Должностное лицо гк рф. Центральный районный суд г

«Прочитали в февральском номере журнала «За рулем» за этот год, что в мастерской г. Каунаса ремонтируют коленчатые валы мотоциклов «Ява» заменой шатуна. Расскажите, пожалуйста, как проверяют после этого центровку вала. От группы «явистов» — П. Русанов, г. Ставрополь».

«При ремонте двигателя мотоцикла ИЖ Планета уронил коленчатый вал. Как восстановить теперь его центровку! — К. Пусков, г. Вышний Волочек».

Соосность, цапф коленчатого вала (и коренной шейки в трехопорных валах) — обязательное условие нормальной работы двигателя. Чем больше их несоосность, тем сильнее вибрация двигателя, выше механические потери и меньше срок службы коренных подшипников коленчатого вала (внутренние их кольца перекашиваются и защемляют шарики или ролики). Иногда страдают даже посадочные гнезда в картере. Коленчатые валы отечественных мотоциклов (кроме «Днепра»), а также «Явы» и «Паннонии» выполнены составными (рис. 1). Их цапфы и шейки (пальцы) соединены со щеками (маховиками) посредством прессовой посадки — диаметр отверстия при этом меньше диаметра пальца или цапфы. В коленчатых валах двухцилиндровых ижевских двигателей мотоциклов ИЖ Юпитер, ИЖ Юпитер 2 цапфы после сборки приварены к щекам.

Чтобы обеспечить соосность (в пределах до 0,01 мм), на заводе цапфы шлифуют уже на собранном коленчатом валу. Вследствие этого наружная (шлифуемая) часть цапфы становится эксцентричной по отношению к запрессованному концу; при ремонте вала замена цапфы без последующей шлифовки невозможна.

Необходимость проверить соосность коленчатого вала возникает обычно после его ремонта, разборки двигателя без соответствующих приспособлений (исключающих деформацию вала) и в других подобных случаях.

Ремонт коленчатого вала, связанный с заменой шатунных подшипников, предусмотрен только на мотоциклах «Ява». Для них завод выпускает специальный комплект: шатун в сборе с роликовым подшипником и пальцем. Методика этой работы подробно изложена в книге «Ремонт мотоциклов «Ява» (А. К. Михеев и Б. В. Синельников, «Машиностроение», 1971).

Соосность цапф (и коренной средней шейки) вала определяют по биению их посадочных поверхностей при вращении вала в поверочных центрах или центрах токарного станка (рис. 2). Величину биения — она- вдвое больше величины несоосности — измеряют закрепленным на стойке индикатором часового типа с ценой деления 0,002—0,01 мм.

В домашних условиях, при отсутствии таких центров соосность вала с достаточной точностью можно определить на ровной поверхности стола или стекла. На цапфы надевают коренные подшипники так, как они располагаются в двигателе. Если внутренние кольца их садятся со значительным натягом (например, у мотоциклов Ява), лучше воспользоваться другими, технологическими подшипниками, даже изношенными, внутреннее отверстие которых шлифуют (хотя бы шкуркой) для более легкой их установки. В противном случае можно повредить вал при монтаже и снятии подшипников.

Далее кладут вал на М-образные подставки, деревянные или металлические, устойчиво закрепленные на столе (рис. 3). К концам вала подводят индикаторы (в крайнем случае можно работать одним) и, вращая вал, определяют на одинаковом расстоянии от подшипников наивысшие и низшие точки цапф, отмечая их соответственно знаками «+ » и « — ».

Поворачивают вал так, чтобы ось шатунного пальца располагалась горизонтально в одной плоскости с цапфами. Наивысшие (или низшие) точки должны находиться при этом примерно в одной плоскости. Если это условие нарушено, значит, щеки развернуты одна относительно другой на шатунном пальце (рис. 4). Ударами молотка по выступающей щеке поворачивают ее в сторону другой щеки до совмещения их в одной плоскости. Добившись этого, вновь определяют места наибольших отклонений цапф и ставят вал так, чтобы шатунный палец находился вверху. Если при этом обе точки «+» окажутся вверху (рис. 5), щеки нужно сжать с противоположной пальцу стороны молотком или струбциной, а если внизу (рис. 6), — наоборот, раздвинуть щеки рычагом. Постепенно меняя их положение, добиваются минимального биения цапф. Допустимой считается величина до 0,03 мм.

Иногда места наибольших отклонений цапф располагаются по обе стороны от оси вала. Это значит, что цапфы отстоят на разных расстояниях от шатунного пальца. Биение, вызываемое этим обстоятельством, устранить правной вала невозможно. Если оно превышает 0,05 мм, вал следует заменить.

Центровку коленчатого вала двигателя Ява 350, имеющего среднюю коренную шейку, проводят аналогичным образом. Сначала добиваются соосности одной цапфы со средней шейкой, а затем другой.

Б. СИНЕЛЬНИКОВ, инженер

Если зазор в вертикальной плоскости между полумуфтами будет в верху будет больше чем внизу, то тогда необходимо П - образные стальные прокладки подложить под ближайшие к муфтам болты между станиной насоса и двигателя и рамой.

Важнейшим условием долговременной работы насоса и двигателя является горизонтальное положение рамы и соответственно оси ротора, отклонение от горизонтальности осей вала и рабочего колеса насоса и двигателя должны быть на 1м не более 0,04 мм, иначе будет возникать горизонтальная составляющая общей нагрузки ротора и подшипники будут быстрее выходить из строя.

Многоступенчатые насосы.

Многоступенчатые насосы выпускаются с горизонтальным и вертикальным валом. Насосы с горизонтальным валом выпускаются трех типов. Первый тип МС – многоступенчатые центробежные насосы с рабочими колесами одностороннего входа воды и вертикальной плоскостью разъема (рис.8а). При такой схеме соединения рабочих колес имеется существенный недостаток – возникает осевая нагрузка и при ремонте необходимо отсоединять всасывающий и напорный трубопроводы. У второго типа М (рис.8б) входом воды рабочие колеса расположены противоположно друг другу, что взаимно уравновешивает осевую нагрузку (количество рабочих колес у них четное). Кроме того, у этого типа насоса горизонтальный разъем корпуса. Третий тип МД (рис. 8в) с горизонтальным разъемом корпуса, первое рабочее колесо с двухсторонним входом воды, последующие колеса с односторонним входом также расположены попарно с противоположным входом воды.

В многоступенчатых насосах вода последовательно проходит через несколько рабочих колес, смонтированных в одном корпусе насоса, поэтому напор будет равен сумме напоров последовательно расположенных колес, пропускающих одно и то же количество воды.

