Правовые аспекты использования бпла. Применение беспилотных летательных аппаратов в гражданских целях

Следует различать демонстрационные полеты, любительские вылеты или спортивные соревнования от авиационных работ. Для выполнения первых (как, впрочем, и вторых) достаточно зарегистрировать свой БПЛА в Федеральном агентстве воздушного транспорта. В случае визуальных наблюдений (видеосъемка) владельцу БПЛА следует обращаться за разрешениями в органы местной администрации (в случае полетов в населенных пунктах) и в зональные центры управления воздушным движением (в иных случаях). С аэрофотосъемкой же все намного сложнее.

Следующие законы определяют существующее в этом отношении законодательство: Воздушный кодекс РФ, Федеральные правила использования воздушного пространства РФ, инструкция по разработке, установлению, введению и снятию временного и местного режимов, а также кратковременных ограничений, которая была утверждена приказом Министерства Транспорта РФ №171 от 27.06.11, и Табель сообщений о движении Воздушных судов в РФ.

Рис. 1. Структура единой системы организации воздушного движения РФ

Структура единой системы управления воздушным движением разбивает территорию РФ на зоны ответственности органов воздушного движения, которые осуществляют разрешения и контроль на использование воздушного пространства всеми участниками воздушного движения (Рис.1).

В случае полетов БПЛА для обеспечения безопасности требуется разрешение на использование воздушного пространства.

Разрешение получается путем введения местного или временного режимов ограничения ИВП (рис.2).


Рис. 2. Режимы ограничения полетов

В чем основная разница этих режимов? Временный режим используется в воздушном пространстве вне зон международных воздушных линий, постоянных воздушных линий, аэродромов, аэропортов. Представления на местный или временный режим поддаются в зональный центр или главный центр ЕСОрВД - не менее чем за 5 (в главный) или за 3 суток (в зональный).

Структура подачи заявок на получение разрешения на использование воздушного пространства такова (Рис. 3):


Рис. 3. Структура подачи заявок

После подачи представления в главный центр либо в зональный центр вы получаете номер режима. Затем за день до АФС составляется суточный план работы, где указывается тип воздушного судна, его характеристики, имя ответственного на площадке запуска за съемки и его контактные данные, время выполнения полетов, высота полета и другие параметры. За два часа до выполнения полетов руководитель, пилот-оператор звонит диспетчеру, докладывая о начале работ. По их завершении он снова звонит оператору, докладывая об окончании работ.

Для выполнения аэрофотосъемочных работ необходимо получение, как минимум, трех основных документов:

    Разрешение на съемку Генерального штаба вооруженных сил РФ;

    Разрешение на съемку оперативного управления штаба военного округа, в зоне ответственности которого находится снимаемый объект;

    Разрешение территориальных органов безопасности ФСБ;

    Дополнительно:

    Разрешение местной городской администрации в случае полетов над территориями населенных пунктов;

А также необходимо обладать лицензией на право работы с использованием сведений, составляющих государственную тайну.

При аэрофотосъемке существуют и такие тонкости, как закрытые территории, запретные зоны, приграничные полосы – на АФС в этих местах требуются дополнительные разрешения.

Следующим шагом после окончания АФС является передача полученных материалов на контрольный просмотр военного цензора в оперативном управлении штаба военного округа. Без заключения военного цензора использование материалов в открытом доступе запрещено.

Это весь перечень правовых аспектов аэрофотосъемки. Возможно, это не все ответы на интересующие вас вопросы, в таком случае, вот они:

Вопрос: Сколько в среднем времени уходит на согласование во всех инстанциях?

Ответ: Как правило, разрешения ГШ получаются за 10-15 дней. Еще месяц занимает получение дополнительных стандартных разрешений. То есть, в среднем, время согласования – 1,5-2 месяца; просмотр же материалов может занимать от недели до пары месяцев.

В: Необходимо ли каждый раз получать все разрешения в случае, например, NDVI -съемки на своих полях агрономом в течение 1 сезона?

О: Получаемые разрешения действуют в течение двух лет, однако, вряд ли вы просто так получите лицензию на право работы со сведениями, составляющими государственную тайну. Аэровизуальное наблюдение подходит для агрономов в случае необходимости периодически осматривать поля, однако, видеосъемка не позволит вычислить NDVI . Выход – использование услуг по АФС организаций, имеющих такую лицензию.

В: Получение материалов АФС военными делает их по умолчанию секретными со всеми вытекающими требованиями, как быть в таком случае?

