Гигиена труда и производственная санитария. Микроклимат - это что? Производственный микроклимат

Микроклимат и его гигиеническое значение. Виды микроклимата и влияние дискомфортного микроклимата на теплообмен и здоровье человека.

Микроклимат – сочетание физических свойств воздуха в ограниченном пространстве: отдельных помещениях, городе или лесном массиве, под одеждой и т.п. Состояние микроклиматических факторов обуславливает особенности терморегуляции организма человека.

Типы микроклимата

По степени воздействия на тепловое состояние человека параметры микроклимата подразделяются на оптимальный (нейтральный), нагревающий и охлаждающий.

Оптимальный (нейтральный) микроклимат - такое сочетание его параметров, которое при воздействии на человека в течение длительного времени обеспечивает тепловой баланс организма, т.е. примерное равенство между величиной теплопродукции организма человека и его теплоотдачей в окружающую среду (разность между величинами теплопродукции и теплоотдачи не более +/- 2 Вт, доля теплоотдачи испарением влаги - не более 30%).

Оптимальный микроклимат обеспечивает ощущение комфорта и создает предпосылки для высокого уровня работоспособности.

Охлаждающий микроклимат - сочетание параметров, при котором суммарная теплоотдача человека в окружающую среду превышает величину теплопродукции организма, что приводит к образованию общего и/или локального дефицита тепла в теле человека (более 2 Вт).

Нагревающий микроклимат - сочетание его параметров, при котором суммарная теплоотдача человека в окружающую среду меньше величины теплопродукции организма, что приводит к накоплению тепла в организме (более 2 Вт) и/или к увеличению доли потерь тепла испарением влаги (более 30%), образованию общего и/или локального дефицита тепла в теле человека (более 2 Вт).

Влияние различных типов микроклимата на человека

Отрицательное влияние охлаждающего микроклимата на человека определяется тем, что в ходе эволюционного развития человек не выработал устойчивого приспособления к холоду. Его биологические возможности в температурной саморегуляции организма крайне ограничены.

Охлаждающий микроклимат способствует возникновению сердечно-сосудистых заболеваний, заболеваний органов дыхания, опорно-двигательного аппарата, приводит к обострению язвенной болезни, радикулита.

Даже при кратковременном влиянии холода в организме происходит перестройка регуляторных и гомеостатических систем, изменяется иммунный статус организма.

При выраженном охлаждении организма растет число тромбоцитов и эритроцитов в крови, увеличивается содержание холестерина, вязкость крови, что повышает возможность тромбообразования.

Охлаждение человека - как общее, так и локальное (особенно кистей), способствует изменению его двигательной реакции, нарушает координацию и способность выполнения точных операций, вызывает тормозные процессы в коре головного мозга, что может быть причиной возникновения травматизма.

При локальном охлаждении кистей снижается точность выполнения операций, совершаемых рукой. Работоспособность пальцев уменьшается на 1,5% на каждый градус снижения их температуры.

Переносимость человеком охлаждения несколько увеличивается при адаптации к холодовому фактору, но для обеспечения температурной саморегуляции это существенного значения не имеет.

Влияние нагревающего микроклимата связано с напряжением функциональных систем организма человека, что приводит к нарушению состояния здоровья, уменьшения работоспособности и производительности труда.

При определенных значениях параметров нагревающий микроклимат может привести к заболеваниям общего характера: наблюдаются головные боли, повышенная потливость и утомляемость, увеличивается риск смерти от сердечно-сосудистой патологии (гипертонической и ишемической болезней, болезней артерий и капилляров).

Длительное воздействие высокой температуры (перегревание) может явиться причиной возникновения коллапса** то есть острого развития сердечно-сосудистой
недостаточности, которая в первую очередь характеризуется падением артериального и венозного давления, уменьшением кровообращения головного мозга и др.

Особенно подвержены тепловым ударам лица, имеющие массу тела выше нормы.

Электрическое состояние атмосферы (ионизация воздуха, электрическое поле Земли, геомагнитное поле) и его гигиеническое значение. Природная радиоактивность воздуха, значение.

Электрическое состояние атмосферного воздуха характеризуют его ионизация, электрическое поле земной атмосферы, грозовая электрика, естественная радиоактивность. Под ионизацией воздуха понимают распад газовых молекул и атомов под влиянием ионизаторов. К ионизаторам относятся радиоактивное излучение почвы и воздуха, ультрафиолетовое и световое излучение солнца, космические излучения, распыление воды (баллоэлектрический эффект). Число ионов, образующихся в 1 мл газа в единицу времени, называется интенсивностью ионизации.

Под действием высоких концентраций отрицательных легких ионов у людей происходят благоприятные изменения в газовом и минеральном обмене, стимулируются обменные процессы, ускоряется заживление ран. Экспериментальные и клинические наблюдения говорят о том, что воздух с резко сниженным числом ионов, особенно отрицательных, оказывает неблагоприятное действие: вдыхание его вызывает вялость, сонливость, ухудшение аппетита, головную боль, повышение артериального давления, увеличение в моче количества недоокисленных соединений.

Электрическое поле.

В атмосфере Земли наблюдается направленный по вертикали к земле ток ионов (в результате того что Земля несет отрицательный, а верхние слои атмосферы положительный заряды). Разница напряжений между головой и стопами человека составляет 225 В, но эта разница потенциалов не оказывает существенного влияния на жизнедеятельность человека. Однако в атмосфере нередко возникают резкие колебания электрического поля, что связано с влиянием метеорологических условий и атмосферных загрязнений на электропроводимость воздуха. При туманной погоде, сильном загрязнении напряженность электрического поля возрастает до 4 раз, при грозах показатель напряженности возрастает в 100 и более раз. Установлено, что атмосферное электричество воздействует на организм и участвует в развитии метеотропных реакций при резком изменении погоды.

Солнечная радиация и ее гигиеническое значение. Световой климат.

Значение инфракрасной, ультрафиолетовой и видимой частей солнечного спектра.

Гигиеническое значение солнечного света очень важно, ограничение или лишение его приводит к нарушению физиологического равновесия в организме.

ГРАНИЦЫ СОЛНЕЧНОГО СПЕКТРА

1) Инфракрасные лучи (ИК) - от 0,76 до 60 мк

2) Видимые лучи - 400-760 нм;

3) Ультрафиолетовые лучи (УФ) - 10-400 нм.

ИНФРАКРАСНАЯ РАДИАЦИЯ

Основное действие - тепловое. Длинные ИК-лучи задерживаются главным образом в эпидермисе кожи и вызывают нагревание ее поверхности, раздражают рецепторы (жжение).

Инфракрасная эритема образуется за счет расширения капилляров кожи,разлитая, без четких границ. Короткие ИК-лучи проникают на глубину 2,5-4 см, вызывают глубокое прогревание, причем субъективные ощущения значительно меньше.Отмечается поглощение ИК-лучей белками крови и активация ферментных процессов.Общее действие ИК-лучей - нагревание с образованием выраженной разлитой эритемы, с выделением ряда физиологически активных веществ (например, ацетилхолина), которые поступают в общий круг кровообращения и вызывают усиление обменных процессов в отдаленных от мест облучения тканях и органах. Общая реакция организма выражается в перераспределении крови в сосудах, повышении числа эозинофилов в периферической крови, повышении общей сопротивляемости организма. Наблюдается снижение тонуса симпатической НС и ваготония. Под действием инфракрасных лучей наблюдается : перераспределение крови, учащение пульса, повышение максимального и понижение минимального АД, повышение температуры тела, усиление потоотделения.Рефлекторно увеличивается теплообразование в других органах, стимулируется функция почек, расслабляется мускулатура. В результате наблюдается ускорение регенеративных процессов, уменьшение болевых ощущений,

ВИДИМЫЕ ЛУЧИ

Занимая промежуточное положение между УФ и ИК, видимые лучи обладают специфическим действием на орган зрения, для которого они являются адекватным раздражителем, фоточувствительные клетки глаза

воспринимают и преобразуют энергию света, в результате чего организм получает необходимую информацию о состоянии окружающей среды. Кроме того, они оказывают тепловое (более мягкая энергия) и общебиологическое действие на кожу.

Общеизвестно, что наблюдается определенное соотношение биологических ритмов организма и ритмов солнечного излучения.

Видимые лучи действуют тонизирующе на весь организм в зависимости от длины волны. Красные лучи приближаются по своему действию к ИК, производя тепловой эффект. Они повышают возбудимость нервной системы, стимулируют деятельность гипофиза и других желез внутренней секреции. Фиолетовые лучи обладают выраженным фотохимическим действием(образуют загар). Красно-желтые цвета оказывают бодрящее действие и производят впечатление теплых тонов. Их лучше всего использовать в рабочих помещениях.

Почва, почвообразующие факторы, санитарное и эпидемическое значение почвы, биогеохимические провинции, основные и дополнительные факторы геохимических заболеваний, профилактика геохимических заболеваний

Почва - самостоятельное естественноисторическое органоминеральное природное тело, возникшее на поверхности Земли в результате длительного воздействия биотических, абиотических и антропогенных факторов, состоящее из твёрдых минеральных и органических частиц, воды и воздуха и имеющее специфические генетико-морфологические признаки, свойства, создающие для роста и развития растений соответствующие условия. Функции почвы: 1. Положительная: · Круговорот веществ и формирование первичных белковых тел; · Источник микроэлементов; · Используется для очистки и обезвреживания жидких загрязнений и зараженных стоков, нечистот и мусора населенных мест; 2. Отрицательная: · Много токсических веществ (природных, техногенных)· Источник загрязнения окружающей среды органическими веществами · Эпидемическое значение Свойства почвы: 1. Воздухо и водопроницаемость – самоочищение; 2. Водоемкость (количество воды, поглощаемой единицей объема почвы); 3. Наличие определенной температуры создает микроклимат (в 6-7 этажах почвы температура максимально стабильна) max – декабрь, min – май; 4. Наличие воздуха (в 5-6 этажах – О2 – 8%, СО2 – 8%); 5. В гумусе аккумулируются питательные вещества, поглощение влаги (1г почвы – 4-20 г воды) Эпидемиологическое значение почвы состоит в том, что в ней, несмотря на антагонизм почвенной сапрофитной микрофлоры, возбудители инфекционных заболеваний могут достаточно продолжительное время сохранять жизнеспособность, вирулентность и патогенность. Так, в почве, особенно в ее глубоких слоях, сальмонеллы брюшного тифа могут выживать до 400 сут. В течение этого времени они могут загрязнять подземные источники водоснабжения и заражать человека. Достаточно длительное время в почве могут сохраняться не только патогенные микроорганизмы, но и вирусы. Загрязненная почва выполняет роль фактора передачи человеку возбудителей как антропонозных, так и зооантропонозных инфекций. Среди антропонозных - кишечные инфекции бактериальной природы (брюшной тиф, паратифы А и Б, бактериальная и амебная дизентерия, холера, сальмонеллезы, эшерихиоз), вирусной этиологии (гепатит А, энтеровирусные инфекции - полиомиелит) и протозойной природы (амебиаз, лямблиоз). К зооантропонозам, которые могут распространяться через почву, относятся: лептоспироз, водная лихорадка, инфекционная желтуха. Через почву могут передаваться также микобактерии туберкулеза. Особенно велика роль почвы в передаче глистных инвазий (аскаридоза, трихо-цефаллеза, дифиллоботриоза, анкилостомидоза, стронгилоидоза). Для указанных инфекций и инвазий характерен фекально-оральный механизм передачи, который для кишечных инфекций является ведущим, а для других - одним из возможных. Фекально-оральный механизм передачи инфекционных заболеваний через почву - многоэтапный процесс, характеризующийся последовательным чередованием трех фаз: выделение возбудителя из организма в почву; пребывание возбудителя в почве; внедрение возбудителя в видово-детерминированный организм биологического хозяина и сводится к следующему. Почва является естественной средой для обезвреживания жидких и твердых бытовых и промышленных отходов. Это та система жизнеобеспечения Земли, тот элемент биосферы, в котором происходит детоксикация (обезвреживание, разрушение и превращение в нетоксические соединения) основной массы поступающих в нее экзогенных органических и неорганических веществ. Попавшие в почву органические вещества (белки, жиры, углеводы растительных остатков, экскрементов или трупов животных, жидких или твердых бытовых отходов и пр.) разлагаются вплоть до образования неорганических веществ (процесс минерализации). Параллельно в почве происходит процесс синтеза из органических веществ отходов нового сложного органического вещества почвы - гумуса. Описанный процесс называется гумификацией, а оба биохимических процесса (минерализация и гумификация), направленные на восстановление природного состояния почвы, - ее самоочищением. Этим термином обозначают и процесс освобождения почвы от биологических загрязнений, хотя в этом случае следует говорить о природных процессах ее обеззараживания. Что касается процессов самоочищения почвы от ЭХВ, то правильнее их называть процессами детоксикации почвы, а все процессы вместе - процессами обезвреживания почвы.

