Забытая взрывчатка: Взрывная инициация. Патентный поиск, поиск патентов и изобретений рф и ссср Как сделать взрывчатку собственными руками

1846 год стал поворотной точкой на стыке двух эпох европейской цивилизации: химики и гуманисты предложили поменять старый добрый черных порох на два порождения ада — нитроглицерин и нитроклетчатку. Первый дал миру динамит и нитроглицериновый порох, вторая — бризантный пироксилин и пироксилиновый порох. В итоге война окончательно утратила флер романтики и джентльменства.

Юрий Веремеев

В 1905 году снаряды корабельных орудий калибра 6 дюймов и более были начинены пироксилином. Желтым цветом обозначен заряд из влажного (10%) пироксилина, темно-желтым — промежуточный детонатор из сухого (5%) пироксилина. Гнездо для взрывателя находится в привинтном дне снаряда. Такая конструкция определялась тем, что пироксилиновый заряд изготавливался по форме и размерам внутренней полости, вставлялся в снаряд, а затем ввинчивалось дно


В период Первой мировой войны пироксилин уже использовали только там, где можно было обеспечить полную герметичность — в основном, в торпедах и морских минах


В Первой мировой войне большинство европейских стран отказалось от использования пироксилина в качестве взрывчатой начинки для снарядов, сделав свой выбор в пользу ядовитой, но более безопасной в изготовлении пикриновой кислоты


Пироксилин в снарядах остался только в России и Швейцарии. И лишь потому, что были накоплены большие запасы этого вещества

В 1832 году химик Бракконо решил посмотреть, что получится, если азотной кислотой воздействовать на крахмал и клетчатку, входящие в состав древесины. Кислота хорошо растворяла эти вещества, а при добавлении в раствор воды из него выпадал осадок. Высушенный, он представлял собой порошок, который очень хорошо горел. Опытами Бракконо заинтересовался парижский химик Пелуз (в дальнейшем — учитель Нобеля). Но, как и Бракконо, Пелуз не придал ровным счетом никакого значения открытию нитроклетчатки. Официально об этом веществе сообщил немецкий химик Кристиан Фридрих Шенбейн в марте 1846 года на заседании Базельского общества; полученный вариант нитроклетчатки он назвал пироксилином.

Первые шаги

Говорят, Шенбейн изобрел пироксилин случайно. Пролив в лаборатории азотную кислоту, он якобы вытер лужу хлопчатобумажным фартуком жены, а затем повесил его сушиться у печки. Высохнув, фартук взорвался. Но это легенда.

В действительности Шенбейн занимался исследованиями нитроклетчатки целенаправленно, и этот ее вариант назвал Schiebaumwolle («стрелятельный хлопок», название так и осталось за пироксилином в немецком языке). И хотя именно Шенбейн открыл способность пироксилина взрываться, целью его была замена черного дымного пороха (в настоящее время пироксилин наряду с нитроглицерином остается основным компонентом бездымного пороха).

Когда Шенбейн делал свой знаменитый доклад, на Куммерсдорфском полигоне уже отзвучали первые орудийные выстрелы порохом нового типа. Казалось, мир стоит на пороге промышленного производства пироксилинового пороха. Но с самого начала пироксилин, как и нитроглицерин, проявил свой дьявольский характер и непокорность. Изготовление нового пороха оказалось столь же опасным, что и производство нитроглицерина. Пироксилиновые цеха взрывались один за другим.

Пироксилиновую эстафету от Шенбейна принял австрийский артиллерист Ленк, который определил, что при хранении разлагается и взрывается лишь плохо промытый продукт. Но было уже поздно: австрийский император запретил опыты с этим опасным веществом. Работы продолжил в 1862 году англичанин Фридрих Абель, которому в 1868 году удалось получить прессованный пироксилин. Способ напоминал производство бумаги. Во влажном виде пироксилин совершенно безопасен. Абель размельчал его в воде, после чего формовал листы, бруски и шашки. Затем воду отжимали.

Эти изделия уже можно было применять как бризантную взрывчатку. Но коммерческий успех был подорван конкуренцией со стороны только что появившегося нобелевского динамита, который был значительно мощнее пироксилина и гораздо дешевле.

Безопасная взрывчатка

Пироксилин по достоинству оценили только военные, требования которых к взрывчаткам весьма отличались от требований коммерческого применения. Пироксилин стоек в хранении, не разлагается, и из него не выделяется, как из динамита, столь опасный нитроглицерин. Пироксилин без малейших изменений может храниться десятилетиями, а значит, можно заблаговременно создавать на случай войны необходимый запас снарядов. На свойства пироксилина не влияет мороз, в то время как замерзший динамит становится очень опасным. Во влажном виде пироксилин можно шнековать, резать, пилить, придавать любую форму — свойство особенно ценное для использования в снарядах. Его можно прессовать, выжимая из него воду и доводя до нужной степени чувствительности.

От открытого пламени пироксилин лишь загорается и горит без взрыва, что особенно ценно на кораблях. Ведь даже черный порох отправил на дно множество кораблей. Еще во времена парусного флота крюйт-камера (отсек корабля, где хранился порох) была самым охраняемым от огня и малейшей искры местом.

От прострела пулей пироксилин обычно не взрывается, тогда как динамит — более чем охотно. Это свойство, совершенно безразличное для коммерческих взрывчаток, стало крайне важным в военном применении.

Капризный конкурент

В последней четверти XIX века пироксилином стали снаряжать артиллерийские снаряды, морские торпеды и мины. Однако с появлением тротила и мелинита пироксилин довольно быстро сошел с арены. Но почему? Дело в том, что при всех его положительных качествах пироксилин все же значительно уступает мелиниту, а особенно тротилу в удобстве использования, безопасности и сохранности.

Прежде всего, пироксилин весьма капризен в отношении влажности. При влажности около 50% и более он полностью теряет взрывные свойства. С другой стороны, когда содержание влаги падает ниже 3%, пироксилин «пересыхает» и начинает разлагаться. При влажности 5−7% пироксилин охотно взрывается от стандартного капсюля-детонатора №8, при 10−30% для взрыва требуется промежуточный детонатор — шашка из пироксилина, имеющего влажность 5−7%. Столь сильная зависимость взрывчатки от влажности требовала постоянного и тщательного контроля и создания специальных условий. Даже в складских условиях эта задача весьма непроста: нужны теплые помещения с хорошей вентиляцией, с осушителями воздуха, что во фронтовых условиях обеспечить зачастую невозможно.

