Выполнить анализ всего комплекса динамических характеристик движения (инерционные, силовые и энергетические характеристики). Динамические, инерционные, силовые характеристики движений Инерционные характеристики тела

Из курса физики известно, что инерция – это разность сил, приложенных к телу с противоположных направлений.

Так, для обеспечения движения судна, к нему должна быть приложена сила в направлении требуемого движения. Такую силу может создать движитель, используя свои физические свойства. Так винт создает силу упора, которая и движет судно (рис.5.3).

Рис.5.3 Схема сил, действующих на судно, движущееся прямым курсом.

Судно, представляющее собой тело с определенной массой m , находится в состоянии покоя, пока на него не воздействует сила F дв ., создаваемая грибным винтом. При движении судна образуется другая сила R общ. состоящая из сил: сопротивления воды R о , сопротивления воздуха R в и силы трения F тр . Под действием сил F дв. и R общ. прямо противоположных одна другой, движение судна будет ускоренным (когда F дв > R общ. ), равномерным (когда F дв = R общ ) или замедленным (когда F дв ).

Уравнение движения судна можно записать в следующем виде:

F дв - R общ = mΔv/t =ma

где m – масса судна, кг равная 1000 Д/g (здесь Д –водоизмещение, кН, g – ускорение свободного падения, равное 9,81 м/с 2);

Δv – приращение скорости судна, м/с;

t – время, с;

F дв и R общ – имеют размерность кН.

Из уравнения движения видно, что масса судна и приращение скорости определяют его инерционные свойства.

Таким образом, под инерционными свойствами судна понимают определенную физическую зависимость между массой и быстротой приращения его скорости (ускорением).

Следовательно, под инерцией судна понимается способность его сохранять поступательное движение после остановки движителя или перевода его с переднего хода на задний или наоборот. Обычно инерционные свойства судна определяют опытным путем во время ходовых испытаний. Результаты испытаний заносят в таблицу маневренных элементов.

Для судовождения наиболее важны расстояние и время, необходимые для гашения инерции судна или для развития его максимальной скорости. Эти параметры принято называть инерционными характеристиками . К основным инерционным характеристикам судна (рис.5.4) относят разгон , свободный выбег и торможение .

Разгон – процесс достижения судном установившейся скорости при заданном режиме работы движителей.

Характеризуется расстоянием и временем, необходимым для достижения установившейся скорости. Ориентировочно величина разгона составляет 7 -8 длин судна (с V =0 до Vmax).

Рис.5.4. Инерционные характеристики судов

Свободный выбег – процесс гашения инерции под воздействием сопротивления воды и воздуха движению без активной работы движителей. Характеризуется длиной выбега – расстоянием, которое проходит судно с момента подачи команды «Стоп» до полного прекращения движения, и временем, затраченным на этот процесс. Ориентировочно величина выбега составляет 10 -15 длин судна.

Торможение – процесс гашения инерции прямолинейного движения судна путем реверсирования движителей с переднего хода на задний (или наоборот)

Торможение характеризуется длиной тормозного пути и временем торможения.

Тормозной путь – это расстояние, пройденное судном с момента подачи команды «Стоп» и реверса движителей до полной остановки судна (V=0).

Время торможения – это время, затраченное на процесс полного гашения инерции в результате работы движителей в режиме «Полный назад». Ориентировочно для одиночных судов тормозной путь составляет 5- 6 длин судна.

Разные тела изменяют скорость под действием сил по-разному. Это свойство тел называется инертностью.

Инертность – свойство физических тел, от которого зависит величина получаемых ускорений при их взаимодействии.

Инерционные характеристики – это характеристики тела или системы тел. Среди инерционных характеристик различают: массу тела и момент инерции тела .

Масса тела (m ) – мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению: m= F /a ,

где: m – масса; F – сила; a – ускорение.

Масса тела зависит от количества вещества, которым обладает тело и характеризует его свойство – как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

В атлетизме при тренировке спортсмены используют штангу различной массы. Из личного опыта им известно, что придать штанге, имеющей большую массу ускорение значительно сложнее, чем штанге маленькой массы.

В случае вращательного движения мало знать массу тела, важно еще знать распределение масс относительно оси вращения. Например, фигурист при вращении прижимает руки к туловищу, а затем разводит их в стороны. Общая масса системы при этом не изменяется, а распределение масс становится другим, и это сказывается на движении, оно замедляется (Н.Б. Кичайкина, 2000). В механике существует характеристика, определяющая меру инертности тела во вращательном движении – момент инерции тела.