33 Погода, определение и медицинская классификация типов погоды. Периодические и апериодические изменения погоды.

Погода – это совокупность физических свойств околоземного слояатмосферы в относительно кратком отрезке времени (часы, сутки, недели).

Климат – многолетний режим погоды,закономерно повторяющийся вданной местности.

Факторы, формирующие климат. Важнейшими климатообразующимифакторами в той или иной местности являются: 1) географическая широта,

Определяющая приток солнечного излучения; 2) высота над уровнем моря,

рельеф и тип земной поверхности (вода, суша, растительность, снег); 3) осо-

бенности циркуляции воздушных масс; 4) близость к морям и океанам.

Классификации климата. В медицинской практике используетсяделение климата на щадящий и раздражающий .

Влияние холода приводит к повышению обмена веществ и усилениютеплопродукции, к изменениям как местной, так и отдаленной сосудистой реакции. При охлаждении повышается уровень метаболизма, усиливается теплообразование, увеличивается объем циркулирующей крови, и т. д.

Погода влияет на физиологическое состояние человека непос-

редственно и косвенно .Непосредственное влияние осуществляется путемвоздействия на теплообмен человека. Косвенное влияние погоды на организм человека обусловлено, прежде всего, воздействием так называемых апериодических изменений погодной обстановки, вступающих в диссонанс с привычными человеку ритмами физиологических функций, т. е влияние на

Биологические ритмы.

Сезонные заболевания. Известны заболевания,которые вопределенные сезоны года склонны к обострению и более тяжелому течению. К ним относятся язвенная болезнь желудка и двенадцатиперстной кишки, психические заболевания, который еще называется циклотимией, сердечно-сосудистые болезни, эндокринные расстройства и пр.

Цирканные.

Рассогласование ритма жизненных функций и циклических изменений внешних условий отрицательно влияет на жизнедеятельность, может нарушить работоспособность, а у некоторых и здоровье. Это наблюдается

Гелиотропная

реакция отмечается при воздействии периодических резких измененийпогоды, зависящих от смены воздушных масс или влияния гелиогеофизических факторов. Есть люди, чаще всего больные,

чувствительные к изменениям погоды. Это так называемые

метеолабильные, или метеочувствительные, люди, у которых

неблагоприятная погода вызывает ухудшение общего самочувствия,

нарушение сна, чувство тревоги, головокружение, резкое изменение артериального давления, боль в суставах и т.д.

Недостаточного

Алиментарная дистрофия - Развитие кахексии проявляется резким похуданием, потерей массы тела, сухостью и дряблостью кожи, выпадением волос, исчезновением подкожного жира, атрофией мышц и внутренних органов,снижением содержания сывороточного белка; при кахексии могут наблюдаться отеки, кровоизлияния, иногда нарушения психики.

Избыточного

При этом в первую очередь страдают печень и почки . В печени могут развиваться жировая дистрофия и деструктивные процессы из-за перегрузки ее пищевыми аминокислотами. Почки функционально перегружаются из-за повышенного выделения остаточного азота (мочевина, мочевая кислота, креатинин) и нарушения кислотно-щелочного баланса первичной мочи. При длительном избытке белка в рационе увеличивается риск развития мочекаменной болезни, подагры, ожирения.

Недостаток потребления жиров может привести к нарушению функции ЦНС, половых желез, ослаблению иммунитета и устойчивости организма к воздействию неблагоприятных факторов, ухудшению усвояемости витаминов и провитаминов, содержащихся в растительной пище.

Избыточное потребление жиров приводит к чрезмерному отложению жира в организме, возникает опасность атеросклероза, нарушаются функции печени. Избыток жира создает излишнюю нагрузку на пищеварительный аппарат, ухудшает усвояемость кальция, магния. В диетическом питании нормированию подлежит не только количество жира, но и соотношение животных и растительных жиров.

Избыточная масса тела .

Большинство людей к 45 годам имеют избыточную массу тела. Избыточное отложение жира в верхней части туловища сопровождается риском развития артериальной гипертензии, сахарного диабета. Выявлено, что у 78% мужчин и 64% женщин артериальная гипертония связана с наличием избыточной массы тела. Следовательно, нормализация массы тела играет существенную роль в снижении уровня артериального давления.

Витамины - необходимые для жизни, не синтезируемые клетками организма человека низкомолекулярные органические соединения различной химической природы.

Гипервитаминозы могут возникнуть при применении так называемых ударных лечебных доз витаминов и очень редко при употреблении в пищу натуральных продуктов.

Авитаминоз - практически полное отсутствие витаминных ресурсов в организме, вследствие чего возникают заболевания.

Гиповитаминоз - резкое снижение обеспеченности организма тем или иным витамином

Пищевая аллергия характеризуется повышенной чувствительностью организма к пищевым продуктам и развитием признаков непереносимости пищи, вызванных реакцией иммунной системы.

Хорошо известно, что механизмы непереносимости пищевых продуктов весьма разнообразны. Реакции на пищу, имеющие аллергическую природу, встречаются значительно реже, чем считают многие.

Профилактика пищевой аллергии

Профилактика пищевой аллергии включает осторожное применение пищевых продуктов с повышенной аллергенностью у детей с аллергической предрасположенностью и у взрослых с различными проявлениями аллергии или заболеваниями желудочно-кишечного тракта. Целесообразно ограничение высокоаллергенных продуктов в период беременности из-за опасности внутриутробной аллергизации плода.

Ферментопатия (ФП) - это патология, в основе которой лежит абсолютное отсутствие синтеза какого-либо фермента или выраженная его функциональная недостаточность.

Все ФП можно разделить на наследственные (НФП), генетически обусловленные, и приобретенные.

Ботулизм.

Это редкое, но наиболее тяжелое отравление, развивающееся при употреблении пищи, в которой размножались бактерии вида Cl.Botulinumи произошло накопление их токсинов. Ботулотоксин относится к числу самых высокотоксинных бактериальных ядов. Смертельная доза его доля для человека составляет 0,035 мг. Летальность 65-76,5%. Известны пять серологических типов этого возбудителя (А, Б, С, Д, Е). Токсические свойства наиболее выражены уCl.botulinumВ. В РФ наиболее часто встречаются тип А и в меньшей степени - типы В, С, Е. Размножение вегетативных форм токсинообразование протекают в анаэробных условиях и наиболее интенсивно при температуре 34-35 0 С, но не прекращается и при 20 0 С. Низкая температура, высокие концентрации поваренной соли (6-10%) и кислая Среда задерживают образования токсина, не разрушая его. Разрушается он при кипячении 10-15 мин., а также при действии щелочей, алкоголя и йода.

В неблагоприятных условиях микроорганизм образует споры. Споры возбудителей типа А и В выдерживают кипячении в течении 3-5 часов, нагревание до 120 0 С в течении 2-30 мин., сохраняются в концентрированных растворах соли и сахара, прорастают в желудочном и панкреатическом соке, а в высушенном состоянии десятилетиями не утрачивают жизнеспособности.

Источниками ботулизма могут быть все виды консервов (особенно домашнего приготовления), частиковая рыба, употребляемая без тепловой обработки (соленая, валенная, копченая), сырокопченые колбасы и окорока.

Попав в желудочно-кишечный тракт, токсин не разрушается, а всасывается в кровь. Инкубационный период чаще всего составляет 12-36 часов, он иногда сокращается до 2 – 4 час. В некоторых случаях заболевание развивается через 2-5-9 дней после заражения.

Первыми характерными признаками заболевания являются жалобы на ослабления ясности зрения («туман в глазах»), двоение (диплопия). Затем отмечается исчезновение реакции зрачков на свет, неравномерное расширение зрачков (анизокория), непроизвольное дрожание век и их опущение (блефароптоз). Развивающиеся в более поздние сроки паралич мышц языка, мягкого неба и гортани обусловливают затруднения глотания (дисфагия или афагия) и расстройство речи – хриплый, слабый голос. В результате паралича гладкой мускулатурой кишечника развиваются стойкие запоры, метеоризм. Температура тела не повышается, иногда даже понижена. Больные жалуются на головные боли сухость во рту и носоглотки.

Продолжительность болезни различна, чаще 4-8 дней. Если не обеспеченно ранее неспецифическое лечение смерть может наступить к концу первых суток или на второй день заболевания от паралича дыхательной мускулатуры.

Профилактика ботулизма

Профилактика ботулизма при изготовления продуктов питания как в промышленных, так и в домашних условиях должна включать в себя комплекс следующих мероприятий:

1. Зашита пищевого продукта от попаданий в него возбудителя.

2. Правильная тепловая обработка продукта, обеспечивающая гибель вегетативных форм микроба и инактивацию токсина, гибель спор (стерилизация).

3. Предупреждение возможности развития спор, размножения микроба и образования токсина в готовом продукте.

2. При консервировании овощей, не содержащих естественной кислоты (огурцы, баклажаны, зеленый горошек и др.), необходимо добавлять уксусную или лимонную кислоту в соответствии с рецептурой

3. Для консервирования должны быть использованы свежие, без каких либо признаков порчи овощи и фрукты.

4. Тщательно мыть овощи и плоды. Целесообразно при мытье овощей, поверхность которых загрязнена водой, пользоваться мягкой щеткой.

6. Хранить домашние консервы следует при низких температурах (в холодильнике, леднике, подвале) с обязательной отбраковкой и уничтожением бомбажных банок.

Стафилококковый токсикоз

Стафилококки - широко распространенные в природе микроорганизмы. Они встречаются в воде, воздухе, на коже и в дыхательных органах человека и животных. Многие из этих микробов продуцируют пигмент. В зависимости от его цвета различают стафилококк золотистый, лимонно-желтый и белый.

Некоторые штаммы стафилококков вызывают у людей абсцессы, флегмоны, гнойные воспаления, катары верхних дыхательных и мочеполовых путей, а также пищевые отравления.

Различают два вида стафилококков. Первый из них, потенциально патогенный для человека и животных, характеризуется способностью коагулировать плазму крови человека, свиньи, кролика и лошади. Патогенный стафилококк хорошо развивается в полуанаэробных условиях. его основным местом обитания является слизистая оболочка носа и зева. Второй вид - сапрофитные стафилококки вегетируют главным образом на коже, не коагулируют плазму и не ферментируют маннит в анаэробной среде.

Патогенные стафилококки продуцируют ряд токсинов: гемолизин, дерматоксин, фибринолизин, лейкоцидин, энтеротоксин. Гемолизин вызывает лизис эритроцитов человека, кролика, крупного рогатого скота и лошади; дерматоксин образует некрозы кожи; лейкоцидин разрушает лейкоциты; фибринолизин растворяет фибрин; энтеротоксин вызывает воспаление пищеварительного тракта. Продуцируемый стафилококками энтеротоксин обладает сравнительно высокой термоустойчивостью, некоторые фракции его не инактивируются полностью при кипении в течение 20-60 мин. Наиболее чувствительны к энтеротоксину человек, обезьяны, котята и щенки. Способностью к токсинообразованию обладают лишь некоторые штаммы патогенных стафилококков. Патогенные стафилококки характеризуются гемолитической, плазмокоагулирующей и лецитиназной активностью.

профилактика

Профилактика отравлений стафилококковым энтеротоксином проводится в следующих направлениях: устранение источников обсеменения пищевых продуктов стафилококками; создание таких условий приготовления, хранения и реализации пищевых продуктов, при которых не развивались бы стафилококки и не создавались бы возможности образования ими энтеротоксина. Чтобы предупредить обсеменение стафилококками мясопродуктов, необходимо выбраковывать органы и туши, пораженные гнойниками, которые обычно вызываются коагулазоположитсльными стафилококками. Эти микробы при определенных условиях могут выделять энтеротоксин.

При первичной обработке пищевых продуктов и работе с ними необходимо соблюдать правила личной и производственной гигиены, нельзя допускать контакта с продуктами лиц, имеющих воспалительные процессы кожных покровов, слизистых оболочек и дыхательных путей.