Частично из положения выходили так: после изготовления шашки доводили до требуемой влажности, а затем тщательно покрывали слоем парафина. Однако и в этом случае требовался тщательный контроль. Зависимость пироксилина от влажности сыграла злую шутку с российской эскадрой, в 1905 году шедшей из Кронштадта на выручку осажденному японцами Порт-Артуру.

Зловещий вклад

Все полагали, что в снарядах пироксилин достаточно защищен от сырости. Однако в целях безопасности снаряды хранили без взрывателей, и влага проникала к пироксилину через гнезда для взрывателей. А в условиях многомесячного плавания через два океана добиться поддержания требуемой влажности было просто невозможно.

Японские же снаряды были снаряжены новомодным тогда мелинитом , называемым шимозой по фамилии изобретателя (Шимозе). Мелинит совершенно нечувствителен к сырости и надежно взрывается в любых условиях. Вдобавок при взрыве шимозы выделяется большое количество ядовитых газов удушающего действия, по сути, настоящего боевого отравляющего вещества.

После Цусимского сражения в России было модно обвинять в этом тяжелейшем поражении на море, беспримерном для русского военного флота, «бездарных адмиралов, так и застрявших в эпохе парусного флота», «злобных офицеров», у которых «единственным средством обучения и воспитания матросов был кулак», некомпетентных царских кораблестроителей. Но тщательное рассмотрение специалистами схем боевого маневра обеих эскадр всякий раз приводило к выводу, что адмирал Рожественский не допустил существенных ошибок, а уровень конструкции русских кораблей был примерно равен японским. Но более 60% снарядов, снаряженных отсыревшим пироксилином, при попадании в японские корабли не взрывались, тогда как японские, с шимозой, разрывались при ударе о воду, осыпая русских матросов осколками и окутывая их ядовитыми газами.

Многие историки, не утруждая себя изучением конструкции снарядов, утверждают, что разрывной заряд русских снарядов был слишком мал. На самом деле японцы, не имея в достатке бронебойных снарядов, просто стреляли тем, что имели, — по большей части осколочно-фугасными, заряд которых был, естественно, значительно больше. Другие авторы грешат на якобы скверные взрыватели русских снарядов, не ведая о том, что взрыватель бронебойного снаряда и должен срабатывать с замедлением, когда снаряд проникнет в заброневое пространство, где взрыв особенно губителен и страшен, поскольку разрушает механизмы и уничтожает экипаж. Стоит заметить, что охаянная после Цусимы «филимоновская трубка» образца 1884 года впоследствии прекрасно проявила себя в Первую мировую войну.

Японские «шимозы», разрываясь у бортов и на палубах русских кораблей, выводили из строя матросов на палубах, разрушали надстройки и вызывали пожары, но если бы не отсыревший пироксилин, то разрывы русских бронебойных снарядов внутри защищаемых броней жизненно важных отсеков причинили бы куда более страшные разрушения. И хотя пироксилин в русских снарядах не был единственной или даже главной причиной поражения, он внес довольно существенный вклад в трагедию русского флота.

Это и стало одной из причин того, что пироксилин весьма быстро стал сходить со сцены. Как писал патриарх взрывного дела немецкий профессор Каст в своей книге Spreng und Zuendstoffe, вышедшей в 1921 году в Берлине, уже в период Первой мировой войны пироксилин использовали только в торпедах и морских минах (там, где обеспечивается полная герметичность), и лишь в Швейцарии и России его применяли в снарядах крупных калибров (152−210 мм), да и то лишь потому, что в свое время были созданы слишком большие их запасы.

Русский путь

Почему же в России пироксилин оказался более популярной бризантной взрывчаткой, нежели в странах Европы? Почему и Япония, и Европа предпочли использовать ядовитую пикриновую кислоту (мелинит)? Все, кто работал с мелинитом, отмечали, что уже через несколько часов наблюдаются головная боль, одышка, учащенное сердцебиение и даже потеря сознания.

По иронии истории одним из виновников Цусимского поражения оказался великий русский химик Д.И. Менделеев. Он решил основную проблему изготовления пироксилина — как сделать его высушивание безопасным. Великий русский химик предложил обезвоживать пироксилин спиртом, после чего спирт на открытом воздухе испарялся сам по себе. Таким способом удавалось избежать самого опасного этапа, и уже в 1880 году по проекту М. Чельцова и лейтенанта флота Федорова был пущен завод по производству пироксилина методом Менделеева.

В первую очередь эта взрывчатка требовалась флоту, где к этому времени обнаружилось явное несоответствие мощи броненосцев и дальнобойности морских орудий с поражающими способностями снарядов, начиняемых черным порохом. Таким образом, в этот момент Россия опередила Европу в артиллерийском деле.

Вдобавок полковник А.Р. Шуляченко, исследуя свойства динамита в 1876 году, пришел к выводу об опасности его использования в саперном деле из-за склонности к детонации от воздушной ударной волны при близких разрывах других зарядов или артиллерийских снарядов. По его представлению российское военно-инженерное ведомство еще в 1896 году решило исключить динамит из табелей снабжения взрывными материалами саперных батальонов и заменить его на пироксилин.

В Европе, где попытки производства пироксилина начались гораздо раньше, чем в России, и где имели место многочисленные взрывы пироксилиновых производств, к этой взрывчатке отнеслись с недоверием и предпочли начать производство пусть и ядовитой, но безопасной в изготовлении пикриновой кислоты (в Англии в 1888 году под названием «лиддит», во Франции в 1886 году под названием «мелинит»). Впрочем, нельзя сказать, что пироксилин в Европе вовсе не использовался.

В Англии изготавливали так называемый тонит (смесь 51% пироксилина и 49% бариевой селитры). Эту взрывчатку применяли в качестве саперной и в морских подрывных патронах. В составе бельгийского тонита содержалось 50% пироксилина, 38% бариевой и 12% калиевой селитры. А в период Первой мировой войны англичане изготавливали сенгит (50% пироксилина и 50% натриевой селитры).

