связью, а также полуавтоматической дальней связью.

Технические характеристики.

1. Обеспечивает подключение, защиту и коммутацию:

– 96 двухпроводных абонентских линий;

– 16 двухпроводных соеденительных линий для спаренной работы;

– 10 прямых абонентов;

– 18 двухпроводных каналов ДС;

– 4 соединительных линии на КНДС другой аппаратной;

2. Возможность организации связи через промежуточный аппарат;

3. Проведение измерений и проверок с аппаратуры и абонентской сети с помощью контрольно-испытательного стола и измерительных приборов;

4. Экипаж 4-6 человек.

П-241Т - комплексная аппаратная телеграфной связи.

Комплексная аппаратная связи П-241Т является элементом подвижного узла связи и предназначена для обеспечения телеграфной связи по радио-, радиорелейным и проводным каналам, их коммутации, а также для дистанционного управления радиостанциями КВ и УКВ диапазона.

Оборудование аппаратной П-241Т смонтировано в кузове К 1.66 на шасси автомобиля ГАЗ-66.

Состав оборудования аппаратной:

Засекречивающая аппаратура связи T-206MT "Весна"

Радиорелейная станция Р-405МСП-Р

Радиостанция Р-407

Радиостанция Р-105М

Аппаратура П-317

Аппарат телеграфный СТА-2МФ

Блок коммутации и распределения питания БКРП-1

Электрическая схема аппаратной П-241Т и установленная в ней аппаратура и оборудование обеспечивают:

Одновременную работу радиосредств Р-105М, Р-407, Р-405МСП-Р как на стоянке, так и в движении;

Радиорелейную связь в метровом и дециметровом диапазонах с образованием двух телефонных и двух телеграфных каналов с помощью полукомплекта РРС Р-405МСП-Р;

Симплексную связь с помощью радиостанции Р-105М.

Возможность передачи телефонного канала Р-407 на любой телефонный канал Р-405МСП-Р;

Дистанционное управление радиостанциями КВ и УКВ диапазонов с помощью Р-407, аппаратуры П-317, щитка УДУ, перевозимых отдельно и устанавливаемых на управляемой радиостанции;

Вторичное уплотнение телефонного канала с полосой 0,3-3,4 кГц аппаратурой П-317;

Ввод и коммутацию 10-и двухпроводных линий внутренней связи и соединительных линий от радиостанций УКВ диапазона типа Р-105М с возможностью дистанционного управления этими радиостанциями с помощь телефонного аппарата ТА-57;

Соединение с аппаратной П -240Т для передачи по 10-ти двухпроводным соединительным линиям двух- и четырехпроводных телефонных каналов и для приема от нее телеграфных каналов;

Прием до 5 4-х проводных каналов и возможность распределения их по аппаратным УС;

Телеграфную связь по радио-, радиорелейному и проводному каналу через СУ-205 с помощью телеграфных каналов СТА;

Возможность передачи стартстопного выхода аппаратуры СУ-205 на абонентский телеграфный аппарат или обще-узловое коммутационное устройство;

Коммутацию и измерение телеграфных каналов, их испытание, в т.ч. соединительных и абонентских линий, с помощью приборов ПРК и Р и переговорно-измерительного устройства блока БКРП;

Для работы радиосредств, входящих в комплект аппаратной П-241Т, имеются следующие антенны и АМУ:

Крестообразная антенна типа "Волновой Канал" МВ диапазона для работы Р-405МСП-Р на стоянке;

Цилиндрическая дипольная антенна ДМВ диапазона для работы Р-405МСП-Р (в движении/на стоянке);

Штыревая антенна (МВ или ДМВ диапазона) с согласующим устройством для работы с Р-405МСП-Р (в движении/на стоянке);

Штыревая антенна Куликова длиной 1,5 м для работы Р-105 в движении;

Штыри и противовесы для установки на полутелескопической мачте для работы Р-105М на стоянке;

Штыревая антенна длиной 1,3 м для работы Р-407 в движении;

Мачта телескопическая высотой 11 м для установки антенн от Р-105М и Р-407 при работе на стоянке;

Мачта составная высотой 12,5 - 16,5 м, монтируется на 14 м, для установки антенны типа "Волновой Канал" от РРС Р-405МСП-Р при работе на стоянке;

Экипаж аппаратной 7 человек, из них:

Начальник аппаратной - 1 чел.;

Старший телеграфист - 1 чел.;

Телеграфист - 2 чел.;

Механик ЗАС/телеграфист - 2 чел.;

Механик дальней связи/механик РРС - 1 чел.;

Водитель-электромеханик - 1 чел.