О: Для этого флешка или магнитный носитель фотокамеры должны быть до того учтены в режимно-секретном органе. Пилот-оператор либо ответственный представитель должен иметь соответствующий допуск. Соответствующий носитель он получает перед полетами в этом органе, в соответствии с инструкцией выполняет все действия при АФС или присутствует при их выполнении, и по завершении сдает носитель обратно, спецпочтой направляя на контрольный просмотр в штаб ВО, и только после этого получает заключение или акт контрольного просмотра, в соответствии с которым выполняется дальнейшая работа с этими материалами. Магнитный носитель все равно остается зарегистрированным в этом органе и считается как секретный.

В: Каким образом выполняется регулярная съемка, например, раз в неделю?

О: Разрешение ГШ выдается один раз и действует 2 года, а военный цензор при контрольном просмотре может задать вопрос: «На каком основании, получив одно разрешение, вы несколько раз подаете материалы на просмотр?». На это потребуется обосновать цензору необходимость проведения многократных работ.

В: Кто и каким образом осуществляет контроль исполнения согласований?

О: Органы управления воздушным движением и Министерство обороны. В случае нарушения законов, предприятия могут приостанавливать и лишать лицензии и штрафовать с конфискацией БПЛА.

В: Можно ли получить разрешение на разовую работу, например, через вашу компанию?

О: ГК «Геоскан» может получить такие разрешения и выполнить работы по АФС, однако разрешение и право проведения работ оформляется именно на ГК «Геоскан». Возможна такая ситуация, при которой компании предоставляется со стороны оператор и БПЛА, а представитель оказывает авиационные услуги, однако это тема отдельного разговора.

Надеемся, что мы исчерпывающе ответили на ваши вопросы, и теперь вы будете более полностью подкованы в правовых аспектах использования БПЛА.

Изобретение относится к области авиационной техники. Беспилотный авиационный комплекс (БАК) безаэродромного базирования содержит беспилотный летательный аппарат (БПЛА) и стартовую наземную станцию, содержащую мобильную платформу и установленные на ней энергетическую установку и блок управления полетом БПЛА. БПЛА выполнен в виде двухконсольного крыла, на поворотных консолях которого установлены движители. Консоли выполнены с возможностью их поворота на 180° относительно продольной оси крыла вокруг корпуса для полезной нагрузки. На платформе стартовой наземной станции установлен вертикально трансмиссионный вал, связанный с редуктором, и стартовое устройство, установленное с помощью трех опор. Стартовое устройство содержит средства для передачи вращения от трансмиссионного вала к БПЛА, а также средства для его фиксации и расфиксации при заданной скорости вращения трансмиссионного вала. Опоры стартового устройства выполнены телескопическими с независимой регулировкой их длины от блока управления для предполетной коррекции пространственной ориентации беспилотного летательного аппарата. БАК снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата. Достигается увеличение дальности и длительности действия, а также эффективности беспилотного летательного аппарата. 3 з.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2403182

Изобретение относится к беспилотным летательным аппаратам (БПЛА), используемым в составе подвижного беспилотного авиационного комплекса (БАК) безаэродромного базирования.

Известны беспилотные летательные аппараты, например, Eagle Eye американской фирмы Bell (www janes com) типа V-22 Osprey с поворотными винтами, позволяющими летательному аппарату взлетать по-вертолетному, а затем переходить на самолетный режим полета.

Недостатком такого типа летательных аппаратов является ограничение дальности, высоты и времени его работы вследствие использования для подъема и полета летательного аппарата ограниченных внутренних источников энергии, например топлива на борту.

Известен беспилотный авиационный комплекс фирмы «Израел Аэроспэйс Индастриз ЛТД» (WO 2007/141795 A1, B64C 27/20, 13.12.2007 - наиболее близкий аналог), включающий наземную станцию, подъемную платформу, несущую полезную нагрузку и движитель из четырех вентиляторов с электроприводом, обеспечивающих вертикальную подъемную силу и позволяющих поддерживать заданную высоту платформы на режиме висения без аэродинамических несущих поверхностей, таких как крылья. Комплекс включает также привязь, оперативно связывающую наземную станцию с платформой, которая обеспечивает электрическую связь между платформой и наземной станцией.

Использование движителями внешнего источника энергии, установленного на мобильной платформе, а также невозможность совершать самостоятельное перемещение вне привязки к наземной станции - ограничивают функциональные возможности такого беспилотного авиационного комплекса. В частности, высота подъема платформы ограничена длиной привязи, которая продиктована, в том числе, массой входящего в нее кабеля.