В России массовое производство пироксилина началось в 1880 году и были накоплены большие его запасы, поэтому во время Первой мировой он использовался в качестве саперной взрывчатки. В войска пироксилин поставлялся в виде прессованных шашек, имевших вид шестигранных призм. Большая шашка (250−280 г) имела высоту 50,8 мм и вписывалась в окружность диаметром 82 мм, малая шашка (120 г) соответственно 47 мм и 53 мм. Изготавливались также так называемые буровые шашки (56 г, 70 мм высотой), диаметр которых совпадал с диаметром отверстия, пробиваемого буром в камне (30 мм). Их использовали для дробления камня и рыхления мерзлого грунта.

Все эти шашки делились на запальные и рабочие. Первые содержали 5% влаги и имели высверленные отверстия для капсюля-детонатора. У вторых влажность достигала 20−30%, и они не имели гнезд для капсюлей детонаторов. Заряд изготавливали из рабочих шашек, а в его центре помещалась одна запальная шашка. В нее-то и вставлялась зажигательная трубка (капсюль-детонатор с отрезком бикфордова шнура) — так обеспечивалась безопасность подрывных работ. И все же время пироксилина уже заканчивалось, его вытесняли мелинит и тротил.

Сегодня о пироксилине уже мало кто помнит, за исключением разве что историков, изучающих военные события конца XIX — начала XX веков. Последние упоминания о пироксилине автор встретил в советском руководстве по минно-взрывным средствам противника издания 1943 года, где пишется, что итальянские саперы на советско-германском фронте использовали цилиндрические шашки (массой 30 г, диаметром 3 см и длиной 4 см) из сухого пироксилина, обернутые в парафиновую бумагу. Финская армия в качестве подрывных использовала цилиндрические заряды из влажного пироксилина. Совпадение размеров позволяет предположить, что это были разрывные заряды, изъятые из устаревших крупнокалиберных артиллерийских снарядов царской армии. Красная армия, видимо, в последний раз использовала пироксилин как саперную взрывчатку в начале Второй мировой войны. Об этом упоминается в советской книге о подрывных средствах издания 1941 года и в немецкой памятке по трофейным минно-взрывным средствам издания января 1942 года. Судя по форме и размерам шашек, это тоже были остатки дореволюционных пироксилиновых запасов.

Общие положения. Основные характеристики инициирующих, метательных, бризантных ВВ. Фугасность и бризантность. Взрыв — это процесс очень быстрого превращения взрывчатого вещества в большое количество сильно сжатых и нагретых газов, которые, расширяясь, производят механическую работу (разрушение, перемещение, дробление, выбрасывание).

Взрывчатое вещество — химические соединения или смеси таких соединений, которые под воздействием определенных внешних воздействий способны к быстрому, саморазвивающемуся химическому превращению в большое количество газов.
Проще говоря, взрыв сродни горению обычных горючих веществ (уголь, дрова), но отличается от простого горения тем, что этот процесс происходит очень быстро, в тысячные и десятитысячные доли секунды. Отсюда, по скорости превращения взрыв делят на два типа — горение и детонация.

При взрывчатом превращении типа горения , передача энергии от одного слоя вещества к другому происходит путем теплопроводности. Взрыв типа горения характерен для пороха. Процесс образования газов происходит достаточно медленно. Благодаря этому, при взрыве пороха в замкнутом пространстве (гильзе патрона, снаряда) происходит выбрасывание пули, снаряда из ствола, но не происходит разрушения гильзы, патронника оружия.

При взрыве же типа детонации процесс передачи энергии обуславливается прохождением ударной волны по ВВ со сверхзвуковой скоростью (6-7 тыс. м. в секунду). В этом случае газы образуются очень быстро, давление возрастает мгновенно до очень больших величин. Проще говоря, у газов нет времени уходить по пути наименьшего сопротивления и они в стремлении расшириться, разрушают все на своем пути. Этот тип взрыва характерен для тротила, гексогена, аммонита и т.п. веществ.

  1. Механическое (удар, накол, трение)
  2. Тепловое (искра, пламя, нагревание)
  3. Химическое (хим. реакция взаимодействия какого-либо вещества с ВВ)
  4. Детонационное (взрыв рядом с ВВ другого ВВ)

Различные ВВ по разному реагируют на внешние воздействия. Одни из них взрываются при любом воздействии, другие имеют избирательную чувствительность. Например, черный дымный порох хорошо реагирует на тепловое воздействие, очень плохо на механическое и практически не реагирует на химическое. Тротил же в основном реагирует только на детонационное воздействие. Капсюльные составы (гремучая ртуть) реагируют практически на любое внешнее воздействие. Есть ВВ, которые взрываются вообще без видимого внешнего воздействия, но практическое применение таких ВВ вообще невозможно.

В зависимости от типа взрыва и чувствительности к внешним воздействиям все ВВ делят на три основные группы:

  1. Инициирующие ВВ.
  2. Метательные ВВ.
  3. Бризантные ВВ.

Инициирующие ВВ

Они обладают высокой чувствительностью к внешним воздействиям и их взрыв, (детонация) оказывает детонационное воздействие на бризантные и метательные ВВ, которые обычно к остальным типам внешнего воздействия не чувствительны вовсе или же обладают неудовлетворительной чувствительностью. Поэтому, инициирующие вещества и применяют только для возбуждения взрыва бризантных или метательных ВВ. Для обеспечения безопасности применения инициирующих ВВ, их упаковывают в защитные приспособления (капсюль, капсюльная втулка, капсюль — детонатор, электродетонатор, взрыватель). Типичные представители инициирующих ВВ: гремучая ртуть, азид свинца, тенерес (ТНРС).

Гремучая ртуть (фульминат ртути) получается из металлической ртути путем обработки ее азотной кислотой и этиловым спиртом в присутствии некоторых добавок (соляной кислоты и медных опилок). Представляет собой мелкокристаллическое сыпучее вещество белого или серого цвета. Ядовита, плохо растворяется в холодной и горячей воде.
К удару, трению и тепловому воздействию гремучая ртуть наиболее чувствительна по сравнению с другими инициирующими ВВ, применяемыми на практике. При увлажнении гремучей ртути ее взрывчатые свойства и восприимчивость к начальному импульсу понижаются (например, при 10 % влажности гремучая ртуть только горит, не детонируя, а при 30 % влажности не горит и не детонирует).
Гремучая ртуть при отсутствии влаги не взаимодействует химически с медью и ее сплавами. С алюминием же она взаимодействует энергично с выделением тепла и образованием невзрывчатых соединений (происходит разъединение алюминия). Поэтому гильзы гремучертутных капсюлей изготовлены из меди или мельхиора, а не из алюминия.
Гремучая ртуть разлагается в кислотах и щелочах, также при нагревании до температуры +50°С и более, а концентрированная серная кислота вызывает ее взрыв. Применяется для снаряжения также капсюлей-воспламенителей.