Обозначения многоступенчатых насосов с горизонтальным валом:

Тип МС аМС – n s х i:

где а – диаметр всасывающего патрубка, уменьшенный в 25 раз, в мм;

n s – быстроходность, уменьшенная в 10 раз, мин;

i - число рабочих колес.

По новому ГОСТу тип насосов МС обозначается ЦНСQ – H:

где Q – подача, м 3 /час;

H – напор, м.

Например: ЦНС300 – 120, у которого подача 300 м 3 /час, напор 120 м.

Тип М по старому ГОСТу обозначался в общем виде аМ – n s xi , обозначения те же, что и у насосов типа МС.

По новому ГОСТу тип насосов М обозначается ЦНQ – H, где Q и H соответственно подача и напор.



Рис. 8 – Схемы движения воды в насосах

Конструкция насоса типа МС показана на рисунке 9.

Рис. 9 - Конструкция насоса типа МС

1 – напорный патрубок; 2 – направляющий аппарат; 3 – корпус секции; 4 – стяжная шпилька; 5 – защитно-уплотняющее кольцо; 6 – резиновый шнур; 7 – входная крышка со всасывающим патрубком; 8 – отверстие для подачи жидкости в уплотнение; 9 – упругая муфта; 10 – роликовый подшипник; 11 – кронштейн; 12 – сальниковый узел; 13 – кольцо гидравлического уплотнения; 14 – грундбукса; 15, 20, 21 – втулки соответственно распорно-защитная, дистанционная, разгрузки; 16 – рабочее колесо; 17 – вал; 18 – шпонка; 19 – щель подвода жидкости к гидравлической пяте; 22 – гайка-втулка; 23 – уплотнение в крышке подшипника; 24 – гидравлическая пята; 25 – защитно-уплотняющее кольцо

Ось всасывающего патрубка на рис. 9 условно показана вверх, на самом деле горизонтально пола машинного отделения, чтобы меньше было гидравлических сопротивлений при входе в насос.

Из всасывающего патрубка вода поступает в корпус насоса 7 и через кольцевой подвод к первому рабочему колесу 2. При выходе из рабочего колеса вода проходит через направляющий аппарат 3 на второе колесо и т. д. Рабочие колеса с односторонним входом воды. Направляющий аппарат имеет каналы, направляющие воду к кольцевому подводу на второе колесо. Сечение каналов в направляющем аппарате постепенно увеличивается, чтобы преобразовывать кинетическую энергию в потенциальную энергию. Секции направляющего аппарата и рабочие колеса взаимозаменяемые.

Из-за одностороннего входа воды на рабочее колесо ротор насоса испытывает значительные осевые усилия, направленные как у консольных насосов в сторону входа воды. Так как давление после каждой ступени возрастает и суммируется, то общая нагрузка на ротор будет большая, и весь ротор будет перемещаться в сторону входа воды на колесо. Для снятия осевых усилий служит разгрузочная шайба 24, которая на резьбе или болтах закрепляется на валу насоса за последним рабочим колесом. Жидкость из последнего рабочего колеса, через кольцевой зазор 21, поступает в разгрузочную камеру, из которой через патрубок 25 и трубку соединяется с всасывающей камерой первой ступени колеса. В связи с тем, что давление в промежуточной камере значительно больше, чем в разгрузочной камере, происходит разгрузка осевых усилий путем смещения ротора и уравновешивания давлений. Если ротор насоса под влиянием осевой силы движется вправо, то торцевой зазор между корпусом и шайбой уменьшается, давление в разгрузочной камере вследствие этого увеличивается и дальнейшее осевое продвижение ротора прекращается. Если давление на разгрузочную шайбу со стороны корпуса уменьшается, то за счет осевой нагрузки ротор перемещается вправо.

Назначение остальных деталей такое же как и у одноступенчатых насосов, наименование их дано в подрисуночной надписи.

Артезианские центробежные насосы.

К многоступенчатым насосам с вертикальным валом относятся артезианские насосы (глубинные насосы) для скважин. Артезианские насосы делятся на два вида:

1. насосы с трансмиссионным валом, у которых насос опускается в скважину, а двигатель располагается над скважиной;

2. насосы погружные, когда насос вместе с двигателем опускается в скважину.

Насосы с трансмиссионным валом отечественной промышленностью выпускаются типов А, НА и ЦТВ. Погружные насосы выпускаются единой серии ЭЦВ.

Насосы типов А и НА центробежные, артезианские (многоступенчатые), вертикальные, с трансмиссионным валом предназначены для подачи воды из высокодебитных скважин, иногда применяются на насосных станциях первого подъема для подачи воды а также как аварийные от затопления машинных залов особо ответственных насосных станций. В этих насосах электродвигатель располагается над устьем скважины и соединяется с насосом с помощью трансмиссионного вала (рис. 10).

Для того чтобы исключить вибрацию трансмиссионного вала, вал закрепляют промежуточными подшипниками с резино-металлическими вкладышами, смазываемыми водой. Масса вращающихся деталей насоса и трансмиссии воспринимается опорной пятой с радиально-упорными подшипниками, а масса всего насосного агрегата – опорным корпусом, установленным над скважиной.

Рис. 10 – Насосные установки с насосами типа АТН (а) и А (б)

В общем виде насосы данных типов обозначаются:

d скв A – n s xi ,

где d скв - минимальный диаметр скважины, в которую может быть опущен этот насос, уменьшенный в 25 раз и округленный;

n s - быстроходность, уменьшенная в 10 раз и округленная;

i – число рабочих колес.

Например, насос 24А – 18 х 1 , 24х25=600 мм – минимальный диаметр скважины;

18х10= 180об/мин – быстроходность насоса;

1 – число рабочих колес.

У насосов серии ЦТВ гидравлическая часть с теми же параметрами, что и у насосов ЭЦВ. Обозначения: Ц – центробежный, Т – с трансмиссионным валом, В – для подачи воды.

Насосы типа АТН центробежные секционные, вертикальные, предназначены для подачи воды из артезианских скважин.

Пример обозначения : АТН14-1-6

Буквы, входящие в маркировку насоса, обозначают: А – артезианский, Т - турбинный, Н- насос. Цифры обозначают: 14 – минимальный диаметр обсадной колонны в мм, уменьшенный в 25 рази округленный; 1 – тип рабочего колеса (закрытое); 6 – число рабочих колес.

У этого типа насоса для увеличения подачи при минимальных размерах обсадной колонны применены рабочие колеса диагонального типа (как у гидравлической турбины).

Насосы типа ЭЦВ многоступенчатые, погружные вертикальные, для подачи воды из скважины, с рабочими колесами одностороннего входа.

Условное обозначение насосов этой серии в общем виде:

ЭЦВd скв – Q - H , где

Э – с электроприводом,

Ц – центробежный,

В – для подачи воды,

d скв – минимальный внутренний диаметр обсадной колонны в мм, уменьшенный в 25 раз и округленный,

Q – подача, м 3 /час,

H – напор, м.