Важным условием исключения стафилококковых токсикозов является соблюдение температурных режимов при обработке продуктов, их хранении, условий и регламентов реализации. Молоко больных маститами коров кипятят и используют для кормления молодняка животных. Однако нужно учитывать, что молоко при стафилококковом мастите даже в кипяченом виде, по данным И. С. Загаевского, задерживает рост и развитие поросят, телят и цыплят, так как в нем содержится теплоустойчивый энтеротоксин.

Эрготизм (от фр. ergot - спорынья) - отравление человека и животных алкалоидами спорыньи, попавшими в муку из зёрен ржи и некоторых других злаков, заражённых склероциями. Обнаружить заражение особенно трудно в тёмной ржаной муке.

Эрготизм возникает также из-за передозировки препаратами спорыньи (например, гидротартрат эрготамина) при их длительном непрерывном приёме в больших дозах.

Алкалоиды вызывают сокращения мышц; высокие их дозы приводят к мучительной смерти, низкие - к сильным болям, гангрене, умственным расстройствам, агрессивному поведению.

Выделяют две формы эрготизма: гангренозная (лат. ergotismus gangraenosus ) - «огонь святого Антония» («Антониев огонь», «священный огонь») (сопровождается нарушением трофики тканей из-за сужения капилляров в конечностях) и конвульсивная (лат. ergotismus convulsivus ) - «ведьмина корча».

ФУЗАРИОЗЫ, заболевания р-ний, вызываемые несовершенными грибами из рода Fusarium.

Фузариоз поражает зерновые, технические, овощные, масличные, эфироносные, лекарственные, декоративные культуры, а также кормовые травы в разных фазах их развития. Возбудители этих заболеваний широко распространены в природе, поражают, гл. обр., растения с ослабленной жизнеспособностью. Ф. могут также вызывать гниение плодов, овощей и семян при хранении. Особенно большие потери в с. х-ве происходят от поражений Ф. зерновых культур.

афлатоксико́з , отравление сельскохозяйственных животных, в томчисле птиц, афлатоксинами, приводящее к задержке роста, развития и снижению продуктивности животных, резистентности организма, а также к загрязнению молока, яиц и мясных продуктов канцерогеннымиметаболитами. Видовая и породная чувствительность животных к хроническому и острому влияниюафлатоксинов существенно варьирует. Восприимчивость животных к афлатоксинам снижается с возрастом исильно зависит от состава рациона, наличия в кормах других микотоксинов - синергистов афлатоксинов(рубротоксин, некоторые трихотецены и др.). Установлено, что коэффициент разбавления афлатоксина впродуктах животноводства (отношение концентрации токсина в корме к концентрации в молоке, органах, тканях) достаточно высок и зависит от длительности периода, прошедшего с момента попадания токсина ворганизм до срока убоя животного. В отдельных случаях количество афлатоксинов в продуктахживотноводства при вынужденном убое животного достигает 2-3 мгк/кг.

Различают острое, хроническое и субхроническое течение А. Два последних чаще распространены вестественных условиях. Симптомы при хроническом течении: потеря аппетита, снижение массы тела, общееугнетение. Патологоанатомические изменения при отравлениях кормами, содержащими афлатоксины внизких концентрациях, характеризуются желтушностью и циррозом печени, пролиферацией жёлчныхпротоков и перипортальными фиброзами. Острые отравления сопровождаются желтушными изменениямислизистых оболочек, разлитыми геморрагиями, жировым перерождением печени. Диагноз ставят наосновании патологоанатомических изменений, исследования крови (увеличение активности щелочнойфосфатазы сыворотки крови), обнаружения в кормах афлатоксинов в концентрациях, способных вызватьотравление.

Профилактика и меры борьбы состоят главным образом в запрещении скармливания животным кормов, содержащих повышенные количества афлатоксинов; контроле кормов с помощью хроматографическогоанализа; хранении кормов в условиях, способствующих предотвращению развития на нихафлатоксиногенных грибов.

К пищевым отравлениям немикробной природы относятся отравления растительными продуктами (грибы, ядовитые растения, семена злаковых культур), продуктами животного происхождения (органы рыб, пчелиный мед) и отравления примесями к продукту токсических химических веществ.

Пищевые отравления немикробного происхождения наблюдаются реже, чем отравления бактериальной этиологии, и составляют всего 5-10% от общего количества отравлений. Рост немикробных пищевых отравлений наблюдается периодически. Обычно он обусловлен увеличением числа отравлений ядовитыми грибами. Реже встречаются отравления дикорастущими ядовитыми растениями, семенами сорных растений и солями тяжелых металлов.

Компоненты питания: жиры

Жиры относятся к макронутриентам, которые требуются организму в больших количествах. В процессе расщепления жиров образуются жирные кислоты и глицерин.

Жиры представляют собой главный источник энергии для организма, материал для построения клеточных мембран. Кроме того, жиры координируют метаболические процессы, в их состав входят минеральные вещества, витамины и ферменты.

Жиры классифицируют на насыщенные (насыщены водородом) и ненасыщенные - полиненасыщенные (омега-3, омега – 6, омега – 9) и мононенасыщенные. Ненасыщенные жиры являются жизненно необходимыми для организма, поскольку могут поступать только извне.В качестве условной нормы жиров в питании называют 80 – 100 г в сутки для тех, кто молод, здоров и интенсивно работает. Для пожилых и менее подвижных людей это величина составляет 20 – 30г.

Недостаток жиров в питании приводит к развитию различных заболеваний, среди них: психические расстройства, депрессивные состояния, потеря памяти, бесплодие и импотенция, остеопороз, диабет, болезнь Альцгеймера, онкологические заболевания и т.д.

Компоненты питания: белки

Белки, представляя собой основной компонент питания , являются один из самых сложных пищевых веществ, нужных организму в больших количествах (в десятках граммов в сутки).
Источники белков – это растительные и животные продукты, однако продукты животного происхождения в связи с большим количеством и соотношением аминокислот, обладают более высокой биологической ценностью.

Роль белков в организме чрезвычайно важна: они выполняют строительную функцию, каталитическую, транспортную, сократительную, защитную, гомеостатическую и энергетическую.

В процессе взросления и старения снижается потребность в белках в связи с тем, что первостепенной становится энергетическая функция, следовательно, доля белка при условии правильного питания должна уменьшаться.

Избыток белка (белковый перекорм), как и его недостаток, негативно сказываются на организме человека, в итоге развиваются различные заболевания. Избыток белка провоцирует ухудшение работы печени, почек, кишечника, возникновение подагры, ожирения и т.п. Недостаток становится причиной появления дистрофии у детей.

Таким образом, к основным компонентам питания , которые необходимы в разных количествах и соотношениях, относятся: вода, витамины, углеводы, минеральные вещества, жиры и белки. То есть, существует возможность на основе различных теорий питания и программ организовать свой рацион с учетом всех основных компонентов питания в нужных соотношениях и количествах, что позволит избавиться, а также предотвратить развитие; заболеваний, оставаться молодым, красивым и здоровым.

65 Балластные вещества пищевых продуктов, специфическое динамическое действие пищи, основные потоки веществ, эндоэкология, мономерное и парентеральное питание, идеальное питание, рациональное питание, физиологические нормы питания. Коэффициенты физической активности, расчёт потребности человека в энергии и питательных веществах

Балластные вещества - это такие пищевые компоненты, содержащиеся в растительной пище и не способные перевариться в организме человека. Поступление этих веществ в организм гарантируется в том случае, если мы едим много свежих овощей и фруктов, то есть которые не подвергаются кулинарной обработке.

Основные балластные вещества являют собой пищевые волокна, которые имеются в любом растении, в роли главного их представителя выступает клетчатка. Пищевые же волокна в свою очередь - это разнос

Гигиеническое значение климата. Климат - среднее состоя­ние метеорологических условий, характерных для данной мест­ности в течение многолетних наблюдений, другими словами, это достаточно статистически устойчивое состояние метеоро­логических условий в определенной географической зоне.

К метеорологическим условиям, или климатологическим по­казателям, относятся температура, влажность, барометрическое давление воздуха, направление и сила ветра, солнечная радиа­ция, облачность, осадки, электрическое состояние атмосферы. В зависимости от них, но прежде всего от среднегодовой тем­пературы и географического положения местности, на земном шаре различают 7 основных климатических поясов (табл. 1.2).

Таблица 1.2. Климатические пояса Земли

В строительной практике территория СНГ подразделяется по признаку средних температур января и июля на 3 климати­ческих района: I - холодный, II - умеренный, III - теплый.

В отдельных климатических районах имеются зоны со свое­образными особенностями, получившими названия континен­тальный, морской, горный, степной, лесной климаты.

Эта классификация климата удобна при решении вопросов градостроительства, в сельском хозяйстве и медицине, так как он существенно влияет на состояние здоровья людей.

В настоящее время в медицинской практике используют де­ление климата на щадящий и раздражающий.

К щадящему относят теплый климат с малыми колебаниями температур и других метеорологических факторов на протяже­нии месячных, суточных и годовых промежутков времени. Этот климат предъявляет минимальные требования к адаптацион­ным физиологическим механизмам организма человека. При­мерами такого климата являются лесной климат средней поло­сы России, а также климат Южного берега Крыма.

Для раздражающего климата характерны значительные су­точные и сезонные колебания метеорологических факторов, вследствие чего к адаптационным механизмам организма предъ­являются повышенные требования.

Примерами раздражающего климата являются холодный климат Севера, высокогорный климат и жаркий климат пус­тынь и степей.

Холодный климат Севера отличается низкими температура­ми воздуха, высокой относительной влажностью, вечной мерз­лотой, полярными ночами с отсутствием солнечной радиации (видимых, ультрафиолетовых и инфракрасных лучей), сильными ветрами, однообразием ландшафта, чистотой воздуха (отсутстви­ем микрофлоры, механических и газообразных примесей).

Особенности этого климата способствуют возникновению у человека напряжения терморегуляции и гемодинамики, уси­лению основного обмена, гиперсекреции желудка, изменениям в нервной системе в виде усиления процессов торможения, понижения условнорефлекторной деятельности, отрицатель­ных психических реакций, снижения работоспособности, рас­стройств сна (во время полярного дня).

Низкие же температуры воздуха в сочетании с его высокой влажностью и подвижностью приводят к возникновению про­студных заболеваний, ревматизма, заболеваний периферичес­кой нервной системы в виде радикулитов, невритов, миалгий, миозитов и т.д.

Жаркий климат пустынь и степей отличается жарким летом, резким размахом суточных температур, сухостью воздуха, из­бытком солнечного излучения,

В этих условиях могут наблюдаться явления перегрева орга­низма в виде теплового и солнечного ударов, нарушения водно­солевого обмена, снижение величины основного обмена, рас­стройства гемодинамики (расширение капилляров, снижение уровней АД, тахикардия), нарушения деятельности желудочно-кишечного тракта (понижение аппетита, жажда, разбавление водой пищеварительных секретов и как следствие понижение их переваривающей активности), росту возникновения кишеч­ных инфекций (дизентерии, брюшного тифа, паратифов, холе­ры и др.), пищевых отравлений бактериальной природы в связи с быстрой порчей продуктов питания, а также массовым разви­тием насекомых - переносчиков инфекций и инвазий.

Кроме этого, отмечается резкое снижение работоспособнос­ти, растет риск возникновения раковых поражений кожи из-за избытка ультрафиолетового облучения (особенно при слабопигментированном типе кожи), уролитиаза вследствие наруше­ний минерального обмена при потреблении больших количеств высокоминерализованной питьевой воды, катаракты из-за из­бытка инфракрасных лучей.

С высоты 2000 м над уровнем моря начинается высокогор­ный климат, который характеризуется пониженным атмосфер­ным давлением, чистым воздухом и низкими парциальным дав­лением кислорода, температурами и влажностью воздуха, его высокой подвижностью. Отмечается интенсивное солнечное излучение и высокое альбедо (степень отражения солнечных лучей от различных поверхностей).

В таких условиях человек может страдать от гипоксии, кото­рая компенсаторно усиливает эритропоэз, меняются глубина и ритм дыхания (реже и глубже), кривая диссоциации оксигемоглобина (ускоряется процесс присоединения и отделения кислорода), создается напряжение терморегуляторных процес­сов, отмечаются резкая сухость слизистых оболочек глаз и вер­хних дыхательных путей, световой дискомфорт.

Местности с морским, горным, лесным и степным климата­ми часто используют для организации курортов, так как они об­ладают комплексами метеорологических факторов, ценных с точки зрения оздоровления организма.