Азид свинца (азотистоводородный свинец) получается из металлического натрия и свинца в результате взаимодействия их с аммиаком и азотной кислотой. Азид свинца — единственное из применяемых ВВ, не содержащее кислород. Он представляет собой белый негигроскопичный мелкокристаллический порошок. При воздействии на него влаги и низких температур не снижает своей чувствительности и способности детонировать.
Кислоты, щелочи, углекислый газ (особенно в присутствии влаги) и солнечный свет медленно разлагают азид свинца. Температурные колебания не влияют на его стойкость, но при нагревании до +200°С он начинает разлагаться.
Азид свинца по сравнению с гремучей ртутью менее чувствителен к искре, лучу пламени и удару: но инициирующая способность азида свинца выше, чем у гремучей ртути. Так, например, для инициирования одного грамма тетрила нужно 0,29 г гремучей ртути и только 0,025 г азида свинца.
Для надежности возбуждения детонации азида свинца от искры и накола его покрывают, соответственно, слоем тенереса или специального накольного состава.
Азид свинца химически не взаимодействует с алюминием, но взаимодействует с медью и ее сплавами, с образованием азида меди, который во много раз чувствительнее азида свинца, поэтому гильзы капсюлей снаряжаемых азидом свинца, изготовляются из алюминия, а не из меди.
Применяется для снаряжения капсюлей-детонаторов.

Тенерес сокращенно ТНРС, представляет собой свинцовую соль стифниновой кислоты и называется стифнатом свинца, или тринитрорезорцинатом свинца. Это несыпучий мелкокристаллический порошок желтого цвета, малогигроскопичный и не взаимодействующий с металлами. Кислоты его разлагают. Под действием солнечного света тенерес темнеет и разлагается. Температурные колебания на тенерес действуют так же, как и на азид свинца. Растворимость тенереса в воде незначительна.
Инициирующая способность тоже весьма незначительна (даже 2 г тенереса не вызывают детонации тетрила), поэтому тенерес как самостоятельное инициирующее вещество не применяется, а вследствие своей большей чувствительности к искре и лучу пламени по сравнению с азидом свинца идет вместе с ним на снаряжение капсюлей-детонаторов.

Метательные ВВ

Метательными ВВ (порохами) называются такие вещества, основной формой взрывчатого превращения которых является горение.
При взрыве пороха дробящее действие проявляется в незначительной степени по сравнению с действием в виде отбрасывания, разбрасывания окружающей среды, поэтому их после появления бризантных ВВ стали называть метательными ВВ.
Пороха делятся на дымные и бездымные.

Дымный или черный порох представляет собой спрессованную, а затем размельченную на зерна различной крупности механическую смесь 75 % калиевой селитры, 15 % угля и 10 % серы. Зерна черные, блестящие, с темно-сизым отливом.
Дымный порох легко воспламеняется от удара, трения, искры, прострела пулей и т.п. Гигроскопичен, теряет способность к горению при сравнительно небольшом его увлажнении (более 2 %), при этом из блестящего становится матовым.
При зажигании пороха, заключенного в замкнутую оболочку, его горение существенно ускоряется (400 м/с), и он способен выполнить некоторую механическую работу (слабое дробление и отбрасывание).
Дымный порох в настоящее время применяется в так называемых дистанционных составах (замедлителях) в артиллерийских боеприпасах и в вышебных зарядах некоторых инженерных боеприпасов, а также в огнепроводных шнурах.

Бездымные пороха получают из нитроцеллюлозы (последняя получается из хлопка или древесины), растворяя ее в спиртоэфирной смеси (пироксилиновые пороха), или в нитроглицерине (нитроглицериновые пороха) с добавлением веществ, называемых стабилизаторами, для увеличения стойкости порохов при хранении. В отдельные сорта бездымных порохов вводятся также добавки для уменьшения скорости горения, для получения беспламенного выстрела и т. п.
Бездымные пороха представляют собой плотную массу от желтого до коричневого цвета, по внешнему виду напоминающую пластмассу. Форма элементов бездымного пороха может быть различной: для снаряжения винтовочных патронов и вышибных минометных зарядов применяется мелкий пластинчатый порох (зернистый); для снаряжения гильз артиллерийских снарядов и ракет — цилиндры разной длины и диаметра, имеющие, как правило, параллельно своей оси сквозные каналы тоже различного диаметра (от сотых долей миллиметра до 2 — 3 см).

Бризантные ВВ

Бризантные ВВ свое название получили от французского briser, что значит дробить, разламывать.
Бризантные ВВ в отличие от инициирующих не детонируют от таких простых начальных импульсов, как искра и луч пламени. Для возбуждения в них детонации необходим начальный импульс в виде взрыва небольшого количества инициирующего ВВ, а иногда и взрыва так называемого промежуточного детонатора из другого, более чувствительного вещества, взрывающегося, в свою очередь, от инициирующего ВВ.
Бризантные ВВ — основные вещества, применяющиеся в огромных количествах для снаряжения боеприпасов (артиллерийских снарядов, минометных мин, авиационных бомб, морских и инженерных мин) и для производства взрывных работ как для военных.

Бризантные ВВ подразделяются на:

Повышенной мощности

К этой группе относятся ВВ, обладающие повышенной скоростью детонации (7500 — 8500 м/с) и выделяющие большое количество тепла при взрыве. Одновременно эти вещества имеют и несколько большую чувствительность к начальному импульсу, чем другие бризантные вещества, они взрываются от любого капсюля-детонатора, а также при ударе винтовочной пули. От действия открытого огня загораются и горят интенсивно, без копоти, белым или светло-желтым (тетрил — голубоватым) пламенем, не выделяя дыма; горение может перейти во взрыв.