Пример обозначения: ЦТВ8 – 40 – 60 ,

где 8 - минимальный внутренний диаметр обсадной колонны, уменьшенный в 25 раз и округленный в которой может быть размещен насос, мм;

40 – подача, м 3 /час;

60 – напор, м.

Погружные насосы ЭЦВ представляют собой многоступенчатые центробежные насосы с рабочими колесами одностороннего входа и могут применяться для подачи воды из артезианских скважин в системах водоснабжения, понижения уровня грунтовых вод, в насосных станциях первого подъема из открытых водоисточников и т.д.

На рисунке 11 показан разрез погружного насоса.

Рис. 11 – Электропогружной насос:

а – электродвигатель ПЭДВ: 1 – днище; 2 – диафрагма; 3 – корпус; 4 – пробка-винт; 5 – подпятник; 6 – пята; 7 – манжета; 8 – пескосбрасыватель; 9, 10 – резиновые кольца; 11, 13 – корпуса; 12 – подшипник;

б – насос: 1 – соединительная муфта; 2 – ступицы основания; 3 – вал; 4 – диск; 5 – обойма; 6 – направляющий аппарат; 7 – рабочее колесо; 8 – ступица верхнего подшипника; 9 – клапан; 10 – стяжка; 11 - головка

Корпуса секций насоса изготовляются из пластмассы или из пластмассы на металлической основе. Направляющие аппараты имеют спиральные отводы лопаточного типа с кольцевыми подводами воды на следующее рабочее колесо. У крупных насосов корпуса стальные или из чугуна.

Рабочие колеса у мелких насосов ЭЦВ имеют плавающую посадку, позволяющую перемещаться вдоль вала в пределах заданных допусков. У остальных насосов рабочие колеса закрепляются с помощью шпонок, расстояние между ними фиксируется распорными втулками, у крупных насосов имеются защитные втулки. Вес вращающихся деталей ротора воспринимается опорными кольцами или самоустанавливающейся резинометаллической гидродинамической пятой. Вал вращается в резинометаллическом или металлографитовом подшипнике. Входные отверстия для воды закрыты металлической сеткой. Корпус насоса стягивается стяжными болтами.

Рис. 12 Насосная установка с насосом типа ЭЦВ

Насосы для перекачки сточных вод.

Для перекачки сточных вод применяются отечественные насосы с горизонтальным валом типа СМ, с вертикальным валом типа СДВ и погружные насосы типа ГНОМ, ЦМК, ИРТЫШ, и др., специальные массовые насосы с горизонтальным валом с односторонним входом, применяемые для перекачки сточных вод.

Условное обозначение насосов типа СМ:

Например, СМ100-65-250 , где

100 – диаметр всасывающего патрубка, мм;

65 – диаметр напорного патрубка, мм;

250 – диаметр рабочего колеса, мм.

Данные насосы применяются для перекачки сточных вод с плотностью до 1050 кг/м 3 и содержащих абразивных частиц по массе не более 1% и температурой до 100 0 С.

Конструкция центробежного насоса типа СМ отличается от центробежных насосов для перекачки воды тем, что рабочее колесо имеет меньше лопаток и ширина лопаток больше. В крышке корпуса насоса и в верхней части спирального отвода имеются трапы для прочистки в случае засорения. К кольцу гидравлического уплотнения – сальнику должна подводиться чистая вода.

Для большой подачи сточных вод применяются вертикальные насосы типа СДВ (рис. 13), у них в спиральном отводе с противоположных сторон предусмотрены люки для прочистки (5), которые можно очищать колесо и корпус насоса при засорении отбросами. Для предохранения от абразивного износа устанавливаются сменные защитные диски, изготовленные из стали. Вал насоса вращается в подшипниках скольжения, имеющих разъемный резиновый или лигнофолевый вкладыш. Подшипник скольжения смазывается и охлаждается чистой водой из хозяйственного водопровода под давлением 0,1 МПа превышающим давление в напорном патрубке насоса. Подшипник скольжения защищен от проникновения транспортируемой жидкости специальным резиновым уплотнением.

Для защиты вала от износа под сальником предусмотрена защитная втулка или методом электронаплавки наносится защитное покрытие из коррозийно - стойкой стали.

Рис. 13 – Насос типа СДВ

1-защитное кольцо; 2-рабочее колесо; 3-регулируемое уплотняющее кольцо; 4-нижняя крышка корпуса; 5-люк-прочистка; 6-корпус; 7-защитные диски; 8-верхняя крышка корпуса; 9-подшипник скольжения; 10-торцевое уплотнение вала; 11-вал; 12-фундаментная плита

Центробежные моноблочные, канализационные погружные насосы (рис. 14) вместе с электродвигателем предназначены для перекачки фекальных и других сточных вод с плотностью до 1050 кг/м 3 и содержащих абразивных частиц по массе не более 1% и температурой до 35 0 С.

Пример обозначения: ЦКМ 16/27 где 16 – подача м 3 /час; 27- напор, м.

Погружные насосы типа ГНОМ (рис.14) обозначаются:

ГНОМ 25x20, где 25 - подача м 3 /час; 20 - напор, м.

Рис. 14 – Конструкция погружного моноблочного насоса ГНОМ:

1 – ручка; 2 – напорный патрубок; 3, 4 – ротор и статор электродвигателя; 5 – корпус насоса; 6 – торцевое уплотнение; 7 – разделительная камера; 8 – обрезиненный отвод; 9 – рабочее колесо без переднего диска

Отличительные конструктивные особенности современных зарубежных насосв.

Погружные насосы фирмы ITT «FLYGT» предназначены для перекачки сточных вод имеют три типа рабочих колес: открытое колесо (тип F) (рис. 15), имеющие режущую кромку, закрытое однокольцевое колесо (тип С) и свободно –вихревое колесо (тип N). У насосов с рабочим колесом типа F засоряемость почти 100 %, но коэффициент полезного действия невысокий (около 60 %), у закрытого типа С к.п.д. доходит до 80 %, но высокая засоряемость (до 60-65 %). Поэтому ученые разработали свободно- вихревое колесо полуоткрытого типа N с засоряемостью 98 – 100 % и высоким к.п.д. 80 %.

Для насосов с большой подачей разработаны также самоочищающиеся осевые насосы. Усовершенствована противоизносная защита торцевого уплотнения, применена замкнутая система охлаждения двигателя, разработано торцевое уплотнение патронного типа.