Задачей заявляемого изобретения является повышение эффективности действия беспилотного летательного аппарата, расширение контролируемой площади, дальности его действия и длительности его функционирования за счет использования внешнего источника энергии (установленного на мобильной платформе) для накопления кинетической энергии и обеспечения «прыжкового взлета» беспилотного летательного аппарата на заданную высоту и его перехода на самолетный режим работы.

Поставленная задача решена благодаря тому, что в беспилотном авиационном комплексе, содержащем беспилотный летательный аппарат, включающий движители и корпус для полезной нагрузки, и стартовую наземную станцию, содержащую мобильную платформу, например колесную, и установленные на ней энергетическую установку и блок управления полетом беспилотного летательного аппарата, согласно изобретению беспилотный летательный аппарат выполнен в виде двухконсольного крыла, на консолях которого установлены движители, причем консоли выполнены с возможностью их поворота на 180° относительно продольной оси крыла вокруг корпуса для полезной нагрузки, например шарообразного, а на платформе стартовой наземной станции установлен вертикально трансмиссионный вал, связанный с редуктором, и стартовое устройство, которое установлено с помощью трех опор и содержит средства для передачи вращения от трансмиссионного вала к беспилотному летательному аппарату, а также средства для его фиксации и расфиксации относительно стартового устройства.

В частности, стартовое устройство может быть снабжено двумя жестко связанными с трансмиссионным валом кронштейнами с захватами, взаимодействующими с ответными силовыми узлами беспилотного летательного аппарата и выполненными с возможностью их фиксации и расфиксации при заданной скорости вращения трансмиссионного вала.

Опоры стартового устройства выполнены телескопическими с независимой регулировкой их длины от блока управления для предполетной коррекции пространственной ориентации беспилотного летательного аппарата.

Беспилотный авиационный комплекс снабжен также системой предполетной автоматической статической балансировки беспилотного летательного аппарата.

Использование стартового устройства для подъема беспилотного летательного аппарата путем «прыжкового взлета» (термин, используемый, например, применительно к автожиру) за счет внешнего источника питания обеспечивает ему запас кинетической энергии, которая используется для его подъема на заданную высоту и для перехода на самолетный режим работы. Выполнение беспилотного летательного аппарата в виде крыла, консоли которого вместе с движителями на них имеют возможность поворота на 180 градусов относительно продольной оси крыла, обеспечивает беспилотному летательному аппарату различные режимы работы - от взлетного режима, обеспечивающего его раскрутку с помощью стартовой наземной станции, до самолетного режима, обеспечивающего автономный длительный полет. Движители могут быть выполнены с турбореактивными, с турбовинтовыми, а также с поршневыми или электрическими двигателями.

Вертикальный трансмиссионный вал, передающий вращение с кронштейнов стартового устройства беспилотному летательному аппарату при зафиксированных захватах, позволяет раскрутить его до заданной скорости вращения трансмиссионного вала, обеспечивая ему запас кинетической энергии. При расфиксации захватов кронштейнов, например, при заданной скорости вращения трансмиссионного вала, беспилотный летательный аппарат совершает «прыжковый взлет» до необходимой расчетной высоты. При раскрутке беспилотного летательного аппарата на трансмиссионном валу стартовой наземной станции, консоли его крыла с движителями находятся в положении, обеспечивающими его вращение. Возможность автоматической предполетной коррекции стартовой пространственной ориентации беспилотного летательного аппарата, а также возможность предполетной автоматической статической балансировки его (дистанционно со стартовой наземной станции или по заданной программе) направлены на обеспечение точности и безопасности его взлета.

Блок управления полетом, размещенный на стартовой наземной станции, обеспечивает дистанционное управление работой беспилотного летательного аппарата, в частности подает сигналы для изменения взаимного положения консолей с движителями как для работы па самолетном режиме, так и в противоположном положении - для работы в стартовом режиме. Беспилотный авиационный комплекс снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата, выполненной, например, с помощью известной системы перемещаемых грузов.

Изобретение поясняется чертежами, на которых изображены:

Фиг.1 - беспилотный авиационный комплекс с беспилотным летательным аппаратом (с турбовинтовыми двигателями) при стартовом положении консолей крыла;

Фиг.2 - беспилотный авиационный комплекс с беспилотным летательным аппаратом (с турбореактивными двигателями) при стартовом положении консолей крыла;

Фиг.3 - беспилотный летательный аппарат при положении консолей крыла, соответствующем самолетному режиму полета;

Фиг.4 - схематичное изображение различных этапов вывода беспилотного летательного аппарата на самолетный режим полета,

Беспилотный авиационный комплекс состоит из собственно беспилотного летательного аппарата 1 и стартовой наземной станции 2 (фиг.1), которая служит для обеспечения «прыжкового взлета» беспилотного летательного аппарата и дистанционного управления его полетом.