P-140 - Автомобильная однополосная однокиловаттная радиостанция предназначена для обеспечения коротковолновой радиосвязи во фронтовых и в армейских сетях сухопутных войск, ракетных войск, войск ПВО страны и военно-воздушных сил.

Радиостанция позволяет ведение радиосвязи, как на стоянке, так и в движении.

Радиостанция обеспечивает связь с однотипными и другими однополосными радиостанциями, с радиостанциями старого парка, а также с самолетными однополосными радиостанциями в одинаковых режимах работы и на общих участках диапазона.

Радиостанция может работать как в системе узлов связи подвижных пунктов управления, так и автономно. Радиостанция обеспечивает с однотипными радиостанциями ведение двухсторонней коротковолновой радиосвязи без поиска и без подстройки во всех режимах работы.

Состав радиостанции Р-140:

Радиопередающее устройство с комплектом передающих антенн

Радиоприемное устройство Р-155П с коммутатором приемных антенн и БСП

Антенно-фидерные устройства

Распределительный щит РЩ

Полукомплект радиорелейной станции Р-405П-Т 1

Пульт управления (ПУР) с ИП ТУ-ТС

Радиоприемник Р-311

Радиостанция Р-105М

Пульт кабины водителя

Телеграфный аппарат СТА-М 67Б

Телефонный аппарат ТА-57

Аппарат телефонной и громкоговорящей связи АТГС-П

Линейный ввод

Силовой ввод

Автомат включения и защиты сети

Стабилизатор напряжения

Бензоэлектрические агрегаты АБ-4 и АБ-1

Система отбора мощности

2.3 Определение пропускной способности канала связи

Своевременность связи в каждом направлении зависит от пропускной способности каналов, квалификации операторов, отработанности подразделений, правил станционно-эксплуатационной службы (СЭС). Влияние на нее оказывает структура системы связи (наличие прямых каналов связи и пунктов переприема, количество радиостанций в радиосети и др.) и использование связи (объем сообщений, подаваемых на средства связи; правильность адресования и т. д.), а в современных системах - степень автоматизации процессов передачи информации и работы постов связи.

Черты случайности, присущие процессам передачи информации, целесообразно рассматривать вероятностными методами. Основная задача теории своевременной передачи информации сводится к определению пропускной способности канала, чтобы этот канал передавал всю поступающую информацию без задержек и искажений.

Рассмотрим на примере: пусть имеется непрерывно вырабатывающий информацию источник с производительностью H (X ) , т.е. известно среднее количество двоичных единиц информации, поступающее от источника в единицу времени (численно оно равно средней энтропии сообщения); пусть также известна пропускная способность канала связи C , т.е. максимальное количество информации, которое способен передавать канал в единицу времени. Необходимо определить какова должна быть пропускная способность канала, чтобы он передавал всю поступающую информацию без задержек и искажений? Данный вопрос решается с помощью первой теоремы Шеннона:

если пропускная способность канала связи С больше энтропии источника информации в единицу времени,

С > H (X ), то всегда можно закодировать достаточно длинное сообщение так, чтобы оно передавалось каналом связи без задержки;

если же пропускная способность канала связи С меньше энтропии источника информации в единицу времени,

С < H (X ), то передача информации без задержек невозможна.

2.4 Задача 1

Определить пропускную способность канала связи, способного передавать К = 110 символов 0 или 1 в единицу времени, причем каждый из символов искажается (заменяется противоположным) с вероятностью м = 0,02 .

з(1 - м) = з(1 - 0,02) =0,0286

з(м) + з(1 - м) = 0,1129+0,0286= 0,1415

На один символ теряется информация 0,1415 (дв. ед.).