Фирма «GRUNDFOS» выпускает одноступенчатые погружные блочные агрегаты типа АРВ с вертикальным нагнетательным патрубком и приемным сетчатым фильтром. Насос имеет износостойкое рабочее колесо из нержавеющей стали с высокой твердостью и оболочкой из резинотехнических изделий. Насос имеет поворотный напорный штуцер для вертикального и горизонтального монтажа к напорной линии. Высоконапорные насосы имеют два последовательно включенных рабочих колеса. Двигатели имеют специальное торцевое уплотнение с масляной запорной камерой со специальным физиологически инертным маслом и уплотнительным кольцом на валу.

У электродвигателей погружных насосов фирмы «GRUNDFOS» имеется специальное торцевое манжетное уплотнение из специальной резины. От осевого смещения ротора применяется гидравлическое выравнивание перепада давления. У крупных двигателей применяется опорное кольцо из металлокерамики (карбид вольфрама), что обеспечивает большой срок службы.

Для откачки воды из строительных котлованов этой же фирмой выпускаются насосы POMONA с электродвигателем или от двигателя внутреннего сгорания. Насос самовсасывающий и после первоначального заполнения постоянно сохраняет готовность к работе, может перекачивать жидкость с содержанием твердых включений от 3 до 30 мм.

При работе насосов с большим диапазоном подач и напоров применяются частотные преобразователи, позволяющие с их помощью изменять числа оборотов в больших пределах, а следовательно изменять в широких пределах все параметры насоса.

Немецкая фирма «WILO» поставляет широкий спектр насосов для системы отопления, водоснабжения, пожаротушения и канализации. Насосы моноблочные, необслуживаемые, т.е. имеют неразрезной вал и специальное скользящее торцевое уплотнение. Насосы выпускаются с сухим и мокрым ротором. Скользящее торцевое уплотнение представляет собой динамическое уплотнение и используется для герметизации зазора между вращающимся валом насоса и корпусом при среднем и высоком давлении. Динамическая область скользящего торцевого уплотнения состоит из двух гладких, износостойких поверхностей (например, кольца из карбида кремния или графита), которые сжимаются при воздействии аксиальных сил. Одно кольцо (скользящее) вращается вместе с валом, другое кольцо (ответное) стационарно установлено в корпусе. Кольца сжимаются при помощи пружины и давления жидкости. Средневзвешенный срок службы 2-4 года, но при этом нельзя допускать сухого хода насоса, т.е. без жидкости.

Рис. 16 – Одинарные насосы

Выпускаются также сдвоенные насосы, устанавливаемые на одной трубе, позволяющие увеличить подачу вдвое (рис. 17).

Рис.17 – Сдвоенные насосы

Изучение конструкций вихревых насосов.

Основная задача при изучении вихревых насосов – изучить их конструкцию, принципы действия и особенности их эксплуатации.

Вихревые насосы применяются при малых подачах и больших напорах. Подача колеблется в пределах 0,3-10 л/с, а напор 15-160 м.

Промышленностью выпускались и выпускают ряд конструктивных типов этих насосов: В – вихревой, ВК – вихревой консольный, ВКС – вихревой консольный самовсасывающий, ВКО – вихревой консольный обогревной, ЦВК – центробежно-вихревой консольный, ЦВС - центробежно-вихревой самовсасывающий.

Пример обозначения:

ВКС5-24 - вихревой консольный самовсасывающий 5 – подача, л/с 24 – напор, м.

Вихревые насосы широко применяются для перекачки чистых жидкостей без абразивных примесей с температурой до 85 0 С для вихревых и 105 0 C для центробежно - вихревых.

Обогревные насосы применяются для перекачки застывающих жидкостей (фенолы, парафины и др.) и отличаются от остальных насосов типа В дополнительной обогреваемой крышкой корпуса, имеющей обогревной канал. В обогревной крышке имеются отверстия для присоединения паропроводов.

Насосы самовсасывающие отличаются от насосов типа В дополнительным узлом состоящим из воздушного колпака и воздухоотвода, которые служат для обеспечения самовсасывания. Всасывающие и напорные патрубки расположены в верхней части корпуса насоса, поэтому эти насосы нужно заливать при первоначальном пуске его в работу. Способность вихревых насосов засасывать воду без заливки всасывающей трубы в последующем позволяет легко автоматизировать их работу.

Работа вихревых насосов основана на действии центробежной силы и ближе всего сходна с работой многоступенчатого насоса. При вращении рабочего колеса, представляющего собой стальной диск с лопатками, частичка жидкости за счет центробежной силы по лопатке будет перемещаться из точки А в точку Б (рис. 18).

Рис. 18 – Схема движения жидкости в вихревом насосе

При этом движении она приобретает скоростную энергию и энергию давления, с которой и выбрасывается в кольцевой отвод корпуса под некоторым углом по ходу вращения колеса. Так как давление у основания лопатки меньше чем на выходе из нее, то жидкость стремиться снова переместится в точку А 1 . Чтобы жидкость быстрее попала снова к основанию лопатки, диск между основанием лопатки и выходом выфрезерован по окружности. Частичка жидкости при этом ударяется под углом о кольцевой отвод и быстрее попадает снова на лопатку рабочего колеса. При этом рабочее колесо может совершить несколько оборотов (внизу у основания лопатки показано направление вращения). Таким образом, за время прохождения жидкостью пути от всасывающего патрубка к напорному, цикл повторяется несколько раз, и каждый раз происходит приращение энергии. Такое движение напоминает вихри, отсюда и название насоса. Такое же приращение энергии происходит и в многоступенчатом центробежном насосе, где жидкость переходит из одного колеса на другое.

Изучение конструкции вихревых насосов.

Вихревой насос состоит из гидравлической части и опорной стойки (рис. 19).

Рис. 19 - Вихревой насос В – 1,25/40

1 – корпус насоса; 2 – подводящие каналы; 3 – рабочее колесо; 4 – перемычка; 5 – крышка насоса; 6 – внутренняя крышка насоса; 7 – опорная стойка; 8 – сальниковое уплотнение; 9 и 10 – радиальные шарикоподшипники; 11 – отверстие для опорожнения насоса

Внутри чугунного корпуса от всасывающего до напорного патрубков, расположенных в верхней части, проходит кольцевой отводящий канал постоянного сечения. Перемычка 4 отделяет всасывающую часть от напорной. Напорный и всасывающий патрубки одинакового размера, названия могут менять в зависимости от направления вращения. Крышка к корпусу крепится с помощью шпилек и гаек. Внутренняя часть корпуса одновременно является конусом сальник и внутренней крышкой опорной стойки.

Рабочее колесо представляет собой стальной диск с фрезерованными по окружности пазами, образующими лопатки. Колесо посажено на валу на шпонке и фиксируется специальным болтом с шайбой. В месте выхода вала из корпуса насоса находится сальниковое уплотнение.