Тэн или тетранитропентаэритрит, пентрит — белый кристаллический порошок, получаемый нитрованием пентаэтрита, который в свою очередь получается из формальдегида и ацетальдегида (продуктов, применяющихся также для изготовления пластмасс и медицинских препаратов).
Тэн негигроскопичен, нерастворим в воде и спирте, растворяется в ацетоне. С металлами не взаимодействует.
По чувствительности к внешним воздействиям тэн относится к числу наиболее чувствительных из всех практически применяемых бризантных ВВ.
Тэн применяется для изготовления детонирующих шнуров и снаряжения капсюлей-детонаторов, а во флегматизированном состоянии может использоваться для изготовления промежуточных детонаторов и снаряжения некоторых боеприпасов. Флегматизированный тэн подкрашивается в розовый или оранжевый цвет.
За рубежом тэн называется пентритом и применяется также в смесях с тротилом (так называемые пентолиты) или в смесях с тротилом и нитроглицерином (пентриниты) в виде пластичных ВВ; наличие нитроглицерина требует более осторожного с ним обращения и оберегания от воздействия низких температур.

Гексоген, или тримстилентринитроамин, нормальное агрегатное состояние — мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен, неагрессивен. С металлами в химическую реакцию не вступает. Прессуется плохо. От удара, прострела пулей взрывается. Загорается охотно и горит белым ярким шипящим пламенем. Горение переходит в детонацию (взрыв)
В чистом виде применяется только для снаряжения отдельных образцов капсюлей-детонаторов. Для подрывных работ в чистом виде не используется. Используется для промышленного изготовления взрывчатых смесей (ПВВ-4 (пластит), ЭВВ, ТГА, МС, ТГ-50). Обычно эти смеси применяются для снаряжения некоторых видов боеприпасов. Например, МС для морских мин, ТГ-50 для кумулятивных зарядов. С этой целью чистый гексоген смешивают с флегматизаторами, (обычно это смесь парафина и церезина), окрашивают суданом в оранжевый цвет и прессуют. В смеси ТГА и МС в гексоген добавляют аллюминевую пудру. Все эти работы проводятся в промышленных условиях на специальном оборудовании.

Тетрил, или тринитрофенилметилнитроамин, получается нитрованием диметиланилина, который применяется при производстве красителей и медицинских препаратов.
Тетрил — светло-желтый, солоноватый на вкус кристаллический порошок, легко прессуемый, негигроскопичный, плохо растворимый в спирте и хорошо — в бензине и ацетоне. С металлами не взаимодействует, в кислотах и щелочах медленно разлагается; плавится при +131,5°С с частичным разложением.
Применяется тетрил для снаряжения капсюлей-детонаторов и промежуточных детонаторов в боеприпасах.
В смеси с тротилом называется тетритол.

Октоген (циклотетраметилентетранитрамин) — аналог гексогена, по свойствам близок к нему, но отличается большей плотностью, более высокой температурой плавления и вспышки. В чистом виде обладает высокой чувствительностью (выше гексогена). Термически октоген устойчивее гексогена. Небольшие заряды из октогена выдерживают нагревание в течение 5 ч при 200° С.
Октоген применяется в термостойких средствах взрывания и других изделиях для скважин с высокой температурой забоя. Во флегматизированном виде используют в кумулятивных зарядах.

Нитроглицерин (глицеринтринитрат) — очень мощное бризантное ВВ, отличающееся очень высокой чувствительностью к механическим воздействиям. Его получают обработкой (нитрованием) глицерина смесью азотной и серной кислот.
Нитроглицерин представляет собой маслообразную бесцветную прозрачную жидкость. Ядовит. При 15-20°С нитроглицерин малолетуч, при 50°С его летучесть значительно возрастает. При температуре +13,2°С нитроглицерин затвердевает. Негигроскопичен и плохо растворяется в воде.
Нитроглицерин очень чувствителен к толчкам, трению и ударам, поэтому применение и перевозка нитроглицерина в чистом виде не разрешается. Используют при производстве нитроглицериновых порохов, детонитов, динамитов.

Нормальной мощности

ВВ этой группы, за исключением динамитов, обладают большой стойкостью, выдерживают длительное хранение и весьма мало чувствительны ко всякого рода внешним воздействиям, что делает обращение с ними практически безопасным.

Тротил или тринитротолуол, иногда называемый толом, а за границей тритоном, и сокращенно обозначаемый ТНТ, приготовляется нитрованием толуола — бесцветной жидкости, получаемой при коксовании каменного угля и крекинга нефти. Тротил представляет собой кристаллическое вещество от светло-желтого до светло-коричневого цвета, горьковатое на вкус.
Тротил плавится без разложения при температуре около 81°С, температура вспышки около 310°С; на открытом воздухе горит желтым сильно коптящим пламенем без взрыва. Горение тротила в замкнутом пространстве может переходить в детонацию.
К удару, трению и тепловому воздействию тротил малочувствителен. Прессованный и литой тротил от прострела обычной ружейной пулей не взрывается и не загораться, с металлами химически не взаимодействует.
Тротил растворяется в спирте, бензине, ацетоне, серной и азотной кислотах. Щелочи, а в присутствии влаги и аммиак, реагируют с тротилом, образуя более чувствительные соединения.
Для снаряжения боеприпасов тротил применяется не только в чистом виде, но и в сплавах с другими ВВ (гексогеном, тетрилом и др.). Порошкообразный тротил входит в состав некоторых ВВ пониженной мощности (например, аммонитов).

Для производства взрывных работ тротил, как правило, применяется в виде прессованных шашек:

Больших –
размером b=50 h=50
a=100 мм и массой 400г
Малых —
размерами h=25 b=50
a=100 мм и массой 200г
Буровых-
длиной 70 мм, диаметром
30 мм и массой 75г.

Все подрывные шашки имеют запальные гнезда для капсюля-детонатора №8. Для более надежного сочленения со средствами взрывания запальные гнезда некоторых шашек делаются с резьбой. К надписи на бумажной обертке таких шашек добавлено: «С резьбой 1М10 х 1Н» или «С фольговой обкладкой резьбы».
Для защиты шашек от внешних воздействий их покрывают слоем парафина и обертывают бумагой, на которую затем наносится еще один слой парафина. Место расположения запального гнезда шашки обозначается черным кружком.Тротил — основное (табельное) бризантное ВВ, применяемое для взрывных работ почти во всех армиях, в том числе и в российской, а также для снаряжения большинства боеприпасов, как в чистом виде, так и в сплавах (смесях) с другими ВВ.