Так, морской климат отличается ровной температурой, по­вышенной влажностью, чистотой воздуха.

Для горного климата местностей на высоте 500-700 м над уровнем моря характерны умеренные температуры, понижен­ное барометрическое давление, чистый сухой воздух, мощная солнечная радиация, повышенная ионизация воздуха.

Степному климату присущи высокие температуры воздуха в летнее время года, чистый сухой воздух, значительная инсо­ляция.

Лесной же климат, как уже упоминалось, относится к щадя­щему типу климата, весьма благоприятному для сохранения здоровья.

Акклиматизация. Систематическое влияние на организм че­ловека климатических факторов и обусловленных ими особен­ностей устройства жилых и общественных зданий, одежды и обуви, ритма жизни, питания приводит к образованию опре­деленного динамического стереотипа в деятельности отдельных органов и систем.

При резком же изменении привычного климата организм может испытать нарушения в деятельности этих систем, что потребует изменения сложившегося динамического стереоти­па. Организм человека имеет различные физиологические ме­ханизмы, помогающие ему приспособиться к новым необыч­ным климатическим условиям в течение более или менее длительного промежутка времени. Эта способность организма адаптироваться к новому климату получила название акклима­тизации.

В настоящее время акклиматизацию рассматривают как сложный социально-биологический процесс активной адапта­ции организма к новым климатическим условиям.

В зависимости от приспособления к тому или иному климату организм использует разнообразные физиологические меха­низмы. Так, при акклиматизации к жаркому климату наблюда­ются реакции со стороны следующих систем:

Сердечно-сосудистой (урежается пульс, снижается уро­вень АД - на 15-25 мм рт.ст.);

Дыхательной (уменьшается частота дыхания);

Выделительной (лучше и равномернее распределяется по поверхности тела кожное сало, более интенсивно и равномерно, без профузного потения, испаряется пот).

В результате происходит снижение величины основного об­мена (на 10-15 %) и температуры тела.

При акклиматизации к колодному, суровому и полярному кли­мату, т.е. к низким температурам, происходит усиление обмена веществ, теплопродукции, увеличение объема циркулирующей крови, быстрее восстанавливается температура кожи. Процессы акклиматизации к холоду облегчают рациональные одежда, обувь, жилище, питание.

Процесс акклиматизации протекает в 3 фазы:

· начальная, для которой характерны физиологические сдвиги, описанные для холодного, жаркого и высокогор­ного климатов;

· перестройка динамического стереотипа, реализующаяся по благоприятному или неблагоприятному вариантам;

· стойкая акклиматизация.

При благоприятном варианте перестройки динамического стереотипа 2-я фаза плавно переходит в 3-ю, чему могут и долж­ны обязательно помогать соответствующие социально-гигие­нические мероприятия.

Неблагоприятное развитие 2-й фазы может сопровождаться появлением дезадаптационных метеоневрозов, артралгий, це­фалгии, невралгий, мышечных болей, снижением общего тонуса и работоспособности организма, а также обострением хроничес­ких заболеваний. И все же при своевременной организации не­обходимых лечебно-профилактических и гигиенических меро­приятий почти всегда можно добиться и в этом случае перехода процесса акклиматизации в 3-ю фазу.

Третья фаза характеризуется устойчивостью обменных про­цессов, нормальным пищевым статусом, высокой работоспо­собностью, нормальной рождаемостью, хорошим физическим и умственным развитием новорожденных, средними уровнями заболеваемости.

Известно, что акклиматизация к жаркому климату осущест­вляется труднее, чем к холодному.

Акклиматизация актуальна для стран, имеющих обширные территории и активные миграционные процессы населения в интересах освоения новых необжитых территорий или же ин­тенсивные международные связи, сопровождающиеся переез­дами людей в разные климатические районы.

Процессы акклиматизации следует учитывать в случае пере­езда в местность с другим климатом независимо от его цели (са­наторно-курортное лечение, экспедиция, туристическая поезд­ка, служба в армии и т.д.).

Большую роль в процессе акклиматизации играют личная ги­гиена, закаливание, тренировки.

Наиболее целесообразно ор­ганизовывать миграции переселенцев в переходные периоды года (весна и осень), когда различия климатопогодных условий не так резко выражены.

Однако для успешной акклиматизации наиболее важны оп­ределенные социально-гигиенические мероприятия, специ­фичные для холодного и жаркого климатов.

Акклиматизации к холодному климату способствуют следу­ющие мероприятия:

Рациональная застройка населенных мест (компактное размещение зданий торцами к господствующим холодным ветрам, устройство крытых переходов между отдельными зданиями, большая полезная площадь помещений, нали­чие зимних садов);

Рациональная одежда и обувь (плохая теплопроводность тканей, паропроницаемость, ветрозащитность и влагонепроницаемость, чтобы обеспечить снижение теплопотерь);

Рациональное питание (высокая энергетическая ценность суточных рационов, включающих не менее 14 % белков, в том числе 60 % животных, 30 % жиров, повышенное со­держание витаминов - аскорбиновой и никотиновой кислот, группы В, D);

Профилактические ультрафиолетовые облучения с помо­щью эритемных ламп на производстве (в фотариях), пла­вательных бассейнах, детских учреждениях и т.д.

В условиях жаркого климата целесообразны следующие ме­роприятия:

Рациональная застройка населенных мест (размещение зданий менее плотное, правильная ориентация окон зданий - исключение западной и юго-западной ориен­тации), озеленение территорий, максимальное использо­вание водного фактора (фонтанов, бассейнов, водоемов и т.д.);

Рациональная вентиляция жилых помещений, примене­ние кондиционеров, устройство открытых лоджий, бал­конов, веранд и т.п.;

Рациональное питание (снижение энергетической ценнос­ти пищевого рациона за счет животных жиров, увеличение поступления водорастворимых витаминов и минеральных солей, теряемых с потом, изменение режима питания - основные приемы пищи утром и вечером);

Рациональный питьевой режим (пьют горячий зеленый чай для усиления потоотделения);

Рациональная одежда и обувь (малотеплопроводная, свет­лых тонов снаружи, свободного покроя, чтобы уменьшить приток тепла извне и усилить воздухообмен; головные уборы в виде чалмы, широкополых панам и шляп).

Гигиеническое значение погоды. Погода - среднее состояние метеорологических условий в данной местности в течение ко­роткого периода наблюдений (часы, сутки, недели). В отличие от климата, погода - неустойчивое состояние метеорологичес­ких условий, вследствие чего она может меняться несколько раз на протяжении суток.

В потоке теплого воздуха образуется циклон, т.е. область по­ниженного давления диаметром примерно 2,5-3 тыс. км, при этом понижение атмосферного давления отмечается от пе­риферии к центру. Погода в циклоне отличается неустойчи­востью, характерны большие перепады уровней давления, тем­пературы, повышенная влажность воздуха, осадки, высокая электропроводность воздуха.

В потоке же холодного воздуха образуется антициклон - область высокого давления, диаметр которой составляет около 5-7 тыс. км, несущий устойчивую погоду, но не обязательно ясную.

Известно, что погода оказывает непосредственное и косвен­ное влияние на здоровье и физиологические функции организ­ма человека.

Непосредственное, или прямое, влияние погоды заключается в воздействии на теплообмен. Так, жаркая безветренная погода в сочетании с высокой влажностью воздуха вызывает напряже­ние терморегуляторных механизмов и может привести к пере­греву в виде теплового удара. Погода с пониженной температурой, высокими влажностью и подвижностью воздуха, перенапрягая механизмы терморегуляции, может способствовать переохлаж­дению организма вплоть до отморожений и гибели от замерза­ния, снижению иммунитета, росту простудных заболеваний, заболеваний периферической нервной системы воспалительно­го характера в виде невритов, радикулитов, невралгий, миози­тов и т.д.

Погодные условия влияют и на инфекционную заболевае­мость. Известно, что жаркая погода способствует развитию ки­шечных инфекций и, кроме того, способствует росту пищевых отравлений бактериального происхождения.

Косвенное влияние погоды связано с воздействием апериоди­ческих изменений погодной обстановки, которые рассогласовы­вают привычные организму ритмы физиологических функций, В первую очередь речь идет о разбалансировке биологических адаптивных ритмов: суточных (циркадных), месячных (цирка­дианных), годичных (цирканных) и гелиобиологических, обус­ловленных 11-летней солнечной активностью.

Органический мир, включая человека, развивался всегда в условиях циклической динамики внешних факторов окружа­ющей среды: ритмичной смены времени суток, времен года, уровней освещенности, в соответствии с которыми синхронно изменяются биоритмы (суточные колебания температуры тела, покоя и активности организма, обменные процессы, секретор­ная и гормональная активность и т.д.).

Установлено, что биологические ритмы имеют приспособи­тельное значение для организма, отражая с пользой для него циклическую динамику окружающей среды. Согласованность режима суток организма, его жизненных функций с внешними циклами способствует жизнедеятельности и работоспособнос­ти человека, и наоборот, неправильная организация труда, ме­няющая привычный режим жизни, например трехсменная ра­бота на некоторых предприятиях и в учреждениях (больницы, телеграф, типографии и т.д.), их снижает.

Цикличность погодных условий в разные времена года (вес­на, лето, осень, зима) влияет и на сезонные ритмы физиологи­ческих процессов (гормональную и секреторную активность, обменные процессы, реактивность организма), которые скорее всего обусловлены характером питания (витаминная недоста­точность, снижение поступления биологически активных ве­ществ) и режимом жизни.

Давно известны заболевания, склонные к сезонным обостре­ниям или более тяжелому течению: язвенная болезнь желудка и двенадцатиперстной кишки, некоторые психические заболе­вания (маниакально-депрессивный психоз), сердечно-сосудис­тые болезни.

Резкие изменения погоды при смене воздушных масс или гелиогеофизических факторов могут отрицательно сказаться на со­стоянии здоровья некоторых людей, которых называют метеолабильными, метеочувствительными или метеопатами. Их число различно в зависимости от возраста, вида патологии, типа выс­шей нервной деятельности. Неблагоприятные изменения по­годы у этих людей вызывают появление гелиометеотропных ре­акций, иногда угрожающих жизни.

Гелиометеотропная реакция не имеет четкого симптомокомплекса и не является нозологической единицей. Ее характер и проявления зависят от вида патологии, исходного состояния организма, типа психической деятельности, особенностей ус­ловий труда и быта.

Большинство метеолабильных людей жалуются на ухудше­ние общего самочувствия, нарушение сна, головокружение, чувство тревоги, снижение работоспособности, быструю утом­ляемость. Отмечаются резкие колебания артериального давле­ния, боли в области сердца, в этих случаях снижается чувстви­тельность к лекарственным препаратам, что может привести к их передозировке.

Разнообразные гелиометеотропные реакции объединяет од­новременность их возникновения у многих больных, находя­щихся в одинаковой метеорологической обстановке.

Г.М, Данишевский рассматривает гелиометеотропные реак­ции как клинические синдромы дезадаптации, т.е. метеоневро­зы дезадаптационного происхождения.

В настоящее время доказано отрицательное влияние небла­гоприятной погоды на течение заболеваний сердечно-сосудис­той, дыхательной, пищеварительной и нервной систем, кожных и глазных болезней, а также рост травматизма, автокатастроф, случаев убийств и суицидов.

Особенно настораживает отрицательное влияние неблаго­приятной погоды на многочисленную категорию больных с па­тологией сердечно-сосудистой системы, у которых увеличи­вается частота острого инфаркта миокарда, гипертензивных кризов, приступов стенокардии, растет смертность.

Погода может влиять неблагоприятно и в случае извращения динамики рассеивания атмосферных загрязнений при наличии феномена температурной инверсии. По мере удаления от по­верхности Земли температура воздуха обычно понижается, но при стойком антициклоне из-за вертикальных потоков хо­лодного воздуха может наблюдаться понижение температуры воздуха в приземном слое и ее более высокие уровни на высоте. В этом случае создается неблагоприятная ситуация с динамикой распространения атмосферных загрязнений, когда интенсивные выбросы автотранспорта и промышленных предприятий в без­ветренную погоду с температурной инверсией не рассеиваются в атмосфере, а прижимаются к поверхности Земли, образуя ядо­витый туман - смог, способствующий возникновению большо­го числа заболеваний органов дыхания, кровообращения, рез­кому увеличению летальности (Бельгия, Великобритания, США, Япония и др).