Приводная часть состоит из чугунной опорной стойки и вала. Опорами вала служат радиальные шарикоподшипники, у больших насосов радиально-упорные шарикоподшипники. Три отверстия, закрытые пробками, служат для заливки,слива и контроля уровня масла.

Отверстие 11 в нижней части корпуса насоса служит для его опорожнения.

У вихревых насосов имеются существенные недостатки: низкий к.п.д. и увеличение мощности при уменьшении подачи.

К.п.д. вихревых насосов не превышает 50%. Во-первых, это связано с большими гидравлическими потерями при входе и выходе жидкости с лопаток рабочего колеса. Во-вторых, происходит быстрый износ перегородки между всасывающими и напорными патрубками. Поэтому за счет увеличения зазора между перегородкой и рабочим колесом жидкость из напорного патрубка вновь поступает во всасывающий патрубок.

Кроме того, у вихревых насосов малая область подач и напоров с высоким к.п.д., поэтому при уменьшении подачи потребляемая мощность возрастает.

Центробежно-вихревой насос СЦЛ-20-24а

Насос СЦЛ-20-24а – двухступенчатый центробежно-вихревой самовсасывающий с горизонтальным валом предназначен для перекачивания бензина, керосина и чистой воды от 30 до 40 м 3 /час при напоре от 65 до 40 м с температурой до 50 0 С.

Первая ступень насоса выполнена с центробежным, вторая с вихревым рабочим колесом.

Основные детали насоса (рис. 20): алюминиевый корпус 13 с отводящим спиральным каналом для рабочего колеса центробежного насоса с односторонним входом жидкости (14) и кольцевым отводом для вихревого рабочего колеса (6), вала (16), крышки корпуса (7) и воздушного колпака (11).

Рис. 20 – Центробежно-вихревой насос СЦЛ-20-24а

1 – рабочая полость второй ступени; 2 – спускные отверстия; 3 – лопасти рабочее колеса; 4 и 20 – шарикоподшипники; 5 и 18 – обоймы узлов уплотнения вала; 6 – вихревое рабочее колесо; 7 –крышка корпуса; 8 – перемычка; 9 – воздухоотвод; 10 – напорный патрубок; 11 – алюминиевый колпак; 12 – промежуточная крышка; 13 – корпус; 14 – центробежное рабочее колесо; 15 – входной патрубок; 16 – вал; 17 – резиновые манжеты; 19 - сальниковое уплотнение; 21 – гайка; 22 – камера; 23 – отверстие для спуска в дренаж жидкости; 24 – втулка; 25 – прокладное кольцо; 26 – пружинные кольца; 27 – полость первой ступени; 28 и 29 – крышка подшипника

В верхней части корпуса расположен всасывающий патрубок (15), а в верхней части воздушного колпака – напорный патрубок (10 и 11).

Часть канала с промежуточной крышкой (12) образует полость первой ступени алюминиевым рабочим колесом (14) с односторонним входом, имеющим шесть лопаток. В остальной части канала, ограниченной промежуточной крышкой (12) и алюминиевой крышкой корпуса (7), находится полость второй ступени с вихревым рабочим колесом (6). Вихревое рабочее колесо представляет собой бронзовый диск с выфрезерованными по окружности пазами, образующими двадцать четыре лопатки (3), разделенные диском. Рабочие колеса закреплены на валу насоса призматическими шпонками, а центробежное колесо дополнительно фиксируется стопорными кольцами (26).

Вал насоса стальной, имеет две опоры в виде шарикоподшипников (4) и (20). Осевая сила воспринимается шарикоподшипником (20).

Обоймы (5 и 18) узлов уплотнения вала вставлены в корпус и крышку насоса с прокладкой. В обойме расположены три резиновые самоуплотняющие сальники – манжеты (17), отделенные одна от другой прокладными кольцами (25). Манжеты сжаты специальной гайкой (21) через втулку (24). Между обоймой и ограничителем имеется камера (22) для спуска в дренаж жидкости, просачивающейся через сальник.

Насос СЦЛ-20-24а при первоначально залитом корпусе может работать как самовсасывающийся с вакуумметрической высотой всасывания до 5,5 м.

На напорном фланце корпуса расположен алюминиевый колпак (11) для обеспечения самовсасывания.

В корпусе под колпаком установлен воздухоотвод (9) для отделения воздуха от перекачиваемой жидкости в начале работы насоса.

Для первоначального пуска необходимо залить перекачиваемой жидкостью только корпус, чему способствует расположение всасывающего и напорного патрубков насоса в верхней части.

Например, насос перекачивает воду из водоисточника потребителю:

При подключении насоса, за счет центробежной силы вода с рабочего колеса одностороннего входа будет передаваться на вихревое колесо, поэтому за счет образовавшегося вакуума будет захватываться воздух из всасывающего трубопровода. При смешивании воздуха с водой образуется водно-воздушная эмульсия, которая поступит в круглый по форме воздуховод. В воздуховоде водно-воздушная эмульсия начинает вращаться, при этом за счет центробежной силы, частички воды (т.к. они тяжелее воздуха) будут прижиматься к цилиндрической поверхности воздуховода и снова через отверстия в нижней части сливаться в корпус насоса, а воздух по боковым каналам выходить в воздушный колпак.

Таким образом, при быстром вращении ротора, воздух из всасывающей трубы выйдет через воздушный колпак в напорный патрубок, а вода за счет атмосферного давления будет поступать к всасывающему патрубку.

При остановке насоса вода остается в корпусе и ее достаточно, чтобы снова запустить насос.

Напорный патрубок воздушного колпака расположен горизонтально и при этом может быть повернут в любую сторону через деление в 36 0 .

Привод насоса осуществляется электродвигателем через эластичную муфту. Вал насоса вращается против часовой стрелки, если смотреть со стороны привода.

Центровка по образующей муфты с помощью линейки

Применяется при грубом центрировании валов. Линейку прикладывают к образующей первой полумуфты по оси вала в вертикальной и горизонтальной плоскостях. Визуально определяют радиальный зазор и угол наклона между линейкой и 2-0й полумуфтой, определяют величины сдвига опор

Точность такого способа не больше 500 мкм с учетом погрешности изготовления и дефектов поверхности до 1000 мкм.

Центровка по полумуфтам при помощи щупов

На одной из полумуфт жестко крепится измерительная стойка, нависающая над 2-ой полумуфтой. Измерение зазоров производят в 4-х положениях поворотом валов на угол 0º, 90º, 180º, 270º. При каждом положении замеряют радиальный и угловой зазоры (Р и а). В случае правильного выполнения зазоров выполняются равенства P 1 +P 3 = P 2 + P 4 ; a 1 + a 3 = a 2 + a 4 . Радиальный зазор – между щупом и поверхностью полумуфты; угловой – между торцами полумуфт возле точки измерения Р.