Момент инерции тела (J ) – мера инертности твердого тела при вращательном движении.

Момент инерции зависит от распределения массы относительно оси вращения. Его достаточно легко найти для простых геометрических фигур (шар, цилиндр и др.), но определить его в многозвенной системе тела человека при различных позах непросто.

Силовые характеристики.

Изменение скорости движения тел происходит под действием сил. Другими словами сила является не причиной движения, а причиной изменения движения. Силовые характеристики раскрывают связь действия силы с изменением движений. К силовым характеристикам при поступательном движении относятся:


· сила;

· импульс силы;


· импульс тела (количество движения ).

Сила (F ) – мера механического действия одного тела на другое. Сила определяется формулой: F =ma , где m – масса тела; a ускорение.

Импульс силы (S ) – мера воздействия силы на тело за промежуток времени. Эта механическая характеристика равна произведению силы на промежуток времени. Импульс силы характеризует площадь под кривой «время – сила» (рис. 3.2).

Значение импульса силы отталкивания не зависит от формы кривой «время-сила», а определяется только площадью под кривой. Зарегистрировать силу давления на опору позволяет методика тензодинамометрии . При этом характер кривой давления на опору зависит от уровня развития скоростно-силовых качеств спортсмена. Спортсмен, обладающий высоким уровнем развития скоростно-силовых качеств мышц ног способен развить высокий уровень силы за короткий промежуток времени.

Импульс тела (количество движения , Q ) – векторная величина, характеризующая его способность передаваться другому телу. Импульс тела определяется по формуле: Q = mV.

Импульс тела имеет то же направление, что и скорость. Если тело покоится, его импульс равен нулю. При взаимодействии тел их импульсы могут быть переданы от одного тела к другому. Например, в результате взаимодействия тела человека с опорой изменяется импульс тела (количество движения тела). Чем больший импульс приобретает тело человека в результате взаимодействия с опорой, тем выше или дальше будет прыжок.

К силовым характеристикам при вращательном движении относятся:


· момент силы;

· импульс момента силы;

· кинетический момент.


Момент силы (М ) – векторная величина, мера механического действия одного тела на другое при вращательном движении. Момент силы определяется по формуле: M = F h , где h – плечо силы.

Плечо силы – перпендикуляр, опущенный из оси вращения на линию действия силы.

Костные звенья в организме человека представляют собой рычаги. При этом результат действия мышцы определяется не столько развиваемой ею силой, сколько моментом силы. Особенностью строения опорно-двигательного аппарата человека является небольшие значения плеч сил тяги мышц. В то же время внешняя сила, например, сила тяжести, имеет большое плечо (рис. 3.3). Поэтому для противодействия большим внешним моментам сил мышцы должны развивать большую силу тяги.

Момент силы считают положительным, если сила вызывает поворот тела против часовой стрелки, и отрицательным, при повороте тела по часовой стрелке. На рис. 3.3. сила тяжести гантели создает отрицательный момент силы, так как стремится повернуть предплечье в локтевом суставе по часовой стрелке. Сила тяги мышц-сгибателей предплечья создает положительный момент, так как стремится повернуть предплечье в локтевом суставе против часовой стрелки.

Импульс момента силы (S м ) – мера воздействия момента силы относительно данной оси за промежуток времени.

Кинетический момент (К ) &‐ векторная величина, мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент определяется по формуле: K =Jω.

Кинетический момент при вращательном движении является аналогом импульса тела (количества движения) при поступательном движении.

Пример. При выполнении прыжка в воду после выполнения отталкивания от мостика, кинетический момент тела человека (К ) остается неизменным. Поэтому если уменьшить момент инерции (J ), то есть произвести группировку, увеличивается угловая скорость ω . Перед входом в воду, спортсмен увеличивает момент инерции (выпрямляется), тем самым он уменьшает угловую скорость вращения.

Один на один с врагом [Русская школа рукопашного боя] Кадочников Алексей Алексеевич

Массово-инерционные характеристики модели

В биомеханике совокупность показателей, характеризующих распределение масс в теле человека, принято называть геометрией масс. Для биомеханических расчетов нужны точные сведения об этих показателях.

Таблица 3

К массово-инерционым характеристикам тела человека относятся:

Массы и координаты центров масс всего тела в целом и отдельных его частей (звеньев);

Моменты инерции тела при разных позах и положениях оси вращения;

Радиусы инерции отдельных звеньев (сегментов) тела;

Центры качаний физического маятника и т. п.

Понятие массы и силы вытекают из первого закона Ньютона, который обобщает принцип инерции:

«Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние».