Беспилотный летательный аппарат 1 выполнен в виде двухконсольного крыла, на консолях 3 и 4 которого соответственно установлены движители 5 и 6. Движители 5 и 6 могут быть выполнены, например, в виде турбовальных двигателей с винтами 7 и 8 с изменяемым углом установки лопастей. Кроме этого, они могут иметь стабилизирующие поверхности 9 и рули и 10 для управления полетом беспилотного летательного аппарата 1 (фиг.1 и 2).

Беспилотный летательный аппарат 1 имеет корпус 11 полезной нагрузки, выполненный, например, шарообразной формы для уменьшения лобового сопротивления при запуске. Корпус 11 полезной нагрузки предназначен для размещения в нем автономных бортовых источников питания, топлива для двигателей, а также различного оборудования для приема, управления и передачи на землю различной информации.

Консоли 3 и 4 выполнены профилированными по всей длине для создания подъемной силы при горизонтальном полете БПЛА, а также имеют возможность поворота на 180 градусов относительно продольной оси крыла.

Стартовая наземная станция 2 выполнена в виде платформы 12, установленной на транспортном средстве, например, на автомобильном, железнодорожном или водном. На платформе 12 установлены блок 13 управления полетом беспилотного летательного аппарата, энергетический узел 14, а также редуктор 15 с вертикальным трансмиссионным валом 16 и стартовое устройство 17, которое установлено с помощью трех телескопических опор 18.

Стартовое устройство 17 снабжено несколькими жестко связанными с трансмиссионным валом 16 кронштейнами 19 с захватами на концах (не показаны), взаимодействующими с ответными силовыми узлами беспилотного летательного аппарата 1 для передачи ему вращения от трансмиссионного вала 16. Захваты выполнены быстродействующими, с возможностью их фиксации и мгновенной расфиксации относительно стартового устройства 17 при заданной скорости вращения трансмиссионного вала 15 и связаны с блоком управления 13.

Телескопические опоры 18 выполнены с независимой регулировкой их длины от блока управления 13 для предполетной коррекции пространственной ориентации беспилотного летательного аппарата 1.

Беспилотный авиационный комплекс снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата 1, которая может быть выполнена, например, за счет внутренней системы изменения его центровки, например, путем перекачки топлива или изменением положения полезной нагрузки в корпусе 11.

Беспилотный авиационный комплекс осуществляет запуск беспилотного летательного аппарата (БПЛА) 1 следующим образом. Стартовая наземная станция 2 прибывает на место старта и разворачивает свою платформу 12. БПЛА устанавливают на стартовое устройство 17, связанное с трансмиссионным валом 16, и соединяют силовые узлы крепления БПЛА с захватами на кронштейнов 19 стартового устройства 17. Затем приводят БПЛА 1 в стартовое положение (позиция А на фиг.4), при котором консоли 3 и 4 крыла с движителями 5, 6 повернуты относительно друг друга на 180 градусов относительно продольной оси крыла. После этого с помощью блока управления автоматически проводят коррекцию стартового пространственного положения БПЛА путем независимой регулировки длины телескопических опор 18 для осуществления точного и безопасного старта. Кроме этого, проводят предполетную автоматическую статическую балансировку БПЛА.

Затем осуществляют раскрутку БПЛА с помощью трансмиссионного вала 16 редуктора 15 наземного энергетического узла 14 стартовой наземной станции 2. При достижении заданных расчетных оборотов трансмиссионного вала 16 блок 13 управления полетом БПЛА подает команду на расфиксацию узлов захвата кронштейнов 19. Кинетическая энергия, накопленная БПЛА, преобразуется в подъемную силу и позволяет ему осуществить «прыжковый взлет» на расчетную высоту (положения А-Г фиг.4). Блок 13 управления полетом в момент отрыва (положения А и Б фиг.4) изменяет шаг консолей 3, 4 крыла, придавая крылу свойства несущего винта.

В процессе исчерпания кинетической энергии БПЛА блок управления 13 осуществляет переходный режим с «взаимным» разворотом консолей 3, 4 крыла до их положения, соответствующего полету БПЛА «по самолетному» (положения В-Г фиг.4).

При начале падения БПЛА (из положения Г фиг.4) включаются движители 5, 6, и БПЛА переходит в самолетный режим полета (положение Д фиг.4) за счет бортовых источников энергии. Автономный полет БПЛА выполняет по программе блока управления полетом 13 на самолетном режиме.