Центровка валов способом «обхода одной точкой»

В тех случаях, когда нет возможности поворота одного из валов при центровке, зазор между полумуфтами и величину радиального смещения измеряют при повороте только одного вала. При повороте одного из валов, с помощью набора щупов, контролируется зазор Р между штифтом и образующей полумуфты в радиальном направлении. Угловое смещение определяется как разность зазоров между полумуфтами, в вертикальной и горизонтальной плоскостях. Для того чтобы измерения проводились в одних и тех же точках на неподвижной полумуфте делают риски, относительно которых и производят измерения.Точность такой центровки очень низкая (300..500 мкм).

Центровка с помощью радиально-осевых скоб

Центровка при помощи одной или двух пар скоб (рисунок 5)

Данный способ центровки имеет высокую точность по сравнению с рассмотренными и не зависит от качества изготовления полумуфт. Для измерения зазоров используют штангенциркули, щупы и микрометры. Приспособление с одной парой применяют для агрегатов без осевого перемещения валов. Для компенсации осевых смещений при повороте используют две пары скоб. Угловая расцентровка на таких приспособлениях рассчитывается как разность двух пар (величин зазоров) скоб, измеренных при 180 0 и 0 0 .


Для приспособления с одной парой скоб расчет аналогичен случаю центровки при помощи щупов. Точность достигает 20-30 мкм, но данный способ требует больших затрат времени 12-16 часов) для 2-х - 4-х человек.

Центровка насосного агрегата с помощью индикаторов часового типа.


Перед соединением роторы должны быть расположены так, чтобы их упругие линии явились продолжением друг друга без смещения и излома (рисунок 1). Нарушение центровки влечет за собой повышенную вибрацию установки.

Центровочное приспособление включает в себя 3 индикатора часового типа. Индикатором Р измеряют радиальное расцентрирование, индикаторами А и В – осевое центрирование. Пределы измерения приборов от 0 до 10мм.После предварительной центровки устанавливают и настраивают приспособление. Показания фиксаторов в исходном положении фиксируют А 0 , В 0 и Р 0 . После поворота муфты на 180 0 снова снимают показания индикаторов А 1 , В 1 и Р 1 .

Коэффициент радиального смещения определяют по формуле:

Коэффициент радиального смещения находят по формуле:

Для определения коэффициентов радиальных и осевых смещений находят величины коррекции для передней и задней опор: где D – расстояние между точками опор индикаторов А и В. При полож значении коррекции опору приподнять, а при отриц – опустить соответс на вел V и H. Центровочные приспособления с лазерными излучателями используютсядля центровки оборудования с высокими требованиями на соосность валов. Отклонения от соосности измеряются при этом с точностью 1 мкм. Достоинства : -возможность компенсации влияния внешней вибрации; -для контроля соосности достаточно поворота валов на 60°;-высокая точность измерений. Недостатки отсутствие учета осевых смещений

Соединяемые между собой механизмы будут правильно работать в том случае, если их валы будут установлены так, чтобы упругие линии валов являлись продолжением одна другой без смещения и излома в плоскости сопряжения. Установка валов в соответствии с этими требованиями в практике получила название центровки .

Естественный прогиб валов вызывает необходимость устанавливать их с определённым уклоном к горизонту.

Установку валов можно выполнить двумя способами:

Устанавливая линии валов многомашинных агрегатов, стремятся к тому, чтобы подъём крайних подшипников агрегата был одинаковым, самый тяжёлый ротор агрегата, обычно, располагают горизонтально.

Уклон шейки вала измеряют уровнем при четырёх положениях вала, поворачивая вал на 90°, в каждом положении делают два измерения; при втором измерении уровень поворачивают на 180°. За величину уклона принимают среднеарифметическое значение восьми показаний. Такое определение уклона шеек валов необходимо во избежание ошибки при искривлении вала или отклонении оси шейки от оси вращения (о таких дефектах свидетельствуют значительные изменения показаний уровня, установленного на шейке вала, при различных положениях ротора).

Для проверки установки валов агрегата, находящегося в эксплуатации, необходимо снять все крышки подшипников и проверить уровнем уклоны всех шеек валов. Цена деления применяемых для этого уровней соответствует обычно подъёму 0,1 мм на 1 м. Отсутствие изменений в уклонах при сравнении полученных данных с данными монтажного формуляра указывает на сохранение центровки. Если же обнаружатся расхождения в величинах или в направлениях уклонов, то необходимо проверить центровку агрегата. Если при изменении уклонов шеек центровка не нарушена, то имеет место неравномерная осадка фундамента.

Оси вращения двух валов имеют параллельное смещение и угловой излом. Обычно несоосность – это комбинация двух указанных видов. В процессе работы, даже при использовании упругих муфт, перекосы приводят к увеличению нагрузки на опорные части машины, повышению вибрации и другим отрицательным эффектам.

Влияние несоосности

  1. На подшипники . Приводит к возникновению дополнительных сил. Повышение нагрузки на подшипники вследствие перекоса валов на 20% сокращает расчётную долговечность подшипников на 50%.
  2. На уплотнения . Приводит к износу уплотнений, увеличивает риск повреждения подшипников из-за проникновения грязи и вытекания смазочного материала.
  3. На муфты и валы . Вибрации, вызванные несоосностью, вызывают повреждения муфт (перегрев, ослабление, поломка болтов) и валов.
  4. На потребление энергии . Потребление энергии двигателем может возрасти до 20% вследствие перекосов.

Точность выверки . Для того, чтобы избежать отрицательных эффектов, перекосы валов должны быть в пределах установленных допусков ( , ). Высокоскоростные машины требуют точной выверки.

Таблица 4.7 – Допуски на несоосность валов
Частота вращения, об./мин. Угловая несоосность Параллельная несоосность
мм / 100 мм 0,001″ / 1″ мм 0,001″
0…1000 0,1 1 0,13 5,1
1000…2000 0,08 0,8 0,10 3,9
2000…3000 0,07 0,7 0,07 2,8
3000…4000 0,06 0,6 0,05 2,0
4000…6000 0,05 0,5 0,03 1,2
Таблица 4.8 – Допуски на центровку при диаметре муфты 500 мм
Тип соединяемой муфты Разность средних величин зазоров, мм
по окружности (радиальные зазоры) по торцу (осевые зазоры)
Жёсткая 0,04 0,05
Полужёсткая 0,06 0,05
Пружинная 0,06 0,06
Кулачковая 0,08 0,08
Зубчатая 0,10 0,08

Примечание : указанные отклонения даны без учёта влияния на центровку тепловых расширений фундамента и корпусов подшипников по высоте или возможных деформаций опор.