Пикриновая кислота или тринитрофенол, называемая иногда мелинитом, а в Японии — шимозе, представляет собой ярко-желтый порошок, горький на вкус, получаемый нитрованием фенола — продукта коксования каменного угля или крекинга нефти, применяющегося также для изготовления многих пластмасс и карболовой кислоты.
Чувствительность пикриновой кислоты к удару, трению и тепловому воздействию несколько выше чувствительности тротила; от прострела ружейной пулей она может взрываться. Пикриновая кислота горит сильно коптящим пламенем, но несколько энергичнее, чем тротил. Горение может переходить в детонацию (в количествах более 200 кг).
Пикриновая кислота по сравнению с тротилом обладает несколько большей мощностью и лучшей восприимчивостью к детонации. Порошкообразная и прессованная пикриновая кислота взрывается от капсюля-детонатора № 8. Литая пикриновая кислота от капсюля-детонатора № 8 детонирует не всегда, поэтому для взрыва ее требуется промежуточный детонатор.

Пластичное ВВ (пластит-4) представляет собой однородную тестообразную массу светло-кремового цвета. Пластит — смесевое ВВ, изготовляется из порошкообразного гексогена (80%) и специального пластификатора (20%) путем тщательного их перемешивания.
Пластит-4 негигроскопичен и нерастворим в воде; легко деформируется усилием рук. Легкая деформируемость позволяет использовать пластит для изготовления зарядов требуемой формы.
Пластические свойства пластита-4 сохраняются при температуре от -30°С до +50 С. При отрицательных температурах пластичность его несколько снижается; при температурах выше +25 С он размягчается и прочность изготовленных из него зарядов уменьшается.
К удару, трению и тепловым воздействиям пластит-4 малочувствителен (его чувствительность лишь немного выше чувствительности тротила). При простреле ружейной пулей, как правило, не взрывается и не загорается, при зажигании горит. Горение в количестве до 50 кг протекает энергично, но без взрыва. С металлами пластит-4 химически не взаимодействует. Детонирует от капсюля-детонатора № 8, погруженного в массу заряда на глубину не менее 10 мм.
При длительном воздействии высоких температур флегматизирующие вещества начинают выделяться к поверхности, и чувствительность пластита, внутренние слои которого — уже почти чистый гексоген, увеличивается.
Пластификаторы, не являясь взрывчатыми, снижают взрывчатые характеристики гексогена, а поэтому пластиты следует относить к ВВ нормальной мощности с коэффициентом, примерно равным 1,3 по отношению к тротилу.

Пластит-4 поставляется в войска в виде брикетов размером 70 х 70 х 145 мм, массой 1 кг, обернутых бумагой. Брикеты по 32 шт. упаковываются в деревянные ящики.

Динамиты применяются в народном хозяйстве. В их состав в различных рецептурах входят нитроглицерин с добавками нитроэфиров, селитра в смеси с древесной мукой и стабилизаторами (мел или сода). Добавки нитроэфиров снижают температуру замерзания нитроглицерина, а следовательно, и динамита. Древесная мука служит в качестве горючего и разрыхлителя. Стабилизатор вводят для повышения химической стойкости динамитов. Чем больше содержание нитроглицерина, тем больше мощность динамита и выше его чувствительность к начальному импульсу.
Преимущества динамита — водоустойчивость, дающая возможность применять их в обводненных условиях и даже под водой, и высокая мощность. К недостаткам динамитов относятся повышенная чувствительность к механическим и тепловым воздействиям, требующая большой осторожности при ведении взрывных работ и транспортировке, а также эксудация — способность выделять жидкий нитроглицерин на оболочку патронов, в результате чего они становятся чрезвычайно опасными и подлежат немедленному уничтожению. Кроме того, динамиты со временем стареют, т.е. теряют свою чувствительность к детонации от капсюля-детонатора. Поэтому установлены гарантийные сроки хранения динамитов: 4-6 месяцев.
У нас применяется в основном 62%-й динамит, который замерзает при — 19,5°С. Замерзший, полузамерзший или полуоттаявший динамит особенно опасен в обращении. Патрон замерзшего динамита легко узнать на ощупь, так как он тверже обычного. Этот динамит легко загорается от огня и на открытом воздухе в небольшом количестве сгорает без взрыва. При горении в большом количестве (свыше 5 кг) может взорваться.

Пониженной мощности

ВВ этой группы обладают пониженной бризантностью вследствие существенно меньшего тепловыделения и меньшей скорости их детонация (не более 5000 м/с), поэтому они уступают бризантным ВВ нормальной мощности по бризантному действию и равноценны им по работоспособности. Действительно, при взрывании аммиачно-селитряных взрывчатых веществ в грунтах и скальных породах объем выбрасываемой или разрыхляемой среды не меньше, чем при взрыве бризантных ВВ нормальной мощности. Пониженная бризантность сказывается при использовании этих взрывчатых веществ для перебивания таких прочных материалов, как металл, камень, бетон и т. п.
Из ВВ пониженной мощности наиболее широко применяются аммиачноселитряные ВВ, Они представляют собой механические взрывчатые смеси, основная часть которых — аммиачная (аммонийная) селитра; кроме селитры в эти смеси входят взрывчатые или горючие добавки.