Выполнение запуска с использованием эффекта «прыжкового взлета» позволяет существенно экономить бортовые источники энергии, что увеличивает длительность работы БПЛА, дальность и эффективность его действия.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Беспилотный авиационный комплекс, содержащий беспилотный летательный аппарат, включающий движители и корпус для полезной нагрузки, и стартовую наземную станцию, содержащую: мобильную платформу, например колесную, и установленные на ней энергетическую установку и блок управления полетом беспилотного летательного аппарата, отличающийся тем, что беспилотный летательный аппарат выполнен в виде двухконсольного крыла, на консолях которого установлены движители, причем консоли выполнены с возможностью их поворота на 180° относительно продольной оси крыла вокруг корпуса для полезной нагрузки, например шарообразного, а на платформе стартовой наземной станции установлен вертикально трансмиссионный вал, связанный с редуктором, и стартовое устройство, которое установлено с помощью трех опор и содержит средства для передачи вращения от трансмиссионного вала к беспилотному летательному аппарату, а также средства для его фиксации и расфиксации относительно стартового устройства.

2. Беспилотный авиационный комплекс по п.1, отличающийся тем, что стартовое устройство снабжено жестко связанными с трансмиссионным валом кронштейнами с захватами, взаимодействующими с ответными силовыми узлами беспилотного летательного аппарата и выполненными с возможностью их фиксации и расфиксации при заданной скорости вращения трансмиссионного вала.

3. Беспилотный авиационный комплекс по п.1, отличающийся тем, что опоры стартового устройства выполнены телескопическими с независимой регулировкой их длины от блока управления для предполетной коррекции пространственной ориентации беспилотного летательного аппарата.

4. Беспилотный авиационный комплекс по п.1, отличающийся тем, что он снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата.

Полезная модель относится к системам автоматического управления летательными аппаратами, беспилотными летательными аппаратами, например, (БПЛА) и может быть использована для навигации и управления БПЛА, проверяющих магистральные нефте и газопроводы (далее трубопроводы). Технической задачей является повышение точностных характеристик для безусловного выполнения полетного задания БПЛА, т.е. точного следования по оси магистрального трубопровода. Для решения поставленной задачи распределенная - инерциальная система комплекса из n=3 БПЛА, каждый из которых содержит индивидуальную инерциальную систему, в состав которой входит: микроконтроллер, два трехстепенных гироскопа, первый - третий операционные усилители, акселерометр, модем с приемопередающей антенной, наземная станция управления и связи с третьим радиоканалом, отличающаяся тем, что в нее введены первый и второй радиоканалы приема навигационных сигналов спутников GPS и/или ГЛОНАСС соответственно и четвертый радиоканал двухсторонней связи с каждым из "n" БПЛА; система имеет следующие соединения: выходы информационных сигналов первого и второго гироскопов по углам крена, тангажа и курса через первый, второй и третий операционные усилители соответственно соединены с первым - третьим входами микроконтроллера, выход акселерометра соединен первой шиной связи с четвертым входом микроконтроллера, приемо-передающая антенна через модем и вторую шину связи соединена входом/выходом микроконтроллера, первым радиоканалом антенна соединена с спутником навигационной системы GPS, вторым радиоканалом с спутниками навигационной системы ГЛОНАСС, третьим радиоканалом - с наземной станцией управления и четвертым радиоканалом - с индивидуальными станциями каждого из "n" БПЛА; микроконтроллер в своем составе содержит АЦП для преобразования аналоговых сигналов первого и второго гироскопов в цифровую форму, фильтр Калмана для качественной оценки движения БПЛА, дифференциальный вычислитель определения координат БПЛА от.GPS и ГЛОНАСС и вычислитель среднеквадратического значения координат комплекса из "n" БПЛА, также микроконтроллер содержит цифро-аналоговые преобразователи для управления приводами элеронов, рулей высоты и направления, а количество БПЛА в комплексе из n=3 в зависимости от конкретных условий полетного задания.

Полезная модель относится к системам автоматического управления летательными аппаратами, например, беспилотными летательными аппаратами, (БПЛА) и может быть использована для навигации и управления БПЛА, проверяющих магистральные нефте и газопроводы (далее трубопроводы).

Известным недостатком существующих систем с одиночным БПЛА является тот факт, что при потере связи с БПЛА, либо самого БПЛА появляются три проблемы:

Остается невыполненной поставленная задача.

Непонятна причина случившегося.

Потерян сам БПЛА.

Проблемы 2 и 3 серьезных последствий не имеют - это всего лишь технические проблемы. Проблема 1 имеет существенное значение, поскольку является проблемой для заказчика.