Взаимодействие организма человека с окружающей воздушной средой не всегда комфортно для человека, поэтому в процессе эволюции появились приспособительные механизмы, нарушение которых из-за резкого изменения физических свойств окружающего воздуха может привести к их резкому срыву и развитию разнообразных патологических состояний в виде нарушений функционального состояния организма.

Совокупность характеристик физиологических систем человека, отражающих взаимодействие организма с его окружающей средой, а также жизнедеятельность и работоспособность и есть функциональное состояние организма.

Не мудрено, что сегодня особое значение приобрели показатели микроклимата помещений где находится человек, как одного из важных физических факторов окружающей среды, от которого во многом зависит функциональное состояние организма людей, находящихся в этих помещениях.

Так что же такое микроклимат? Микроклимат – это климат приземного слоя воздуха небольшой территории (опушка леса, поле, площадь города и т.п.), а также Микроклимат это искусственно создаваемые климатические условия в закрытых помещениях (например, в комнате квартиры) для защиты от неблагоприятных внешних воздействий и создание зоны комфорта.

Влияние микроклимата на человеческий организм определяет характер отдачи тепла в окружающую его среду. В комфортных условиях отдача тепла происходит за счет теплоизлучения (40-50 %), теплопроведения: конвекция (20 %), кондукция (> 10 %) и испарения (до 25 %).

Проведение – это отдача тепла при соприкосновении с воздухом (конвекция) и предметами (кондукция), имеющими более низкую температуру.

Излучение – это испускание волн определенной длины предметами. Зависит от температуры предмета и не зависит от температуры окружающей среды.

Испарение – это отдача тепла путем испарения пота с поверхности тела. Зависит от влажности окружающей среды. Если температура внешней среды выше температуры тела, то этот вариант теплоотдачи – единственный. Испарение интенсивней при низкой влажности и большой поверхности тела.

Неблагоприятное влияние микроклимата, наиболее часто, обусловлено изменением температуры, влажности и скорости движения окружающего воздуха. Изменению микроклиматических условий способствует также атмосферное давление. От физических свойств воздуха зависит климат и погода.

Климат – среднее состояние микроклиматических условий, установленных на основании многолетних наблюдений и характерное для данной местности.

Погода – среднее состояние метеорологических условий в течение короткого промежутки времени.

Рассмотрим гигиеническое значение температуры окружающего воздуха. Организм человека эволюционно обладает совершенными механизмами физической и химической терморегуляции, которые позволяют ему приспосабливаться к самым различным температурным условиям, а также кратковременно переносить значительные колебания температуры без ущерба для здоровья. Однако возможности этих механизмов не безграничны, и при очень высоких и очень низких температурах воздуха организм может не сохранять постоянство температуры тела, то есть перегреться или переохладиться. Температуру окружающего воздуха измеряют с помощью термометров фиксирующих и измеряющих. К фиксирующим относятся максимальные и минимальные. К измеряющим – спиртовые, ртутные и электрические. При необходимости непрерывной регистрации температуры воздуха применяют термографы – самопишущие приборы.

Влажность воздуха, с точки зрения ее гигиенического значения, играет большую роль как фактор, существенно влияющий на теплоотдачу организма человека. Существует несколько ее видов: абсолютная – количество водяных паров, содержащихся в единице объема воздуха при данной температуре (измеряется в мм рт. ст. или г/м 3), максимальная – количество водяных паров, которые насыщают единицу объема воздуха при данной температуре (измеряется в тех же единицах), относительная – отношение абсолютной влажности к максимальной, выраженное в процентах. Относительная влажность имеет наибольшее гигиеническое значение, поскольку показывает степень насыщения окружающего воздуха водяными парами.

Для человека практическое значение также имеют такие показатели как дефицит насыщения и точка росы: физический дефицит насыщения – это разность между максимальной и абсолютной влажностью при данной температуре, физиологический дефицит – разность между максимальной влажностью при температуре тела и абсолютной влажностью при данной температуре, температура точки росы – температура, при которой величина абсолютной влажности становится максимальной.

Влажность воздуха измеряется с помощью психрометров (Августа и Ассмана) и гигрометров. При необходимости фиксации измеренной влажности можно воспользоваться гигрографом.

Гигиеническое значение атмосферного давления. Обладая массой и весом, воздух создает у поверхности земли барометрическое или атмосферное давление. С поднятием на высоту величина атмосферного давления уменьшается, а при опускании под землю или под воду соответственно повышается. Впрочем и на поверхности земли давление непостоянно, неравномерно и на прямую зависит от метеорологических и географических условий, времени суток и года. На уровне моря (широта 45 º и температуре 0 º С) атмосферное давление составляет 1 атмосферу или для многих более понятные 760 мм рт. ст. При таких условиях атмосфера давит с силой около 1 кг на 1 см 2 поверхности земли. Колебания атмосферного давления у поверхности земли в сутки составляют 4-7 мм рт. ст., а в году – 20-30.

Такие изменения здоровые люди чаще всего на себе не ощущают, тем не менее, по данным медицинской статистики, до 70 % людей в той или иной степени реагируют на изменения погоды (изменение атмосферного давления). Явление это получило название метеопатической реакции (метеопатии).

Метеопаты люди, испытывающие повышенную чувствительность к смене погоды и климата. Люди такого типа особенно часто выявляются в случаях с хроническими нарушениями дыхательной, нервной, сердечно-сосудистой, опорно-двигательной систем организма.

Метеочувствительность – реактивное состояние организма. Оно проявляется и исчезает под влиянием целого комплекса биологических связей человека с природой.

Из чего можно сделать вывод, что метеопатию нельзя отнести к болезням, хотя она и является нежелательным состоянием для человека.

Ввиду того, что выявить самостоятельное влияние небольших колебаний атмосферного давления на человеческий организм очень затруднительно, его рассматривают как фактор, характеризующий состояние погоды в целом, оказывающий суммарное воздействие на человека.

Атмосферное давление измеряют с помощью барометра-анероида или ртутного барометра. Для непрерывной регистрации колебаний атмосферного давления используют барограф.

Микроклимат в помещении является важнейшим физическим фактором окружающей среды, от которого зависит во многом работоспособность и состояние здоровья людей. В практических условиях нередко возникают ситуации, которые связанны с необходимостью пребывания людей в помещениях с неблагоприятными микроклиматическими условиями. В этой связи неизменно актуальными являются задачи гигиенического исследования основных закономерностей формирования микроклимата, термоадаптации человеческого организма, путей ускорения или облегчения этого процесса и, в конечном счете, гигиенической оценки микроклимата как базовой основы для прогнозирования физического состояния и работоспособности людей.

Геннадий Карман, врач-лаборант

УЧЕБНЫЙ МАТЕРИАЛ ДЛЯ ВЫПОЛНЕНИЯ ЗАДАНИЯ

Микроклимат помещений характеризуется совокупностью таких факторов, как атмосферное давление, температура, влажность, скорость движения воздуха и тепловое излучение.

Влияние микроклимата на организм человека определя­ется характером отдачи тепла в окружающую среду. Отдача тепла человеком в комфортных условиях происходит за счет теплоизлучения (до 45%), теплопроведения - конвекции, кондукции (30%), испарения пота с поверхности кожи (25%). Наиболее часто неблагоприятное влияние микроклимата обусловлено повышением или понижением температуры, влажности или скорости движения воздуха.

Высокая температура воздуха в сочетании с повышенной влажностью и малой скоростью воздуха резко затрудняет отдачу тепла путем конвекции и испарения, в результате чего возможно перегревание организма. При низкой температуре, высокой влажности и скорости воздуха наблюдается противо­положная картина-переохлаждение. При высокой или низ­кой температуре окружающих предметов, стен снижается или увеличивается отдача тепла путем излучения. Возрастание влажности, т. е. насыщенности воздуха помещения водяными парами, приводит к снижению отдачи тепла испарением.

Неблагоприятный микроклимат производственного поме­щения может отрицательно влиять на самочувствие и работо­способность человека, а в определенных случаях может при­вести к расстройству здоровья. Особенно чувствительны к изменению микроклиматических условий лица с сердечно­сосудистыми, нервно-психическими и другими заболева­ниями.

По состоянию микроклимата можно судить об эффектив­ности воздухообмена в помещении, в частности о работе приточно-вытяжной вентиляции.

Микроклиматические условия в лечебно-профилактических учреждениях имеют важное значение в общем комплексе лечебных мероприятий. Для правильной оценки микроклиматических условий в лечебно-профилактических учреждениях врачу необходимо освоить устройство приборов, методические подходы исследования физических свойств воздушной среды и умение даватьим гигиеническую оценку.

ТЕМА 1: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТЕМПЕРАТУРЫ ВОЗДУХА.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение температуры воздуха.

2. Радиационная температура и ее гигиеническое значение.

3. Особенности неблагоприятного воздействия высоких, низких температур и их профилактика.

4. Теплообмен человека с окружающей средой.

5. Требования к температурному режиму (допустимые его колебания в течение суток при центральном и местном отоплении, колебания по вертикали и горизон­тали) в жилых, общественных зданиях и больничных помещениях. Нормы опти­мальных температур в больничных помещениях различного назначения.

6. Приборы, используемые для определения температуры воздуха, радиационной температуры, принципы их устройства и правила работы. Методы измерения температуры воздуха.

7. Отличительные особенности устройства и принцип работы максимального и минимального термометров.

8. Устройство термографа и правила регистрирования температуры данным при­бором.

Наиболее благоприятной температурой воздуха в жилых помещениях для человека, находящегося в покое и одетого в обычный домашний костюм, является 18-20 0 C, а радиационной - 20 0 С при нормальной влажности (40-60%) и подвиж­ности - (0,2 - 0,3 м/сек) воздуха. Температура воздуха выше 24-25 0 C и ниже 14-15 0 С считается неблагоприятной, способной нарушать тепловое равновесие организма и послужить причиной развития различных заболеваний. Однако при выполнении физической работы или при изменении влажности и подвижности воздуха уровни оптимальных температур будут иными. Так, при физической работе средней тяжести оптимальной температурой воздуха считается 10-15 0 C, а при тяжелой - понижается до 5-10 0 С.

При наличии в помещении источников тепловой радиации, а именно: устано­вок или приборов, с поверхности которых возможно излучение пониженной или высокой температуры, а также при наличии в помещениях большой площади остекления следует учитывать совместное воздействие на организм конвекцион­ного и лучистого тепла. В этих условиях человек не только подвергается влиянию температуры воздуха, но и находится в зоне действия лучистого тепла от имею­щихся в обследуемом помещении источников нагретых или охлажденных повер­хностей (поверхность окон и др.).

Особое значение имеет определение радиационной температуры при неравно­мерной тепловой нагрузке на человека в производственных условиях, а также при нерациональном размещении (в непосредственной близости к окнам, дверным проемам и др.) больных в лечебных учреждениях. В этих условиях определяют радиационную температуру, т.е. температуру, показывающую совместное дейст­вие всех видов радиационного воздействия,

В лечебных учреждениях нормативы температуры воздуха, приведенные в таблице 3, и рекомендуемых средних величин общей и радиационной температур в таблице 4, обосновываются производственным назначением помещений, кон­тингентом госпитализированных больных и особенностями их заболеваний.

Таблица 3. Расчетная температура воздуха и допустимые ее перепады по горизонтали и вертикали в отапливаемых помещениях

ПОМЕЩЕНИЯ Темпе­ратура Колебания тем­пературы, 0 С
по го­ризон­тали по вер­тикали
1. Жилая комната квартиры или общежития 2,5
2. Палаты для взрослых терапевтических больных, помещения для матерей детских отделений, помещения гипотерапии 2,5
3. Палаты для туберкулезных больных (взрослых, детей) 2,5
4. Палаты для больных гипотиреозом 2,5
5. Послеоперационные палаты, реанимационные залы, палаты ин­тенсивной терапии, родовые, боксы, операционные, наркозные, палаты для ожоговых больных, барокамеры 2,5
6. Послеродовые палаты 2,5
7. Палаты для недоношенных, грудных, новорожденных и травмированных детей 2,5
8. Боксы, полубоксы, фильтр-боксы, предбоксы 2,5
9. Палатные секции инфекционного отделения 2.5
10. Предродовые, фильтры, приемно-смотровые боксы, перевязочные, манипуляционные. предоперационные процедурные, комнаты для кормления детей в возрасте до одного гола, помещения для прививок 2,5
11. Стерилизационные при операционных 2.5
Вид помещения Средняя темпе­ратура воздуха Радиаци­онная темпе­ратура
1. Жилые помещения 18-20
2. Учебные лаборатории, классы 17-19
3. Аудитории, залы 16-18 16-17
4. Физкультурные залы 12-16
Ванные комнаты, бассейн 20-23 20-22
6. Врачебные кабинеты 22-24 22-24
7. Операционные 25-30 25-30
8. Палаты для соматических больных 20-23 20-22
9. Палаты для температурящих больных 18-20 18-20
10. Палаты для ожоговых больных 26-30 26-30

Измерение температуры воздуха, поверхностей оборудования, предметов в поме­щениях различного назначения производится термометрическими приборами. Термометры по своему назначению разделяются на измеряющие , рассчитанные на определение температуры в момент наблюдения, и фиксирующие , позволяющие полу­чить максимальное или минимальное значение температуры за определенный период контроля (сутки, неделя, месяц и т. д.).