Аммиачная селитра (азотнокислый аммоний) — кристаллическое, хорошо растворимое в воде вещество белого или бледно-желтого цвета, являющееся также одним из наиболее распространенных видов минеральные удобрений. Получается взаимодействием аммиака на азотную кислоту и представляет собой малочувствительное слабовзрывчатое вещество. В чистом виде от искры и от огня не загорается, горит лишь в мощном очаге пламени. Для инициирования взрыва требует промежуточного детонатора из более мощного ВВ. Но сухая, хорошо измельченная аммиачная селитра, находящаяся в массивной оболочке, взрывается от обычного капсюля-детонатора.
Низкая стоимость аммиачной селитры и возможность простого смешивания ее с взрывчатыми или горючими добавками позволяют получать разнообразные дешевые ВВ, удовлетворяющие различным условиям их применения. При этом компоненты, добавляемые к селитре, иногда частично локализуют то или иное отрицательное свойство селитры. В зависимости от характера примешиваемых к селитре добавок аммиачно-селитряные ВВ делятся на следующие подвиды:
Аммониты, в которых селитра смешивается с ВВ (чаше с тротилом и динитронафталином) с добавлением иногда и других невзрывчатых примесей.
Динамоны — смеси аммиачной селитры с горючими невзрывчатыми веществами; в качестве горючих веществ используются торф, древесные опилки, жмых, мука сосновой коры, пек, гудрон, уголь и т.п., т.е. вещества, богатые углеродом.
Аммоналы — взрывчатые смеси, в которых, кроме взрывчатых и горючих добавок, применяется еще и алюминиевая пудра, которая значительно повышает теплоту взрыва и температуру продуктов взрыва. Так, например теплота взрыва скального аммонала 1270-1290 ккал/кг вместо 800 — 900 ккал/кг для аммонитов.

Все аммиачно-селитряные ВВ достаточно безопасны в обращении: не взрываются от удара, трения, тряски и прострела винтовочной пулей: зажженные на открытом воздухе, горят спокойно без взрыва желтым коптящим пламенем. Хранить их надо в сухих, хорошо проветриваемых помещениях.
В настоящее время в расплав селитры, идущей на производство ВВ часто добавляют сернистое железо и жирные кислоты, которые придают ей желто-коричневый (вместо белого) цвет, а ВВ, изготовленные на ее основе, имеют в своем названии буквы ЖВ и выдерживают более длительное пребывание в воде, не теряя своих взрывчатых свойств.

Единственный вид аммонита, изредка поступающий в войска, — аммонит А-80 в виде прессованных брикетов размерами 125х125х60 мм и массой 1,35 кг. Брикеты покрываются гидроизоляционной оболочкой, предохраняющей их от действия влаги.
Брикеты аммонита могут находиться в воде в течение нескольких часов, не теряя взрывчатых свойств и восприимчивости к детонации. Брикеты взрываются промежуточным детонатором в виде шашки тротила массой 200 — 400 г или заряда другого бризантного ВВ. Поэтому брикеты не имеют запальных гнезд.

Фугасность и бризантность

Все ВВ характеризуются рядом данных, в зависимости от величин которых решается вопрос о применении данного вещества для решения тех или иных задач. Наиболее существенные из них это:

  1. Чувствительность к внешним воздействиям
  2. Энергия (теплота) взрывчатого превращения
  3. Скорость детонации
  4. Бризантность
  5. Фугасность
  6. Химическая стойкость
  7. Продолжительность и условия работоспособного состояния
  8. Нормальное агрегатное состояние
  9. Плотность

Достаточно полно свойства ВВ можно описать, используя все девять характеристик. Однако для понимания в целом того, что обычно называют мощностью или силой можно ограничиться двумя характеристиками: «Бризантность» и «Фугасность».

Бризантность — это способность ВВ дробить, разрушать соприкасающиеся с ним предметы (металл, горные породы и т.п.). Величина бризантности говорит о том, насколько быстро образуются при взрыве газы. Чем выше бризантность того или иного ВВ, тем более оно годится для снаряжения снарядов, мин, авиабомб. Такое ВВ при взрыве лучше раздробит корпус снаряда, придаст осколкам наибольшую скорость, создаст более сильную ударную волну. С бризантностью напрямую связана характеристика — скорость детонации, т.е. насколько быстро процесс взрыва распространяется по веществу ВВ.

Фугасность — иначе говоря, работоспособность ВВ, способность разрушить и выбросить из области взрыва, окружающие материалы (грунт, бетон, кирпич и т.п.). Эта характеристика определяется количеством, образующихся при взрыве газов. Чем больше образуется газов, тем большую работу способно выполнить данное ВВ.

Отсюда становится достаточно ясно, что для различных целей подходят различные ВВ. Например, для взрывных работ в грунте (в шахте, при устройстве котлованов, разрушении ледяных заторов и т.п.) больше подойдет ВВ, обладающее наибольшей фугасностью, а бризантность подойдет любая. Наоборот, для снаряжения снарядов в первую очередь ценна высокая бризантность и не столь важна фугасность.

Впрочем, это сильно упрощенный и не вполне верный подход к пониманию мощности взрывчатых веществ. На самом деле все девять характеристик тесно связаны друг с другом, друг от друга зависят, и изменение одной из них влечет изменение и всех остальных.

Есть более простой, а главное реальный способ сравнения мощностей различных ВВ. Он называется «тротиловый эквивалент». Его суть заключается в том, что мощность тротила условно принята за единицу (примерно также, как за единицу мощности машин в свое время была принята мощность одной лошади). А все остальные ВВ (в том числе и ядерное ВВ) сравниваются с тротилом. Проще говоря, сколько надо было бы взять тротила, чтобы произвести такую же взрывную работу, что и данным количеством этого ВВ. Например: 100гр. гексогена дают тот же результат, что и 125 гр. тротила, а 75 гр. тротила заменят 100гр. аммонита.
Еще проще будет сказать, что ВВ повышенной мощности процентов на 25 сильнее тротила, а ВВ пониженной мощности на 20-30% слабее тротила.

сайт - предлагает вам воспользоваться нашим бесплатным патентным поиском онлайн по ключевым словам, номерам и категориям в базах изобретений РФ и СССР. Наш сайт это первый, а на текущий момент и крупнейший реестр интеллектуальной собственности .
На нашем сайте вы сможете ознакомиться со всеми 2155133 патентами на изобретения РФ и авторскими свидетельствами СССР , со всеми научными открытиями случившихся в XX и XXI веках, зарегистрированных на территории Российской Федерации или СССР.
Вы можете ознакомиться с самым первым патентом 1924-го года, а также, самые свежими патентами 2019 года. Наша база патентов постоянно пополняется и совершенствуется для удобства патентного поиска.
Многие компании по защите интеллектуальной собственности берут за эту процедуру от 50000 рублей. Вы можете сделать их работу самостоятельно и совершенно - бесплатно! Используйте наш ресурс!
Если наша бесплатная помощь оказала вам неоценимую поддержку и помогла съэкономить или даже заработать - будем признательны, если вы поддержите наш труд своими благодарностями .