Для центрирования валов используют метод грубой выверки при помощи линеек, щупов, клиновых щупов и методы точной выверки при помощи индикаторов часового типа или лазерного центровщика. Обычно в качестве “неподвижной” выбирается часть механизма, положение которой в процессе выверки не меняется (насос, вентилятор), “подвижная” часть перемещается для устранения несоосности (двигатель).

Комплект для центровки включает:

  • измерительные индикаторы;
  • вычислительное устройство;
  • приспособления для установки индикаторов на валах;
  • комплект прокладок;
  • инструмент для измерения линейных размеров;
  • приспособления для подъёма и перемещения центрируемого узла.

Различают выверку ременных передач и центрирование валов.

Точная выверка ременных передач обеспечивает:

  • уменьшение трения и потребления энергии;
  • уменьшение вибрации и шума;
  • продление срока службы подшипников и ремней;
  • повышение безопасности;
  • уменьшение простоев;
  • снижение затрат на ремонты.

Виды перекоса ремней :

  • угловой перекос валов;
  • угловой перекос поверхностей шкивов;
  • параллельное смещение шкивов.

Сборка соединительных муфт

Соосность горизонтальных валов определяется центровкой по полумуфтам. Радиальные и осевые зазоры при центровке измеряют при исходном положении 0° и после поворота валов на 90°, 180° и 270° в направлении рабочего вращения. При каждом положении полумуфт проводят замер радиального и осевого зазора между полумуфтами. Для контроля правильности измерений, после четырёх замеров необходимо установить полумуфты в первоначальное положение (0°). Результаты повторных измерений в этом положении должны совпадать с первоначальными, в противном случае следует найти причину отклонения и устранить. Результаты измерений заносят в круговую диаграмму. Правильность измерения проверяют, сопоставив суммы результатов, полученных при измерении на противоположных сторонах полумуфт. Эти суммы должны быть равны между собой. Допускаемое отклонение не должно превышать 0,02 мм.

Полученные замеры по торцу и окружности можно привести к нулю путём вычитания из полученных результатов наименьшего зазора. В случае неудовлетворительных результатов центровки и необходимости перемещения валов в горизонтальной и вертикальной плоскостях, определяют величины перемещения ():

x 1 = A × (L + l) / d m ;
y 1 = A × l / d m ;
x 2 = y 2 = R / 2 ;
x = x 1 + x 2 ;
y = y 1 + y 2 ;
x = A × (L + l) / d m + R / 2 ;
y = A × l / d m + R / 2 ,

где R = R 1 – R 2 – расцентровка валов по окружности; A = A 1 – A 2 – расцентровка валов по торцу.

Рисунок 4.40 – Схема центровки валов: I, II – плоскости замеров; 1 – центрируемый вал; 2 – базовый вал; №1…№4 – опоры

Порядок центрирования

Достижимая в промышленных условиях точность центрирования составляет 0,005…0,100 мм. Целью центровки является установка двигателя так, чтобы его вал являлся продолжением вала механизма.

Перед установкой приспособлений для центровки полумуфты должны быть разъединены, чтобы не было касаний между полумуфтами. Затем проверяют свободное проворачивание каждого из роторов и убеждаются в отсутствии задеваний.

Для измерения радиальных и осевых зазоров применяют приспособления различных конструкций, укрепляемых на полумуфтах или на валах вблизи полумуфт (). Приспособления должны обладать достаточной жёсткостью для того, чтобы не прогибаться при выполнении измерений и под действием собственного веса. Для повышения точности измерений устанавливают индикаторы перемещения (точность 0,01 мм).

Рисунок 4.41 – Приспособление для центровки

Устанавливают роторы так, чтобы риски на обеих полумуфтах совпадали, укрепляют центровочное приспособление. Внешнюю скобу устанавливают на полумуфте выверенной машины. После установки индикаторов необходимо проверить надёжность закрепления и отсутствие заеданий в механизме индикатора. Для этого слегка оттягивают измерительный стержень индикатора и возвращают на место. Стрелка индикатора должна при этом возвращаться на установленный отсчёт. При измерениях необходимо периодически убеждаться в том, что все скобы не касаются каких-либо частей машины; не следует касаться скоб руками.

Для измерения радиальных и осевых зазоров оба ротора одновременно поворачивают от исходного положения (0°) на 90°, 180° и 270° в направлении вращения приводного двигателя или механизма и измеряют зазоры в каждом из этих четырёх положений и при совпадении рисок. Чтобы измерения были точными, их должно производить одно лицо. Лёгкие роторы можно поворачивать вручную или рычагом, тяжёлые приходится поворачивать краном.

Центрировать можно при соединённых и при разъединённых муфтах. Проверка центровки при соединенных муфтах требует меньше времени и обеспечивает совместный поворот валов. При центровке с разъединёнными муфтами нужно очень тщательно проводить совместный поворот валов, чтобы риски, нанесенные на втулках полумуфт, совпадали как при отсчёте, так и при проворачивании валов.

Вначале проводят совмещение осей в вертикальном направлении, а затем в горизонтальном.

Пример

Пусть вал прицентровываемого механизма и скоба для измерения осевых зазоров имеют размеры, показанные на , то есть l 1 = 350 мм , l 2 = 2000 мм , r = 400 мм . При измерении радиальных и осевых зазоров получены данные, приведенные на , что соответствует расположению валов, показанному на рис. ; внешняя скоба установлена на полумуфте выверенной машины.

Центровка валов

Как известно, валы электродвигателя и основного меха­низма соединяют муфтами. Непременным условием такого соеди­нения является соосность валов, т. е. совпадение их осей. При от­сутствии соосности нарушается нормальная работа агрегата, в ре­зультате чего появляется вибрация, вызывающая ускоренный износ подшипников и полумуфт. Несоосность валов и повышенная вибра­ция часто являются причиной поломок и аварийных остановов обо­рудования. Операцию по приведению валов в соосное состояние на­зывают центровкой.

Смещения соединяемых валов могут быть трех видов: продоль­ное, поперечное и угловое. У каждой пары соединяемых валов обычно имеются все три вида смещений, так как с абсолютной точностью отцентровать валы невозможно. Центровку считают выпол­ненной, если отклонения валов от правильного положения нахо­дятся в пределах норм, установленных сборочными чертежами или техническими условиями на сбор­ку агрегата.

Для сборки и установки механизмов существуют общие прави­ла: вначале по чертежу устанавливают основной (приводимый) механизм, а затем электродвигатель. Вал электродвигателя прицентровывают к валу основного механизма. Если между основным механизмом и электродвигателем имеются зубчатый привод и ре­дуктор, привод прицентровывают к основному механизму, редук­тор к приводу, а электродвигатель к редуктору. Соосности ва­лов при центровке добиваются во всех случаях, изменяя положение прицентровываемого механизма, а не ранее установленного.