Кроме того, термометры подразделяют­ся на бытовые, аспирационные, минимальные, максимальные. По своему назна­чению термометры подразделяются на пристенные, водяные, почвенные, хими­ческие, технические, медицинские и др.

Бытовой термометр - комнатный или уличный спиртовой термометр, до­статочно точный для наблюдения за температурой воздуха. Ртутные термометры - применяются для измерения температур от -35 0 C до +357 0 C. В пределах высоких температур показания ртутного термометра более точные вследствие постоянства коэффициента расширения ртути.

К измеряющим термометрам относятся спиртовые, ртут­ные и электрические, к фиксирующим - максимальный и минимальный термометры (рис. 2).

Рис. 2. Термометры: а - максимальный; б - минимальный.

Максимальный (ртутный) термометр предназначен для регистрации самой высокой температуры. Это обеспечивается за счет специальной конструкции ртутного резервуара, в дно которого впаян стеклянный штифт, последний одним концом входит в капиллярную трубку, сужая ее просвет.

При повышении температуры воздуха ртуть, расширяясь, поднимается вверх через суженный просвет капилляра. При понижении температуры воздуха находящаяся в капилляре ртуть из-за его сужения не в состоянии возвратиться в ре­зервуар. Перед началом измере­ния, чтобы возвратить ртуть в резервуар, термометр несколько раз встряхивают. Измерение тем­пературы воздуха проводят при горизонтальном положении тер­мометра.

Минимальный термометр (спиртовой) используется для определения самой низкой темпе­ратуры воздуха. Внутри его ка­пиллярной трубки, в спирту, на­ходится стеклянный штифт с утолщениями в виде булавочных головок на концах. При повы­шении температуры воздуха спирт, расширяясь, свободно обтекает штифт, не изменяя его положения. В свою очередь при понижении температуры спирт, сжимаясь, силами поверхностно­го натяжения мениска перемеща­ет штифт в сторону резервуара, устанавливая в положение, соот­ветствующее минимальной тем­пературе в данный момент. Пе­ред измерением температуры штифт необходимо привести в соприкосновение с мениском спирта, подняв резервуар вверх, и затем установить термометр в рабочее, строго горизонтальное положение.

Для непрерывной регистра­ции колебаний температуры воз­духа в течение определенного отрезка времени (сутки, неделя) применяют самопишущие прибо­ры - термографы . Эле­ментом, воспринимающим изменения температуры, у этих приборов служит биметал­лическая пластинка. С повышением или понижением темпе­ратуры воздуха кривизна биметаллической пластинки изме­няется. Эти колебания через систему рычагов передаются на перо с чернилами, которое регистрирует на ленте, закрепленной на вращающемся с определенной скоростью барабане, температурную кривую.

Существуют три системы термометров, отличающихся друг от друга градуировкой шкалы:

1. Термометры Цельсия - 0 на шкале обозначает точку таяния льда, 100 - точку кипения воды.

2. Термометры Реомюра - 0 точка таяния льда, 80 - точка кипения воды.

3. Термометры Фаренгейта - +32 обозначает точку таяния льда, +212 - точку кипения воды. Для перевода градусов температуры с одной системы термометров на другую пользуются следующей таблицей:

1 0 Цельсия (C) = 4/5 градуса Реомюра = 9/5 градуса Фаренгейта.

1 0 Реомюра (R) = 5/4 градуса Цельсия = 9/4 градуса Фаренгейта.

1 0 Фаренгейта (F) = 5/9 градуса Цельсия = 4/9 град. Реомюра.

При переводе градусов Фаренгейта на градусы С и R следует предварительно вычесть из них 32, а при переводе на Фаренгейта к результатам перечисления следует прибавить 32.

ПРАВИЛА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА.

Измерение температуры воздуха в закрытых помещениях, школах, кварти­рах, детских, лечебных учреждениях, производственных помещениях и др. про­водится с соблюдением следующих правил: при измерении температуры воздуха необходимо защищать термометр от действия лучистой энергии печей, ламп и прочих открытых источников энергии. В жилых помещениях измерение темпера­туры воздуха проводят на высоте дыхания (1,5 м от пола) в центре комнаты. Для более точных измерений одновременно термометры устанавливаются в центре комнаты, наружном и внутреннем углах на расстоянии 0,2 м от стен.

В лечебных учреждениях измерение температуры воздуха дополнительно прово­дится и на высоте 70 см от пола. Перепады температуры определяются и оценива­ются по вертикали и горизонтали. Для определения перепада температуры по вертикали, термометры устанавливаются в центре и по углам поме­щения на высоте 0,2; 0,7 и 1,5 м от пола. Для определения перепада температуры по горизонтали вычисляется разница между максимальной и минимальной тем­пературой отдельно по каждому уровню (0,2; 0,7 и 1,5 м) во всех измеренных участках помещения. Суточный перепад температуры в палатах измеряется с помощью максимального и минимального термометров, которые устанавливают­ся в центре помещения на уровне 0,7 и 1,5 м от пола.

ПРОТОКОЛ

исследования и оценки температурного режима

в _________________________________________________________________

(наименование объекта)

Дата и время исследования ___________________________________________

Заключение:

Подпись исследователя

ТЕМА 2. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА БАРОМЕТРИЧЕСКОГО ДАВЛЕНИЯ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение атмосферного давления и единицы его измерения.

2. Влияние на организм пониженного атмосферного давления и меры профилак­тики.

3. Влияние на организм повышенного атмосферного давления и меры профилак­тики.

4. Приборы для измерения атмосферного давления, их устройство и правила работы.

Давление атмосферы, способное уравновесить столб ртути высотой 760 мм при температуре 0 0 C на уровне моря и широте 45 0 , принято считать нормальным, равным 1 атмосфере, а в пересчете в гсктопаскали оно будет составлять 1013 гПа.

Для пересчета величины давления, выраженной в мм рт. ст., в гПа, надо дан­ную величину умножить на 4/3, и наоборот, для перевода гПа в мм рт. ст. надо умножить первую величину на 3/4.

Атмосферное давление измеряют с помощью ртутного барометра или барометра-анероида (рис. 3). При необходимо­сти непрерывной регистрации колебаний атмосферного дав­ления используют барограф (рис. 2). Основной частью этого прибора является анероидная коробка, реагирующая на изме­нения давления воздуха. При повышении давления стенки коробки прогибаются внутрь, а при снижении - выпрямля­ются. Эти движения передаются с помощью соединительной системы стрелке. Атмосферное давление в среднем колеблется в пределах 1013 ±26,5 гПа (760 ±20 мм рт. ст.).

A B

Рис. 3. A - барометр-анероид; B – барограф

ОФОРМЛЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Давление атмосферы по барометру-анероиду № ________

Мм рт. ст. или · 4/3 = ____________ мб или гПа

Показания снял (подпись)

ТЕМА 3. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ВЛАЖНОСТИ ВОЗДУХА

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение влажности воздуха.

2. Какие понятия применяются для характеристики влажности воздуха и в каких единицах они выражаются.

3. Гигиенические нормативы влажности в помещениях и мероприятия, направ­ленные на улучшение температурно-влажностного режима помещений.

4. Приборы, используемые для определения влажности воздуха, их устройство, принцип действия и правила работы.

При гигиенической оценке влажности воздуха исполь­зуются следующие ее характеристики: абсолютная, макси­мальная, относительная влажность; физический дефицит влажности и др.

Влажность воздуха зависит от содержания в нем водяных паров. В практике чаще всего для характеристики влажности воздуха пользуются значениями относительной влажности и дефицита насыщения воздуха водяными парами.

Абсолютная влажность - упругость (парциальное давление) водяных паров, находящихся в данное время в воздухе, выраженное в миллиметрах ртутного столба.

Максимальная влажность – упругость водяных паров при полном насыщении воздуха влагой при данной температуре.

Относительная влажность – отношение абсолютной влажности к максимальной, выраженной в процентах (т.е. насыщение воздуха водяными парами в % от максимально возможного)

Дефицит насыщения (физический дефицит) – разность между максимальной и абсолютной влажностью.

Приборы, используемые для определения влажности, называются психрометрами . Бывают станционные психрометры (Августа) и аспирационные (Ассмана).

Психрометр Августа состоит из двух спиртовых термометров, укрепленных рядом в открытом футляре. Резервуар одного из термометров обернут тонкой тканью, конец которой опущен в трубку - сосуд с дистиллированной водой. С поверхности влажного термометра испаряется вода - тем сильнее, чем суше воздух, поэтому он показы­вает более низкую температуру, чем сухой термометр, и разница в показаниях термометров будет тем больше, чем суше воздух.

Психрометр устанавливают на высоте 1,5 м, ограждая от источников лучистой энергии и случайных движений воздуха. Продолжительность наблюдений 10-15 минут.

A = f – a · (t 1 - t 2) · B мм рт. ст. (1)

А - искомая абсолютная влажность,

f - максимальная влажность (по таблице 5) при t 2 ,

а - психрометрический коэффициент (для атмосферного воздуха - 0,00074; для ком­натного - 0,0011).

В - барометрическое давление (мм рт. ст.)

Относительная влажность определяется по таблице (табл. 4) или вычисляетсяпо формуле:

P - искомая влажность (относительная), %

А - абсолютная влажность,

М - максимальная влажность по таблице при температуре сухого термо­метра.

Таблица 3. Максимальная влажность воздуха при различной температуре

Темпе­ратура Напряжение водяных паров в мм рт. ст. Температура Напряжение водяных паров в мм рт.ст. Вес водяных паров, насыщаю­щих воздух, гр/м
-5 3,113 3,360 13,530 13,552
-4 3,387 3,614 14,421 14,391
-3 3,662 3,902 15,357 15,329
-2 3,995 4,194 16,364 16,203
-1 4,267 4,522 17,391 17,164
4,600 4,874 18.495 18,204
4,940 5,210 19,659 19,284
5,302 5,574 20,888 20,450
5,687 5,963 22,184 21,604
6,097 6,370 23,550 22,867
6,534 6,791 24.988 24,190
6,998 7,260 26,505 25,582
7,492 7,734 28,101 27,004
8.017 8,252 29,782 28,529
8,574 8,713 31,584 30,139
9,165 9.372 33,406 31,890
9,792 9,976 35,359 33,640
10,457 10,617 37,411 35,480
11,162 11,284 39.565 37,400
11,908 12,018 41,827 39,410
12,699 12,763 44,201 41,510
46,691 43,710

Аспирационный психрометр (Ассмана) (рис. 4) также состоит из двух, но ртутных термометров, закрепленных в специальной оправе, имеющей заводной механизм с вентилятором, с помощью которого обес­печивается равномерное движение воздуха около резервуаров обоих термомет­ров. Резервуары с ртутью окружены двойными металлическими гильзами, пре­дохраняющими термометры от нагревания лучистым теплом и движения наруж­ного воздуха. Эти условия дают возможность для более точного определения влажности воздуха, и поэтому величина "а" в формуле является постоянной.

Перед наблюдением ткань на одном из резервуаров термометра смачивается водой из пипетки. Затем необходимо завести ключом пружину вентилятора, прибор установить в месте наблюдения (на штатив или крюк), через 3-4 мин. температура обоих термометров устанавливается и можно снять показания при работающем вентиляторе.

Рис. 4. Психрометр Ассмана (аспирационный)

Абсолютная влажность вычисляется по формуле:

Мм рт. ст. (3)

K - искомая абсолютная влажность,

f - максимальная влажность при температуре влажного термометра (по

таблице 3).