С = 110 (1 - 0,1415) = 94,44?94 двоичных единиц в единицу времени.

Согласно теореме Шеннона в данном случае передача информации без задержек невозможна, так как пропускная способность канала связи С=94 меньше энтропии источника информации в единицу времени Н=110. Тогда для обеспечения передачи информации в достаточном объеме необходимо увеличить количество пропускных каналов связи до двух. Тогда максимальное количество информации, которое может быть передано по двум каналам в единицу времени:

2*94=188 двоичных единиц в единицу времени. 188>110, следовательно информация будет передаваться без задержек.

2.5 Определение пропускной способности канала связи с помехами

Ранее мы рассмотрели кодирование и передачу информации по каналу связи в идеальном случае, когда процесс передачи информации осуществляется без ошибок. В действительности этот процесс неизбежно сопровождается ошибками (искажениями). Канал передачи, в котором возможны искажения, называется каналом с помехами (или шумами). В частном случае ошибки возникают в процессе самого кодирования, и тогда кодирующее устройство может рассматриваться как канал с помехами.

Наличие помех приводит к потере информации. Чтобы в условиях наличия помех получить на приемнике требуемый объем информации, необходимо принимать специальные меры. Одной из таких мер является введение так называемой "избыточности" в передаваемые сообщения; при этом источник информации выдает заведомо больше символов, чем это было бы нужно при отсутствии помех. Одна из форм введения избыточности - простое повторение сообщения. Таким приемом пользуются, например, при плохой слышимости по телефону, повторяя каждое сообщение дважды. Другой общеизвестный способ повышения надежности передачи состоит в передаче слова "по буквам" - когда вместо каждой буквы передается хорошо знакомое слово (имя), начинающееся с этой буквы.

Пропускная способность канала, когда число элементарных символов более двух и когда искажения отдельных символов зависимы может быть определена с помощью второй теоремы Шеннона. Зная пропускную способность канала, можно определить верхний предел скорости передачи информации по каналу с помехами.

Рассмотрим на примере: Пусть имеется источник информации Х, энтропия которого в единицу времени равна, и канал с пропускной способностью Х. Тогда если, то при любом кодировании передача сообщений без задержек и искажений невозможна.

Если же, то всегда можно достаточно длинное сообщение закодировать так, чтобы оно было передано без задержек и искажений с вероятностью, сколь угодно близкой к единице.

2.6 Задача 2

Выяснить, достаточна ли пропускная способность каналов для передачи информации, поставляемой источником, если имеются источник информации с энтропией в единицу времени = 110 (дв. ед.) и количество каналов связи n = 2 , каждый из них может передавать в единицу времени К = 7 1 двоичных знаков (0 или 1); каждый двоичный знак заменяется противоположным с вероятностью м=0.1

з(1 - м) = 0.1368

з(м) + з(1 - м) = 0.3322 + 0.1368 = 0.469

На один символ теряется информация 0.469 (дв. ед.).

Пропускная способность канала равна:

С = 71 (1 - 0.469) = 37.7 ? 38 двоичных единиц в единицу времени.

Максимальное количество информации, которое может быть передано по двум каналам в единицу времени:

Cmax = 38 2 = 76 (дв. ед.), чего не достаточно для обеспечения передачи информации от источника, так как источник передает 110 дв. ед. в единицу времени. Для обеспечения передачи информации в достаточном объеме и без искажения необходимо увеличить количество пропускных каналов связи до трех. Тогда максимальное количество информации, которое может быть передано по трем каналам в единицу времени:

Определим максимальное количество информации, которое может быть передано по трем каналам в единицу времени:

Cmax = 38 3 = 114 двоичных единиц в единицу времени. 114>110, следовательно, информация будет передаваться без искажений.

Для передачи информации без задержек необходимо:

1. Использовать способ кодирования-декодирования;

2. Применять компандирование сигнала;

3. Увеличить мощность передатчика;

4. Применять дорогие линии связи с эффективным экранированием и малошумящей аппаратурой для снижения уровня помех;

5. Применять передатчики и промежуточную аппаратуру с низким уровнем шума;

6. Использовать для кодирования более двух состояний;

7. Применять дискретные системы связи с применением всех посылок для передачи информации.