В случаях, когда выполнение задачи БПЛА имеет приоритетное по отношению к затратам значение, целесообразно создание «облака» - то есть комплекса из нескольких БПЛА, связанных между собой определенным алгоритмом поддержки и функционирования. Ранее, когда БПЛА обладали высокой стоимостью, концепция «облака» была труднореализуема. Сейчас стоимость отдельного БПЛА имеет устойчивую тенденцию к снижению, поэтому применение «облака» выгодно - во-первых, потому, что вероятность выполнения задачи увеличивается, а во-вторых, потому, что увеличение этой вероятности не приводит к существенному увеличению стоимости решения.

Система управления беспилотным летательным аппаратом (СУ БПЛА) предназначена для контроля и управления БПЛА, а также решения остальных задач, связанных с выполнением БПЛА задания оператора.

Еще одной проблемой контроля трубопроводов в автоматическом режиме без участия оператора наземной станции управления и наведения является максимально точное следование над ниткой трубопровода. Погрешность отклонения от нитки должна быть минимальной и не превышать ±(3,0-6,0) метра от оси трубопровода. Также проблемой является минимальные габаритно-массовые характеристики (ГМХ) инерциальной системы, т.к. сам вес БПЛА может лежать в пределах десятков или даже единиц кГ.

Известна инерциальная система БПЛА фирмы TRANSAS, см. www.transas.ru, включающая в себя датчик магнитного курса, инерциальную спутниковую навигационную систему БИСНС-11.

Недостаток: при приемлемых ГМХ недостаточная точность определения: курса 5°, координат ±20 метров, накопление погрешности определения координат равной 12 м за час полета, определение координат 20 м. Далее, высокая масса до 4,5 кг.

Также известен бортовой комплекс БПЛА навигации и управления см. www.teknol.ru, включающий в себя: ИНС/СНС интегрированную систему и полностью автоматический полет по заданному маршруту; стабилизация углов ориентации БПЛА в полете; оперативное изменение маршрута в полете (при наличии канала радиосвязи).

Комплекс содержит: инерциальную навигационную систему; приемник спутниковой навигации GPS или ГЛОНАСС; автопилот; накопитель летных данных (опция); датчик воздушной скорости (опция).

Недостатки: использование только или GPS или ГЛОНАСС (одновременное использование не предусмотрено), собственная инерциальная система отсутствует, что приводит к значительным ошибкам определения координат, и как следствие к ошибке следования по оси трубопровода, т.е. к некачественному контролю его состояния.

Известен комплекс «ФИЛИН-1» предназначен для выполнения задач по оперативно-тактической разведке техническими средствами, обладает большой автономностью и мобильностью. Наличие шести БПЛА в составе комплекса позволяет вести постоянную разведку или целеуказание в районе объекта наблюдения. Комплекс «ФИЛИН-1» решает ряд боевых задач: патрулирование местности в любое время суток; обнаружение и идентификация объектов; передача информации о представляющих угрозу объектах; подавление средств ПВО.

Мониторинг воздушной и наземной обстановки БПЛА связан с просмотром некоторого участка местности и получением информации с помощью фото-, теле- и видеосистем с сохранением ее на бортовом накопителе. В процессе полета в заданном районе БПЛА по радиоканалу в реальном масштабе времени может передавать разведывательную информацию на модуль системы связи, управления и обработки информации.

Оператор БПЛА оценивает поступающую информацию и по командному радиоканалу управляет самим БПЛА и его целевой нагрузкой, например телевизионной камерой, с целью наилучшего наблюдения неподвижных или движущихся объектов и определения их типа и координат - ПРОТОТИП, см., ж.»АвиаСоюз», Москва, 6, 2007, стр.50, www. aviationunion.ru.

Недостатки: большие погрешности выдерживания координат полета в связи с отсутствием приема навигационных сигналов GPS и/или ГЛОНАСС, корректировка полета от оператора наземной станции управления и наведения. Отсутствие связи по радиоканалам между БПЛА в составе комплекса, это затрудняет точное определение координат комплекса в целом. Все это обусловлено военной направленностью комплекса.

Технической задачей является повышение точностных характеристик для безусловного выполнения полетного задания БПЛА, т.е. точного следования по оси магистрального трубопровода, конечно, с минимально допустимой ошибкой.