0,5 - психрометрический коэффициент,

t 1 - температура сухого термометра,

t 2 - температура влажного термометра,

В - барометрическое давление (вмм рт.ст.) в момент наблюдения,

755 - среднее барометрическое давление

Определение относительной влажности производят путем пересчета по формуле (2), или определяют по таблице для аспирационного психрометра (табл. 5)

Для измерения относительной влажности существует прибор, который носит название гигрометра (рис. 5). Он со­стоит из воспринимающего элемента - обезжиренного воло­са, один конец которого укреплен на верхней части рамы, другой (нижний) перекинут через блок и прикреплен к стрелке. В данном устройстве используется свойство волоса изменять свою длину в зависимости от влажности. С увеличением влажности воздуха волос удлиняется, с уменьшением, наобо­рот, укорачивается, приводя в движение стрелку, которая перемещается по шкале, показывающей относительную влажность в процентах.

Рис. 5. Гигрометр

Для постоянной и систематической записи колебаний влажности воздуха в течение определенного промежутка вре­мени (сутки, неделя), применяют самопишущие приборы – гигрографы (рис. 6), состоя­щие из:

а) датчика влажности - пучок обезжиренных человеческих волос;

б) передаточного механизма;

в) регистрирующей части - стрелка с пером и барабан с часовым механизмом. Диаграммная бумажная лента разделена горизонтальными параллельными ли­ниями времени.

Рис. 6. Гигрограф


Таблица 4. Определение относительной влажности воздуха по психрометру Августа

Показа­ния су­хого термометра Показание влажного термометра, 0 С
5,3 5.7 6,0 6,4 6,8 7,2 7,6 8,0 8,4 8,7 9.1 9,5 9,9 10,3 10,7 11.3 11,7 12,0
5,9 6,4 6.8 7,2 7,6 8.0 8,4 8,8 9.2 9,6 10,0 10,4 10,8 11.1 11.5 11.8 12,2 12,6 13,0
6.6 7.1 7.5 8,0 8,4 8,6 9.2 9.7 10,1 10.5 10.9 11,3 11,7 12.1 12,5 12,8 13,2 13,6 14,0
7,3 7,8 8,7 9,2 9,6 10.0 10,9 11,4 11,8 12,2 12,6 13,0 13,4 14.2 14,6 15.0
8,0 8,5 9.0 9.4 9,9 10,3 10.8 11,3 11,8 12,2 12,6 13,1 13.5 14,0 14,4 14.8 15,6 15.6 16.0
8,6 9,1 9,7 10,2 10,7 11,2 11.6 12,1 12,6 13,0 13,5 13,9 14,4 14,9 15,3 15,8 16.2 16,6 17,0
9,3 9,9 10.4 10,9 11,4 11,9 12,4 12,9 13,4 13,9 14,4 14,8 15,3 15.7 16,2 16.6 17,1 17.5 18.0
10,0 10,6 11,1 11,7 12,2 12,7 13.2 13.8 14,8 14,8 15,3 15,7 16,2 16,7 17,2 17,6 18,1 18,5 19,0
10,6 11,2 11,8 12,4 12,9 13,4 14,0 14,5 15.1 15,6 16,1 16,6 17,1 17,6 18,1 18,5 19.0 19,5 20,0
11,2 11,9 12,6 13.1 13,6 14,2 14.8 15.3 15,9 16,6 17,1 17.5 18,0 18.6 19,1 19,5 20,0 20,5 21,0
11,8 12,5 13.2 13,8 14,4 15.0 15.6 16.1 16.7 17,3 17,9 18,4 18.9 19,5 20,0 20,5 21,0 21,5 22,0
12.5 13.1 13,8 14.4 15.1 15.7 16,4 17.0 17.6 18,2 18,8 19,3 19,8 20,4 20.9 21,5 22,0 22,5 23,0
13,1 13.8 14,5 15,2 15,9 16,5 17,1 17,8 18,4 19,0 19,6 20,1 20,7 21,3 21.9 22,4 23,0 23,0 24,0
13.7 14,5 15.2 15,9 16,6 17,2 17.9 18,5 19,2 19,8 20,5 21.2 21,7 22,2 22,8 23,3 23,9 24.4 25.0
Относит. влажность %

Таблица 5. Определение относительной влажности по показаниям аспирационного психрометра

Показания сухого термометра Показание влажного термометра, 0 C

ПРОТОКОЛ

исследования и оценки относительной влажности воздуха

(наименование объекта)

1. Дата исследованиявремя час

2. Исследование проводилось психрометром_____________________________

3. Показания сухого термометра_________ 0 C

4. Показания влажного термометра________ 0 C

5. Расчет влажности по формуле:

6. Расчет влажности по таблице:

Заключение по влажностному режиму в обследованном помещении:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ТЕМА 4: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ПОДВИЖНОСТИ ВОЗДУХА; ПОСТРОЕНИЕ И ОЦЕНКА РОЗЫ ВЕТРОВ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение подвижности воздуха.

2. Что такое "роза ветров", каково ее гигиеническое значение?

3. Гигиенические нормы подвижности воздуха в жилых помещениях и больнич­ной палате.

4. Профилактика неблагоприятного воздействия на человека больших и малых скоростей движения воздуха.

5. Какими способами определяют направление воздушных течений в открытой атмосфере и в помещении?

6. Какими приборами определяют подвижность воздуха в открытой атмосфере и в помещении, их устройство и правила работы?

Движение воздуха принято характеризовать направлением и скоростью . На­правление движения воздуха определяется точкой горизонта, откуда дует ветер, а скорость движения - расстоянием, пройденным массой воздуха в единицу вре­мени и выражается в м/сек.

Оба эти показателя имеют большое физиолого-гигиеническое значение, т.к. из­менение направления ветра служит показателем перемены погоды, а движение воздуха:

1) обеспечивает проветривание населенных мест, способствует рассеиванию и снижению атмосферных загрязнений;

2) является важнейшим показателем формирования микроклимата в открытой атмосфере и в помещениях;

3) оказывает большое воздействие на состояние теплового ощущения, нервно-психической сферы организма, процессы терморегуляции и функции дыхания.

Наиболее благоприятной скоростью ветра в наружной атмосфере в летнее время при обычной легкой одежде считается 1-4 м/сек. Раздражающее действие ветра проявляется при скорости выше 6-7 м/сек.

В жилых помещениях, классах, групповых комнатах, детских, лечебных учреж­дениях оптимальной считается подвижность воздуха в пределах 0,2-0,4 м/сек; при меньшей скорости имеет место недостаточный воздухообмен, а при движени­ях воздуха выше 0,4 м/сек отмечается неприятное ощущение сквозняка. В спор­тивных залах допускается скорость движения воздуха до 0.5-0,6 м/сек.

Способы определения направления воздушных течений. Направление ветра в открытой атмосфере измеряется с помощью специального прибора - флюгера и обозначается начальными буквами наименований сторон све­та: С -север, Ю - юг, В - восток, 3 - запад. Кроме четырех главных румбов, использу­ются промежуточные, находящиеся между ними, и в таких условиях направле­ние ветра определяется восемью румбами.

В помещении направление движения воздуха можно определить по отклонению пламени свечи, по отклонению листков папиросной бумаги, подвешенных на нитке; по дыму, исходящему от зажженного кусочка ваты, пропитанного раство­ром четыреххлористого титана (TiCl 4) и укрепленного на конце проволоки. В гигиенической практике имеет значение не только одномоментное направление, как таковое. Велика роль господствующего направления ветра, которое устанавливается на основании обобщения многолетних метеорологических наблюдений повторяемости ветра по румбам, характерной для данной мест­ности.

СОСТАВЛЕНИЕ "РОЗЫ ВЕТРОВ". "Роза ветров" - это графическое изображение повторяемости ветров по румбам (сторонам света), за определенный период (месяц, сезон, год) или за несколько лет.

Для составления "розы ветров" надо сложить число всех случаев ветра и штиля за известный срок, полученная сумма принимается за 100, а число случаев ветра по каждому румбу (и штиля) вычисляется в процентах по отношению к сумме всех случаев ветра и штиля, принятой за 100.

После этого строят график. Для этого из центра проводят 8 линий, обозначающих 8 румбов (С, В, СВ, В, ЮВ, Ю, ЮЗ, 3, СЗ). Затем откладывают по всем линиям в одинаковом масштабе отрезки вычисленных процентных величин ветра всех 8 румбов и штиля, и соединяют последовательно вершины соседних между собой прямыми линиями. Из центра графика описывают окружность с радиусом, соот­ветствующим процентному числу штиля (рис.7).

Рис. 7. Роза ветров

Учитывая розу ветров, можно правильно разместить жилые, медицинские, аптечные и другие учреждения по отношению к источникам загрязнения воздуха (промышленные предприятия и др.). На рис. 7 роза ветров указывает на преимущественное северо-восточное направле­ние ветров в течение года, поэтому жилые дома, аптеки, больницы и т. д. следует размещать в северо-восточном направлении (наветренная сторона), а промышленные предприятия и другие источ­ники загрязнения - в юго-западном (подветренная сторона)

Приборы для измерения скорости движения воздуха (рис. 8.)

Скорость движения воздуха определяют с помощью анемометров (прямой способ) или кататермометров (косвенный способ). Чашечный анемометр (рис. 8A) предназначен для измерения скорости ветра от 1 до 50 метров в секунду. Воспринимающей частью прибора служит чашечная мельница, полусферы которой обращены в одну сторону. Вращение полусфер передается счетчику оборотов, который являясь регистрирующей частью прибора, ведет от­счет на циферблатах расстояния, пройденного воздушными массами.

Прибор имеет несколько циферблатов, где фиксируются единицы, десятки, сотни и тысячи метров расстояния изучаемого ветра.

A B C

Рис. 8. Анемометры: A – чашечный, B – крыльчатый, C – кататермометры

Крыльчатый анемометр (рис. 8B) предназначен для измерения скорости движения воздуха в пределах от 0,5 до 10 метров в секунду. Воспринимающей частью прибора является колесико с легкими алюминевыми крыльями, огражденными металли­ческим кольцом. Регистрирующая часть аналогично чашечному анемометру представлена тремя циферблатами.

Рабочее положение перечисленных анемометров должно быть таким, чтобы ло­пасти мельницы всегда были перпендикулярными направлению воздушного по­тока. Измерение скорости движения воздуха чашечным и крыльчатым анемомет­рами проводят в течение 1-2 мин. после чего счетчик выключают и записывают показания. Разность конечного и начального показаний делят на количество секунд работы анемометра.

ОПРЕДЕЛЕНИЕ СКОРОСТИ ДВИЖЕНИЯ ВОЗДУХА.

Чашечный и крыльчатый анемометры подносят к работающему вентилятору (открытой форточке) в выключенном состоянии, предварительно записав поло­жение стрелок на циферблатах, и после разгона полушарий одновременно вклю­чают анемометр и секундомер на 1-2 минуты, после чего выключают прибор и записывают показания циферблатов. Опре­деление производят 3 раза и берут среднее из трех измерений.

ПРОТОКОЛ

исследования и оценки подвижности воздуха

в ___________________________________________________________________

(наименование помещения)

1. Дата исследования ___________________________________________

2. Замеры движения воздуха проводились анемометром _____________

3. Результаты первого замера __________________________ м/сек

4 .Результаты второго замера __________________________ м/сек

5. Результаты третьего замера _________________________ м/сек

6. Среднее из всех замеров ____________________________ м/сек

ЗАКЛЮЧЕНИЕ: Указать, соответствуют ли полученные данные гигиениче­ским нормативам. Обосновать мероприятия по оптимизации подвижности возду­ха в обследованном помещении.

Исследование проводил (подпись)

ТЕМА 5: МЕТОДЫ ИЗУЧЕНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА КОМПЛЕКСНОГО ДЕЙСТВИЯ МЕТЕОФАКТОРОВ НА ОРГАНИЗМ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Механизмы терморегуляции в организме

2. Физическая терморегуляция. Характеристика путей отдачи тепла и обуслав­ливающих их факторов.

3. Погода, ее определение и определяющие ее факторы. Влияние погоды на орга­низм человека.

4. Метеотропные реакции, заболевания и их профилактика.

5. Клиническая классификация погод, их характеристика и использование в работе врача.

6. Понятие о климате и климатообразующих факторах; классификация климатов и их физиолого-гигиеническая характеристика.

7. Влияние климата на здоровье, формирование, течение заболеваний и их про­филактика.

8. Проблема акклиматизации на современном этапе, и пути ее реализации.

9. Основные принципы закаливания организма, способы и методы закаливания организма.

10. Методы изучения комплексного влияния метеофакторов на организм,ихотличительные особенности, преимущества и недостатки.