2.7 Расчет и оценка достоверности связи

Наличие помех приводит к потере информации. Однако сообщения должны передаваться не только в срок, но и с требуемой достоверностью и безопасностью.

2.8 Задача 3

Вероятность передачи сообщения без искажения p = 0,00 5 . Определить вероятность того, что среди переданных n = 10000 сообщений, к = 4 0 окажутся без искажений.

Для определения вероятности воспользуемся локальной предельной теоремой Муавра-Лапласа:

Из таблицы 2 приложения "Методических указаний по выполнению курсовой работы находим:

Вероятность того, что именно 40 из 10000 сообщений будут переданы без искажений, очень мала.

2.9 Задача 4

Задана вероятность передачи сообщения без искажения p = 0,00 5 . Определить вероятность того, что из n = 10000 сообщений не более X = 7 1 искажено.

Для определения вероятности воспользуемся интегральной предельной теоремой Муавра-Лапласа:

Из Фо(2,98) = 0,4985588

Фо(-7.09) = -Фо(7.09) = -0.5

Для повышения уровня достоверности связи применяются следующие способы:

1. Снабжение основного канала дополнительным вспомогательным каналом небольшой пропускной способности - обратным каналом;

2. Включение в состав аппаратуры передачи данных устройств защиты от ошибок;

3. Использование таких оконечных устройств, как ЭВМ, мультиплексоры передачи данных и программируемые абонентские пункты;

4. Дублирование передаваемой информации по нескольким трактам передачи с независимыми замираниями уровня сигнала;

5. Использование помехозащищенных каналов связи.

2.10 Разработка схемы-приказа подвижному центру связи оперативной группы

Схема-приказ подвижному центру связи составляется командиром ОГ на основании распоряжения по связи в соответствии с требованиями Руководства по эксплуатации стационарных узлов связи ВС (РЭСУС-92).

Схема-приказ подписывается командиром ОГ, согласовывается с начальником связи соединения и утверждается старшим руководителем спасательной операции.

Если в ходе операции отрабатываются несколько задач на различных этапах, с различными силами и пунктами управления, может быть составлено несколько схем-приказов, для каждого из этапов отдельно, но на каждой схеме должно быть указано точное время ее функционирования.

2.11 Разработка схемы служебной связи для управления подчиненными подразделениями

На основе требования регламента радиосвязи вышестоящего органа, принятой системы управления и наличия сил и средств радиосвязи принимается решение на организацию служебной радиосвязи, оформляемое в виде схемы или таблицы.

Схема (таблица) должна содержать: номера, состав и вид работы (тип оконечной аппаратуры) радиосетей и радионаправлений с вышестоящим, взаимодействующими и подчиненными органами, расчет сил и средств радиосвязи.

2.12 Оформление карты обстановки

Рабочая карта оформляется в зоне ответственности (региона проведения операции); на ней указываются дальности действия постов связи ретрансляторов, вооружение постов радиостанциями с автономными источниками питания и зоны действий этих радиостанций. Карта используется для определения местоположения оперативной группы и эффективного использования АФУ для связи с узлами связи, ретрансляторами, постами РТВ и взаимодействующими силами.

На рабочую карту наносятся: узлы связи пунктов управления своего объединения, старшего штаба, подчиненных и взаимодействующих подразделений, с которыми обеспечивается связь, опорные узлы связи (пункты выделения каналов государственной сети связи), линии привязки к ним, трассы проводных, радиорелейных, тропосферных линий связи, их принадлежность, типы и условные номера, типы и условные номера используемой каналообразующей аппаратуры; места размещения отдельно расположенных элементов узла связи, коммутационных пунктов; соединительные линии и линии дистанционного управления; сигналы управления, оповещения и другие необходимые данные.

Заключение

От качества проведения аварийно-спасательных и других видов работ в зоне чрезвычайной ситуации зависит жизнь и здоровье людей, тем или иным образом вовлеченных в условия чрезвычайных обстоятельств. В целях обеспечения оперативных, слаженных действий всех служб, занятых ликвидацией последствий чрезвычайной ситуации, необходимо создание устойчивой системы связи, которая обеспечивала бы беспрепятственный обмен оперативной информацией в ходе проведения работ.