До начала центровки должны быть закончены ремонтные рабо­ты по основному механизму и электродвигателю и проверено со­стояние узлов агрегата. Болты крепления фундаментной рамы и подшипников должны быть прочно затянуты.

Валы механизма и электродвигателя центрируют обычно по по­лумуфтам в следующей последовательности: предварительно выверяют ось вала электродвигателя по оси вала механизма; устанавливают центровочные скобы на полумуфты и скобы с отжимными болта­ми на фундаментную раму электродвигателя; окончательно центри­руют вал электродвигателя относительно вала механизма по диа­грамме центровки и также по диаграмме производят контрольную проверку центровки валов.

Электродвигатель устанавливают на фундаментную раму таким образом, чтобы было выдержано осевое расстояние между полу­муфтами, предусмотренное чертежом. Перед замером этого рассто­яния роторы электродвигателя и механизма сдвигают друг к дру­гу до упора. Если специальных указаний не имеется, расстояние между полумуфтами при сдвинутых роторах не менее 4 мм для небольших агрегатов и не менее 8 мм для больших.

Линейкой и клиновым щупом предварительно выверяют ось ва­ла электродвигателя по оси вала механизма. Вначале накладывают линейку на верхние образующие полумуфт (рис. 3.11, а) и проверя­ют совпадение осей валов в вертикальной плоскости. Оси валов совпадают, если линейка прилегает к обеим полумуфтам без про­света.

Чтобы оси валов совпали по вертикали, поднимают вверх или опускают вниз электродвигатель, подкладывая стальные прокладки под его лапы. Достигнув совпадения осей валов по вертикали, проверяют клиновым щупом горизонтальность вала элек­тродвигателя. Для этого заводят щуп в зазор между полумуфтами сверху и снизу (рис. 3.11, б ). Неравенство зазоров свидетельствует о негори­зонтальности вала электродвигателя. Горизон­тальности добиваются, устанавливая подкладки под соответствующие лапы электродвигателя или снимая их. При этом стараются не нару­шить ранее достигнутую выверку валов по вы­соте.

Рис. 3.11. Предва­рительная вывер­ка осей валов по вертикали линей­кой (а ), по гори­зонтали клино­вым щупом (б ).

После достижения горизонтальности вала электродвигателя проверяют совпадение осей ва­лов в горизонтальной плоскости, прикладывая к боковым образующим полумуфт линейку. Одно­временно клиновым щупом проверяют зазоры между полумуфтами и выравнивают электродви­гатель в горизонтальной плоскости.

Окончив предварительную выверку, повора­чивают валы в положение, при котором риски на полумуфтах совпадут. На полумуфты уста­навливают центровочные скобы (рис. 3.12, а ), а на фундаментную раму электродвигателя ско­бы с отжимными болтами (рис. 3.12, б ).Между центровочными скобами винтами устанавливают зазоры в пределах 12 мм. Чтобы убедиться, что скобы не будут задевать друг друга, оба вала одновременно поворачивают на один оборот.

Рис. 3.12. Приспособления для центрирования валов:

а – центровочные скобы, б – скоба с отжимными болтами

При окончательной центровке поворачивают обе полумуфты в положении I , II , III и IV (рис. 3.13, а ) и в каждом из них замеряют пластинчатым щупом радиальные и торцевые (осевые) зазоры меж­ду центровочными скобами. Размеры зазоров записывают на круго­вой диаграмме (рис. 3.13, б ), где отмечают соответствующие поло­жения. Радиальные зазоры а 1 – а 4 обычно записывают снаружи окружности, а торцевые Т 1 – Т 4 – внутри.

При проверке центровки по скобам вращают полумуфты в одну сторону. В каждом положении перед замером зазоров сближают полумуфты до предела и затягивают все фундаментные болты элек­тродвигателя. Центровку по круговой диаграмме ведут до тех пор, пока не будут одинаково расположены на одном диаметре ради­альные зазоры и соответствующие им торцевые.

Для частот вращения вала 1500; 750; 500 об/мин допусти­мая разница диаметрально противоположных зазоров между цент­ровочными скобами составляет 0,070,11; 0,10,12; 0,150,2 мм соответст­венно.

Рис. 3.13. Центрирование осей валов по круговой диаграмме:

а – положение полумуфт, при котором за­меряют зазоры между центровочными ско­бами, б – круговая диаграмма

Для получения равенства зазоров между центровочными скоба­ми в диаметрально противоположных положениях осторожно пе­ремещают электродвига­тель в горизонтальной пло­скости отжимными болтами, а по высоте рычагами или домкратами. При этом уменьшают или увеличива­ют общую толщину прокла­док под соответствующими лапами электродвигателя. Нельзя перемещать элект­родвигатель ударами кувал­ды. После каждого переме­щения привода туго затяги­вают болты, которыми элек­тродвигатель крепится к фундаментной раме.

Контрольную проверку правильности замеров при центровке выполняют в по­ложении I после поворота полумуфт на 360°. При по­вторном измерении зазоры в положении I должны быть равны зазорам, полученным при первоначальном изме­рении в этом же положении.

Для ускорения центровки валов применяются также центровочные скобы с микрометрическими винтами и клиновые домкраты.



Центровочные скобы с микрометрическими винтами показаны на рис. 3.14. К концу 1 вала хомутом 3 крепится штатив 2 с крон­штейном 4 и микрометрическим винтом 5 . На конце 10 вала закреп­ляется штатив 8 с кронштейном и микрометрическим винтом 7 .Микрометрические винты 5 и 7 служат для измерения радиальных и осевых зазоров соответственно.

Рис. 3.14. Центровочные скобы с микромет­рическими винтами для центрирования ва­лов:

1 , 10 – концы вала, 2 , 8 – штативы, 3 , 9 – хому­ты, 4 , 6 – кронштейны,

5 , 7 – микрометрические винты

Зазоры измеряют так же, как и при обычной центровке. При совместном вращении обеих полумуфт (или валов) в четырех по­ложениях замеряют зазоры с помощью микрометрических винтов, возвращая каждый раз винт в первоначальное положение. Исполь­зование микрометрических винтов повышает точность замеров и ускоряет цент­ровку.

Перемещение тяжелых электродвигателей при цент­ровке в вертикальной пло­скости производят клиновы­ми домкратами (рис. 3.15), которые устанавливают между фундаментом (фундаментной рамой) и электро­двигателем. Домкрат состоит из корпуса 4 ,винта 3 ,верхнего 2 и нижнего 1 клиньев. Домкрат заводится под электродвигатель клиновой частью и при вращении винта клин 1 приподнимает клин 2 ,поджимающий электродвигатель.

Рис. 3.15. Клиновой домкрат для центрирования валов:

1, 2 – нижний и верхний клинья, 3 – винт, 4 – корпус



Просмотров