11. Сущность метода определения охлаждающей способности воздуха; использу­емые для этого приборы,их устройство и правила работы.

12. Учение об эффективных температурах. Зона, линия комфорта.

Тепловое равновесие в организме человека, как и всех животных, возможно только при условии, если приход тепла равен расходу; в противном случае наблю­дается или перегревание или переохлаждение тела. В зависимости от характера питания, выполняемой работы, одежды, возраста, состояния здоровья и физиче­ских факторов окружающей среды (температуры, влажности, подвижности воз­духа, лучистой энергии) величины теплопродукции и теплоотдачи изменяются в широких пределах. Экспериментально установлено, что для поддержания тем­пературы тела на нормальном уровне необходимо, чтобы одетый человек терял при легкой работе 1,2-1,4 милликалории тепла в секунду с 1 см 2 поверхности тела; при средней и тяжелой работе теплопотери возрастают в 2-3 и более раз. Непос­редственное определение величины теплопотерь организмом крайне сложно, поэтому пользуются различными косвенными способами их определения. Одним из данных способов является метод кататермометрии, позволяющий определить величину потери тепла физическим телом в зависимости от температуры и ско­рости движения воздуха. Хотя он и не может воспроизвести условия потери тепла с поверхности тела человека, которые, как известно, зависят не только от охлаж­дающей способности воздуха, но и от работы терморегуляторных систем организ­ма. С помощью данного метода установлено, что оптимальное тепловое самочув­ствие у лиц "сидячих" профессий при обычной одежде в помещениях наблюдается при величине охлаждения кататермометра в пределах 5,5-7,0 милликалории в секунду. При более высоких показаниях кататермометра данные группы людей будут испытывать холод, а при меньших - духоту; при показаниях кататермомет­ра 3,2 милликалории в секунду повышается потоотделение.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ. Кататермометры бывают двух типов: кататермометр Хилла, имеющий ци­линдрический резервуар и шаровой кататермометр. У кататермометраХиллашкала термометра разделена на градусы от 35 0 до 38 0 , у шарового – от 33 0 до 40 0 (рис. 8С)

ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ

Если нагреть кататермометр до температуры выше температуры окружающего воздуха, то при охлаждении он потеряет, главным образом, под влиянием наруж­ной температуры и движения воздуха, некоторое количество тепла. Вследствие постоянства теплоемкости спирта и стекла, из которых сделан прибор, он теряет при охлаждении с 38 0 до 35 0 строго определенное количество тепла, которое устанавливается лабораторным путем отдельно для каждого кататермометра. Эта потеря тепла с 1 см 2 поверхности резервуара кататермометра выражается в милликалориях и обозначается на каждом кататермометре в виде его постоянного фактора - F.

ПОРЯДОК РАБОТЫ С КАТАТЕРМОМЕТРОМ

A. Прибор нагревают в горячей воде (65-70°) до тех пор, пока спирт не заполнит половины верхнего резервуара; вынув из воды, кататермометр вытирают насухо и помещают на штативе в исследуемое место, защищая при этом от действия лучистой энергии; фиксируют время опускания спирта с 38 0 до 35 0 . Производят расчет по следующей формуле:

H - величина охлаждения прибора, характеризующая охлаждающую спо­собность воздуха при данных условиях мкал/см /сек;

F - фактор прибора;

a - количество секунд, в течение которых спирт опустился 38 0 до 35 0 .

B. Определение скорости движения слабых потоков воздуха производится по эмпирическим формулам:

2 = (менее 1 м/сек)

2 = (более 1 м/сек),

V - скорость движения воздуха в м/сек;

H - величина охлаждения кататермометра;

Q - разность между средней температурой тела 36,5° и температурой воздуха в комнате в момент исследования;

0,20 и 0,40, а также 0,1,3 и 0,47 - коэффициенты.

Однако производить все вычисления по данным формулам нет необходимости. Нужно предварительно определить, чему равно выражение H/Q, а затем по таб­лицам 6 и 7 найти соответствующую этой величине скорость движения воздуха в обследуемом помещении.

Таблица 6. Скорость движения воздуха меньше 1 метра в секунду с учетом поправок на температуру

Н Q Температура воздуха в градусах
10,0 12,5 15,0 17,5 20.0 22,5 25,0 26,0
0,27 - - - - 0,047 0,051 0,059
0,28 - - - 0,049 0,051 0,061 0,070 0,070
0,29 0,041 0,050 0,051 0,060 0,067 0,076 0,085 0,089
0,30 0,051 0,060 0,065 0,073 0,082 0,091 0,101 0,104
0,31 0,061 0,070 0,079 0,088 0,096 0,107 0,116 0,119
0,32 0,076 0,085 0,094 0,104 0,113 0,124 0,136 0,140
0,33 0,091 0,101 0,110 0,119 0,128 0,140 0,153 0,159
0,34 0,107 0,115 0,129 0,139 0,148 0,160 0,174 0,179
0,35 0,127 0.136 0,145 0,154 0,167 0,180 0,196 0,203
0,36 0,142 0,151 0,165 0,179 0.192 0,206 0,220 0,225
0,37 0,163 0,172 0,185 0.198 0,212 0,226 0,240 0.245
0,38 0,183 0,197 0,210 0,222 0,239 0,249 0,266 0,273
0,39 0,208 0,222 0,232 0,244 0,257 0,274 0,293 0,300
0,40 0,229 0,242 0,256 0,269 0,287 0,305 0,323 0,330
0,41 0,254 0,267 0,282 0,299 0,314 0.330 0.349 0,364
0,42 0,280 0,293 0,311 0,325 0,343 0,361 0,379 0,386
0,43 0,310 0,324 0,342 0,356 0,373 0,392 0,410 0,417
0,44 0,340 0,354 0,368 0,385 0,401 0.417 0,445 0,449
0,45 0,366 0,351 0,398 0,412 0,429 0,449 0,471 0.478
0,46 0,396 0,415 0,429 0,446 0,465 0,483 0,501 0,508
0,47 0,427 0,445 0,464 0,482 0,500 0,518 0,537 0,544
0,48 0,468 0,481 0,499 0,513 0,531 0,551 0,572 0.579
0,49 0,503 0,516 0,535 0,566 0,571 0,590 0,608 0.615
0,50 0,539 0,557 0,571 0.589 0,604 0,622 0,640 0,651
0,51 0,574 0,593 0.607 0,628 0,648 0.666 0,684 0,691
0,52 0,615 0.633 0,644 0,665 0,683 0,701 0,720 0,727
0,53 0,656 0,674 0,688 0,705 0,724 0,742 0,760 0,768
0,54 0,696 0,715 0,729 0,746 0,783 0,801 0,808
0,55 0,737 0,755 0,770 0,790 0,807 0,807 0,844 0,851
0,56 0,788 0,801 0,815 0,833 0.851 0,867 0,884 0.894
0,57 0,834 0,852 0,867 0,882 0,898 0,915 0,940
0,58 0,879 0,898 0,912 0,929 0,911 0,959 0,972 0,977
0,59 0,930 0,943 0,957 0,971 0,985 1,001 1,018 1,023
0,60 0,981 0,994 1,008 1,022 1,033 1,014 1,056 1,060

Таблица 7. Скорость движения воздуха больше 1 метра в секунду.

Н Q Скорость м/сек Н Q Скорость м/сек Н Q Скорость м/сек
0,60 1,00 0,83 2,22 1,15 4,71
0,61 1,04 0,84 2,28 1,18 4,99
0,62 1,09 0,85 2,34 1,20 5,30
0,63 1,13 0,86 2,41 1,23 5,43
0,64 1,18 0,87 2,48 1,25 5,69
0.65 1,22 0,88 2,54 1,28 5,95
0,66 1,27 0.89 2,61 1,30 6,24
0,67 1,32 0,90 2,68 1,35 6,73
0,68 1,37 0,91 2,75 1,40 7,30
0,69 1,42 0,92 2,82 1,45 7,88
0,70 1,47 0.93 2,90 1,50 8,49
0,71 1.7

Требования к вентиляции и отоплению, естественному и искусственному освещению.
Основные источники загрязнения воздуха закрытых помещений. Роль полимерных материалов. Химическое и бактериальное загрязнение воздуха помещений, санитарно-показательное значение содержания двуокиси углерода, формальдегида, фенола и др. в воздухе помещений.

4. Требования к отоплению, вентиляции, микроклимату и воздушной среде помещений

Выдержка из Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.2.1002-00

"Санитарно-эпидемиологические требования к жилым зданиям и помещениям"

4.1. Системы отопления и вентиляции должны обеспечивать допустимые условия микроклимата и воздушной среды помещений.

Оптимальные и допустимые параметры микроклимата в помещениях жилых зданий приведены в прилож.1.

4.2. Нагревательные приборы должны быть легко доступны для уборки. При водяном отоплении температура поверхности нагревательных приборов не должна превышать 90°С. Для приборов с температурой нагревательной поверхности более 75°С необходимо предусматривать защитные ограждения.

4.3. Помещения первых этажей жилых зданий, расположенных в 1 климатическом районе, должны иметь системы отопления для равномерного прогрева поверхности полов.

4.4. Устройство автономных котельных для теплоснабжения жилых зданий допускается при наличии положительного заключения органов и учреждений государственной санитарно-эпидемиологической службы.

4.5. Естественная вентиляция жилых помещений должна осуществляться путем притока воздуха через форточки, либо через специальные отверстия в оконных створках и вентиляционные каналы. Вытяжные отверстия каналов должны предусматриваться на кухнях, в ванных комнатах, уборных и сушильных шкафах.

Устройство вентиляционной системы должно исключать поступление воздуха из одной квартиры в другую.

Не допускается объединение вентиляционных каналов кухонь и санитарных узлов с жилыми комнатами.

4.7. Концентрация химических веществ в воздухе жилых помещений при сдаче их в эксплуатацию не должна превышать среднесуточных предельно допустимых концентраций (ПДК) загрязняющих веществ, установленных для атмосферного воздуха населенных мест, а при отсутствии среднесуточных ПДК не превышать максимальные разовые ПДК.

5. Требования к естественному и искусственному освещению и инсоляции

5.1. Жилые комнаты и кухни должны иметь непосредственное естественное освещение.

5.2. Коэффициент естественной освещенности (КЕО) в жилых комнатах и кухнях должен быть не менее 0,5% в середине помещения.


5.3. Жилые здания должны обеспечиваться инсоляцией согласно действующим санитарным нормам.

Длительность инсоляции в весенне-осенний период года в жилых помещениях (не менее чем в одной комнате 1 - 3-комнатных квартир и не менее чем в двух комнатах 4 - 5-комнатных квартир) должна быть:

В центральной зоне (58-48°с.ш.) - не менее 2,5 часов в день в период с 22 марта по 22 сентября;

В северной зоне (севернее 58°с.ш.) - не менее 3 часов в день в период с 22 апреля по 22 августа;

В южной зоне (южнее 48°с.ш.) - не менее 2 часов в день в период с 22 февраля по 22 октября.

5.4. В случае прерывистого режима инсоляции суммарная длительность инсоляции должна быть увеличена на 0,5 ч. В жилых домах меридионального типа для квартир, где одновременно инсолируются все жилые помещения, а также в реконструируемой жилой застройке или в особо сложных градостроительных условиях (исторически ценная городская среда, зона общегородского или районного центра) допускается сокращение продолжительности инсоляции, но не более чем на 0,5 ч.

Микроклиматические факторы. К числу наиболее важных, определяющих

комфорт в жилище, принадлежит метеорологический фактор. Влияние на человека тех или иных микроклиматических факторов создает различные условия для теплообмена организма со средой и обеспечивает определенное функциональное состояние, которое называется тепловым. Оно определяется

не только в субъективном теплоощущении человека, но и в характере тех терморегуляторных процессов, которые происходят в организме при изменении метеорологических условий. Тепловое состояние, наконец, влияет на все физиологические системы организма и определяет функциональные возможности

человека, его здоровье. Это делает актуальным нормирование оптимальных

параметров микроклимата в помещениях жилых и общественных зданий.

При оценке теплового состояния организма выделяют зону теплового комфорта.

Под зоной теплового комфорта понимают такой комплекс метеорологических

условий, при которых терморегуляторная система организма находится

в состоянии наименьшего напряжения (или физиологического покоя), а все

другие физиологические функции осуществляются на уровне, наиболее благоприятном

для отдыха и восстановления сил организма после его нагрузки.



Просмотров