Для достижения наибольшей эффективности работ на месте чрезвычайной ситуации требуется комплекс мер, включающий законодательную базу, фонды экономической поддержки, специальное техническое обеспечение, обеспечение средствами связи. Не менее важен и организационный аспект, позволяющий координировать действия специальных спасательных служб разных уровней в чрезвычайных условиях.

Исходя из вышесказанного, можно сделать вывод, что задачи курсовой работы отработаны: были проведены расчет и оценка связи, выявлены проблемы в организации связи и предложены методы их устранения, разработаны схема-приказ подвижному центру связи, схема служебной связи, оформлена карта обстановки.

Список использованной литературы

1. Ю.А. Наруш Учебно-методическое пособиеОбоснование организации связи в районе чрезвычайной ситуации. - Калининград, 2010

2. Руководство по организации оперативно-технической службы на узлах связи. - М: ВИ, 1992.

3. В.В. Крухмалев, В.Н. Гордиенко Основы построения телекоммуникационных систем и сетей. - Телеком, 2004.

4. Руководство по эксплуатации стационарных узлов связи, 1992.

Размещено на сайт

Подобные документы

    Оценка радиационной и химической обстановки в районе проведения спасательной операции. Оценка возможностей технических средств связи, физико-географических условий района действия своих сил, влияющих на организацию связи, радиоэлектронная обстановка.

    курсовая работа , добавлен 26.11.2009

    Разработка модели чрезвычайной ситуации. Организация связи с оперативной группой и группой ликвидации для осуществления аварийно-спасательных работ. Выбор спутниковой связи, ее преимущества и недостатки. Пропускная способность канала связи с помехами.

    курсовая работа , добавлен 04.12.2009

    Принципы определения производительности источника дискретных сообщений. Анализ пропускной способности двоичного симметричного канала связи с помехами, а также непрерывных каналов связи с нормальным белым шумом и при произвольных спектрах сигналов и помех.

    реферат , добавлен 14.11.2010

    Общие сведения о существующем тракте связи. Техническое обоснование реконструкции. Основные виды и типы оптических волокон. Создание сверхплотных систем DWDM. Расчёт числа каналов и пропускной способности. Применение оборудования OptiX OSN 8800.

    дипломная работа , добавлен 13.06.2017

    Стратегии управления ошибками при передаче информации по каналам связи: эхо-контроль и автоматический запрос на повторение. Анализ зависимости величины эффективности использования канала связи от его пропускной способности и длины передаваемых пакетов.

    курсовая работа , добавлен 20.11.2010

    Характеристика особенности развития сферы услуг связи в Уфимском районе Республики Башкортостан. Исследование организации беспроводных точек доступа в сеть Интернет, расширения сетей кабельного телевидения, реконструкции телефонной связи в городе Уфа.

    курсовая работа , добавлен 08.05.2011

    Типы линий связи и способы физического кодирования. Модель системы передачи информации. Помехи и искажения в каналах связи. Связь между скоростью передачи данных и шириной полосы. Расчет пропускной способности канала с помощью формул Шеннона и Найквиста.

    курсовая работа , добавлен 15.11.2013

    Составление схемы системы связи для заданного вида модуляции и способа приема. Описание преобразования сигнала. Разработка схемы демодулятора и алгоритма его работы. Вычисление вероятности неверного декодирования, пропускной способности канала связи.

    курсовая работа , добавлен 27.11.2015

    Основы IP-телефонии: способы осуществления связи, преимущества и стандарты. Разработка схемы основного канала связи для организации IP-телефонии. Функции подвижного пункта управления. Разработка схемы резервного канала связи для организации IP-телефонии.

    курсовая работа , добавлен 11.10.2013

    Сведения о характеристиках и параметрах сигналов и каналов связи, методы их расчета. Структура цифрового канала связи. Анализ технологии пакетной передачи данных по радиоканалу GPRS в качестве примера цифровой системы связи. Определение разрядности кода.



Просмотров