Для решения поставленной задачи распределенная инерциальная система комплекса из n=3 БПЛА, каждый из которых содержит индивидуальную инерциальную систему, в состав которой входит: микроконтроллер, два трехстепенных гироскопа, первый - третий операционные усилители, акселерометр, модем с приемопередающей антенной, наземная станция управления и связи с третьим радиоканалом, отличающаяся тем, что в нее введены первый и второй радиоканалы приема навигационных сигналов спутников GPS и/или ГЛОНАСС соответственно и четвертый радиоканал двухсторонней связи с каждым из "n" БПЛА; система имеет следующие соединения: выходы информационных сигналов первого и второго гироскопов по углам крена, тангажа и курса через первый, второй и третий операционные усилители соответственно соединены с первым - третьим входами микроконтроллера, выход акселерометра соединен первой шиной связи с четвертым входом микроконтроллера, приемо-передающая антенна через модем и вторую шину связи соединена входом/выходом микроконтроллера, первым радиоканалом антенна соединена с спутником навигационной системы GPS, вторым радиоканалом с спутниками навигационной системы ГЛОНАСС, третьим радиоканалом - с наземной станцией управления и четвертым радиоканалом - с индивидуальными станциями каждого из "n" БПЛА; микроконтроллер в своем составе содержит АЦП для преобразования аналоговых сигналов первого и второго гироскопов в цифровую форму, фильтр Калмана для качественной оценки движения БПЛА, дифференциальный вычислитель определения координат БПЛА от GPS и ГЛОНАСС и вычислитель среднеквадратического значения координат комплекса из "n" БПЛА, также микроконтроллер содержит цифро-аналоговые преобразователи для управления приводами элеронов, рулей высоты и направления, а количество БПЛА в комплексе из n=3 в зависимости от конкретных условий полетного задания.

На чертеже показана структурная электрическая система навигационной системы одного БПЛА, на которой изображено: 1 - первый гироскоп, выдающий сигналы крена () и тангажа (), 2 - второй гироскоп, выдающий сигнал курса (), 3 - первый, второй и третий операционные усилители (ОУ) по сигналам , и соответственно, 4 - микроконтроллер (МС), 5 - акселерометр, 6 - модем, 7 и 8 - спутниковые системы GPS и ГЛОНАСС соответственно, 9 - наземная станция управления и наведения БПЛА, 10 - "n" других БПЛА образующих группу («облако»), 11 - источник питания, первый - четвертый радиоканалы, А - антенна БПЛА, первая шина связи акселерометра с МС4, вторая двунаправленная шина связи модема с МС4. МС4 имеет в своем составе АЦП4-1 и ЦАП4-5 фильтр Калмана 4-2, дифференциальный вычислитель координат по сигналам GPS и ГЛОНАСС 4-3, вычислитель среднего значения координат группы -комплекса- БПЛА 4-4 и мультиплексор 4-6.

Схема каждой инерциальной системы имеет следующие соединения.

Распределенная инерциальная система, входящая в комплекс из "n" БПЛА 10, каждый из которых содержит индивидуальную инерциальную систему, содержащую два трехстепенных гироскопа 1 и 2, акселерометр 5 и микроконтроллер 4, отличающаяся тем, что в нее введены первый - третий операционные усилители 3, АЦП4-1, модем 6 с приемной антенной со следующими соединениями: выходы первого и второго гироскопов по каналам крена -- и тангажа -- и курса -- соответственно через первый - третий операционные усилители 3 соединены через мультиплексор 4-6 со входами АЦП4-1 микроконтроллера 4, с четвертым информационным входом которого первой шиной связи соединен выход акселерометра 5, выход антенны А через модем 6 второй шиной связи соединен с дифференциальным блоком 4-3 обработки навигационных сигналов спутников ГЛОНАСС+GPS, выходы ЦАПов микроконтроллера 4 соединен с приводами управляющих поверхностей: элероны, руль направления, рули высоты и пр.; информационные сигналы спутников ГЛОНАСС 8+GPS 7 первым и вторым радиоканалами соединены с антеннами А каждой инерциальной системой соответственно, выход наземной станции 9 управления и наведения также соединен третьим радиоканалом с антенной А инерциальной системы; микроконтроллер 4 в своем составе содержит: мультиплексор 4-6, АЦП4-1 для преобразования аналоговых сигналов первого и второго гироскопов в цифровую форму, ЦАП 4-5 для управления приводами, фильтр Калмана 4-2 для качественной оценки движения БПЛА 10, фильтр Калмана 4-2 реализован программным путем при обработке навигационных сигналов ГЛОНАСС 8+GPS 7; дифференциальный вычислитель 4-3 определения координат БПЛА 10 от GPS 7 и ГЛОНАСС 8 и вычислитель среднеквадратического значения 4-4 координат группы БПЛА 10, если таковая имеется; количество БПЛА 10 в комплексе n>3 в зависимости от конкретных условий полета.