Профессиональный патентный поиск и консультации

После того, как вы "выжмите все соки" из нашего бесплатного сервиса по поиску патентов и патентных заявок, у вас наверняка появится много вопросов. Наши специалисты с удовольствием вас проконсультируют, подскажут как эффективно и правильно защитить ваши права и ваше изобретение. Стоимость консультации для физических лиц 6000 рублей/час, для юридических лиц - 15000 рублей/час.

Реклама на сайте и сотрудничество

Мы в других странах

По многочисленным просьбам наших пользователей мы запустили международную версию нашего сайта на английском языке: PatentSwamp.com . Версия ориентирована на американский рынок и содержит около 9.5 миллионов американских патентных документов.
Версии для других стран:

  • Версия на немецком для Германии - PatentSwamp.DE
  • Версия на японском для Японии - PatentSwamp.JP
  • Версия на китайском для Китая - PatentSwampCN.com
  • Версия на английском для Индии - PatentSwamp.IN

Изобретение относится к металлургии, а именно к доменному производству. Предложен способ подачи в доменную печь горячего воздуха, твердого топлива и горючего газа через фурмы, в котором горячий воздух подают в доменную печь из воздухопровода через фурму, причем применяют двойную трубу в качестве передней форсунки для подачи твердого топлива в воздухопровод, подают твердое топливо или горючий газ из внутренней трубки передней форсунки или из зазора между внутренней трубкой и внешней трубкой и подают соответственно горючий газ или твердое топливо из зазора между внутренней трубкой и внешней трубкой или из внутренней трубки передней форсунки.

Изобретение относится к бессвинцовому припою, а также к паяному соединению, полученному с использованием этого припоя. Бессвинцовый припой имеет основу Sn-Cu-Ni и содержит, мас.%:0,1-2,0 Cu, 0,01-0,5 Ni, 0,1-5,0 Bi, 0,0001–0,1 Ge и 76,0-99,5 Sn.

Изобретение относится к области гальванотехники. Мембрана из твердого электролита размещена между анодом и подложкой, и между анодом и подложкой подают электрическое напряжение, в то время как мембрана из твердого электролита прижата к подложке, чтобы сформировать металлическую пленку на подложке.

Изобретение относится к забивному устройству для забивания крепежных средств в изделия. Устройство содержит приводное устройство, выступающий с нижнего конца корпуса концевой инструмент с забивным каналом, забивной ударник, выступающий в забивной канал и соединенный сверху с приводным устройством, магазин для крепежных средств, который примыкает к забивному каналу и гвоздевой центратор.

Настоящее изобретение относится к способу получения композиции, содержащей ахоен, из аллицина с использованием твердофазного полимерного субстрата, включающему стадию удержания аллицина или раствора аллицина на твердофазном полимерном субстрате; стадию нагревания аллицина или раствора аллицина таким образом, что по меньшей мере часть аллицина преобразуется в ахоен с образованием раствора ахоена; и стадию выделения ахоена из раствора ахоена.

Изобретение относится к медицине, а именно к онкологии. Предложено применение 2--1,3-пропандиола для лечения HER2-положительных опухолей в эксперименте в дозе 15-20 мг/кг парентерально.

Настоящее изобретение относится к вариантам способа получения алкенолов, а также к способу получения 1,3-бутадиена. Один из вариантов способа получения алкенолов включает дегидратацию 1,3-бутандиола в присутствии по меньшей мере одного катализатора на основе оксида церия, который получают осаждением, в присутствии по меньшей мере одного основания, по меньшей мере одного соединения, содержащего церий, и по меньшей мере одного разбавителя, выбранного из инертных газов, таких как азот (N2) и аргон (Ar), причем способ осуществляют при молярном соотношении между 1,3-бутандиолом и разбавителем, составляющем от 0,3 до 2.

Группа изобретений относится к области фармацевтической промышленности. Предложена трансдермальная терапевтическая система (ТТС), включающая: a) отдаленный от кожи тыльный слой, непроницаемый для действующего вещества; b) депо-слой действующего вещества при его содержании 30-400 мг, которое выбрано из лавандового масла, линалоола или линалилацетата; c) матричный слой, находящийся в контакте с депо-слоем действующего вещества и регулирующий его высвобождение; d) самоклеящийся фиксирующий слой на коже; e) непроницаемый для действующего вещества защитный слой, выполненный с возможностью отделения, при этом слои с) и d) могут быть одинаковыми или разными, а депо-слой b) дополнительно включает содержащий волокнистые компоненты опорный материал.

Изобретение относится к термостабилизирующей композиции на основе олова для хлорсодержащих полимеров. Более конкретно, настоящее изобретение относится к термостабилизирующей композиции, содержащей: а) соединение монооктилолова (n-Oc)Sn(T)3 со степенью чистоты по меньшей мере 95 мас.% и б) соединение диметилолова (Me)2Sn(T)2 со степенью чистоты по меньшей мере 95 мас.%, где Т представляет собой 2-этилгексилмеркаптоацетат, причем отношение (n-Oc)Sn(T)3/(Me)2Sn(T)2 составляет от 10/90 до 90/10.

Изобретение относится к области фармакогенетики и персонализированной медицины. Предложен способ анализа полиморфных маркеров в генах SLCO1B1, АРОЕ и АВСВ1 для определения индивидуальной чувствительности к статинам, предусматривающий следующие стадии: амплификацию с помощью мультиплексной одноэтапной ПЦР, обеспечение биочипа, гибридизацию флуоресцентно меченного ПЦР-продукта на биочипе и регистрацию и интерпретацию результатов гибридизации.

Изобретение относится к медицине, а именно к кардиологии, и может быть применено для прогнозирования рестеноза стента у пациентов с ишемической болезнью сердца через 6 месяцев после коронарного стентирования (КС).

Изобретение относится к области электротехники, а именно к измерительной технике, и может быть использовано в СВЧ-влагомерах дискретного и непрерывного действия. Техническим результатом изобретения является повышение точности измерений влажности материалов.

Изобретение относится к ядерной энергетике, в частности к ремонту парогенераторов судовых ядерных энергетических установок. Способ демонтажа крышки парогенератора ядерной энергетической установки заключается в выполнении несквозного отверстия в теле сварного шва между крышкой парогенератора и его корпусом.



Просмотров