Распределенная инерциальная система работает следующим образом. Работа индивидуальной инерциальной системы. Аналоговые сигналы с выходов гироскопов 1 и 2 усиливается малошумящими прецизионными операционными усилителями 3 до величины, различимой АЦП4-1. Регулярно опрашивая АЦП4-1, МС4 получает данные о пространственном положении объекта-БПЛА (гироскопов) в цифровом виде. Цифровой акселерометр 5, также по запросу МС4, передает ему информацию о значении ускорения по трем координатам. Обрабатывая полученные от гироскопов 1 и 2 и акселерометра 5 данные по определенному алгоритму, МС4 формирует сигналы управления для управляющих поверхностей БПЛА и двигателей. Два источника питания необходимы ввиду разного питающего напряжения используемых компонентов:+3,3 В и 5 В.

Через приемо-передающую антенну А индивидуальная система обеспечивает решение следующих задач:

Прием и обработку сигналов СНС ГЛОНАСС+GPS по открытым гражданским кодам СТ и С/А в диапазоне L1;

Автоматическую непрерывную выработку трех координат (широта, долгота, высота), времени, курса и скорости;

Выдачу во внешние устройства текущих координат в системе координат WGS-84, ПЗ-90, ПЗ-90.02, СК-42, СК-95;

Обновление координат с частотой 1, 2, 5 Гц;

Оценку точности определения координат места потребителя;

Прием, хранение и обновление альманахов и эфемерид СНС ГЛОНАСС+GPS (альманахи, эфемериды и последние обсервованные координаты сохраняются в энергозависимой памяти при отключении питания приемника);

Автоматический выбор созвездия из видимых НКА СНС ГЛОНАСС+GPS с учетом их технического состояния;

Обмен информацией с внешними системами по протоколу NMEA-0183 (IEC 1162) или по протоколу BINR;

Прием и учет корректирующей информации в соответствии с рекомендациями RTCM SC-104 V2.2;

Выдачу потребителям метки времени;

Среднеквадратической погрешности определения текущих значений навигационных параметров при полностью развернутых СНС ГЛОНАСС+GPS.

Работа в составе комплекса («облака»). В этом режиме каждая индивидуальная система обменивается текущей координатной информацией с наземной станцией управления и наведения 9 и с каждым из "n" БПЛА. По принятой от других "n" БПЛА текущей информации каждая индивидуальная инерциальная система вычисляет среднее значение координат комплекса («облака»), которое и является истинным (конечно с учетом ошибки). Дифференциальный режим обработки сигналов ГЛОНАСС+GPS вместе с применением фильтра Калмана значительно повышает точность определения координат комплекса, следовательно повышается точность следования по маршруту трубопровода, а значит повышается вероятность безусловного выполнения поставленного полетного задания и контроль его состояния (разрыв трубопровода, утечка и т.д.).

Распределенная инерциальная система комплекса из n=3 беспилотных летательных аппаратов, каждый из которых содержит индивидуальную инерциальную систему, в состав которой входит: микроконтроллер, два трехстепенных гироскопа, первый-третий операционные усилители, акселерометр, модем с приемопередающей антенной, наземная станция управления и связи с третьим радиоканалом, отличающаяся тем, что в нее введены первый и второй радиоканалы приема навигационных сигналов спутников GPS и/или ГЛОНАСС соответственно и четвертый радиоканал двухсторонней связи с каждым из "n" беспилотных летательных аппаратов; система имеет следующие соединения: выходы информационных сигналов первого и второго гироскопов по углам крена, тангажа и курса через первый, второй и третий операционные усилители соответственно соединены с первым-третьим входами микроконтроллера, выход акселерометра соединен первой шиной связи с четвертым входом микроконтроллера, приемопередающая антенна через модем и вторую шину связи соединена с входом/выходом микроконтроллера, первым радиоканалом антенна соединена с спутником навигационной системы GPS, вторым радиоканалом - с спутниками навигационной системы ГЛОНАСС, третьим радиоканалом - с наземной станцией управления и четвертым радиоканалом - с индивидуальными станциями каждого из "n" БПЛА; микроконтроллер в своем составе содержит АЦП для преобразования аналоговых сигналов первого и второго гироскопов в цифровую форму, фильтр Калмана для качественной оценки движения БПЛА, дифференциальный вычислитель определения координат БПЛА от GPS и ГЛОНАСС и вычислитель среднеквадратического значения координат комплекса из "n" БПЛА, также микроконтроллер содержит цифроаналоговые преобразователи для управления приводами элеронов, рулей высоты и направления, а количество БПЛА в комплексе из n=3 в зависимости от конкретных условий полетного задания.



Просмотров