Понятие массы. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения в механике называют инертностью, а закон Ньютона – законом инерции. С проявлением этого закона человек постоянно сталкивается в повседневной жизни.

Из опыта известно, что различные тела при одинаковом воздействии со стороны других тел неодинаково изменяют скорость своего движения. Иными словами, они приобретают различные ускорения. Из этого следует, что ускорения зависят не только от величины воздействия, но и от свойств самого тела.

В физике всякое свойство тел выражается определенной величиной. Например, свойство тела занимать часть пространства выражается его объемом.

Так и свойство тела, которое называют инертностью, выражают его массой. Это свойство не зависит ни от условий внешнего воздействия, ни от характера движения. Что бы с телом ни происходило, где бы оно ни двигалось, масса его остается одной и той же.

Таким образом, масса – это физическая величина, которая наряду с такими величинами, как длина, время и др., входит в число основных величин международной системы единиц (СИ).

В качестве эталона массы на международном конгрессе в 1889 году была принята масса специально изготовленного цилиндра из сплава платины и иридия. Эта единица массы получила название килограмм – 1 кг. С достаточной для практики точностью можно считать, что массой в 1 кг обладает 1 л чистой воды при температуре 15 °C.

Для описания упоминаемого в первом законе Ньютона «воздействия со стороны других тел» в механике вводят понятие силы и говорят: на тело действует сила.

Понятие силы (и момента силы) подробно излагается в следующей главе.

Рабочая модель позволяет для конкретного телосложения человека (роста и массы) рассчитать положение его центра масс и моменты инерции для любой позы тела, что очень важно для анализа построения движений.

Из книги Современные будзюцу и будо автора Дрэгер Донн

Категории и характеристики Современные дисциплины характеризуют обычно как методы самообороны либо как тактику ведения тренировочного и настоящего боя с противником. Строго говоря, ни одна современная дисциплина не является воинским искусством; спорно и

Из книги Один на один с врагом [Русская школа рукопашного боя] автора Кадочников Алексей Алексеевич

Определение положения центра масс модели При исследовании движений человека, как правило, возникает необходимость учитывать не только величину массы, но и ее распределение в теле. На распределение массы тела указывает расположение так называемого центра масс

Из книги Греко-римская борьба: учебник автора Автор неизвестен

Определение моментов инерции модели Момент инерции тела есть мера инертности тела при вращательном движении.Моментом инерции модели (системы тел) относительно некоторой оси называется физическая величина, равная сумме произведений масс mi отдельных звеньев (тел) на

Из книги Дзюдо [Система и борьба: учебник] автора Шулика Юрий Александрович

2.2. Количественные характеристики движений Все двигательные действия в спортивной борьбе могут быть описаны кинематическими характеристиками и динамическими параметрами (схема 2.1., 2.2.).Схема 2.1.Кинематические составляющие движений Поскольку основная задача в

Из книги Вся поплавочная снасть автора Балачевцев Максим

3.2. Количественные характеристики движений В связи с тем, что в основе дзюдо лежит принцип парирования атаки противника, биомеханические основы ударной техники в настоящей главе описываться не будут.Все двигательные действия в видах спортивной борьбы могут быть описаны

Из книги Учебник подводной охоты на задержке дыхания автора Барди Марко

Удилище, его конструкция и характеристики Что же представляет собой штекерное удилище? Его длина может быть от 8 до 16 метров, хотя существуют более короткие и более длинные модели, но это, скорее, исключение, чем правило. Максимальная же длина штекерных удилищ доходит до

Из книги Теория и методика подтягиваний (части 1-3) автора Кожуркин А. Н.

Характеристики лесы Диаметр (толщина) Одна из основных характеристик лесы. После огромного количества публикаций в периодических изданиях многие рыболовы стали ходить в магазины с микрометрами. И это действительно необходимо. В 90 % случаев производитель (а, вернее, не

Из книги Морские узлы в обиходе автора Джарман Колин

Общие спортивные характеристики Прежде чем начать подробный анализ методик, лучше всего подходящих для физической подготовки подводного охотника, определим физико-спортивные характеристики идеального охотника. На самом деле, стоит отметить, что такие характеристики

Из книги Красота по-рублевски автора Луковкина Аурика

Характеристики воды Прозрачность воды обусловлена местными течениями, типом дна, погодными условиями и присутствием поблизости рек и проливов (для морской воды). Если дно илистое, то наиболее вероятно, что вода будет менее прозрачной, особенно после волнения; напротив,

Из книги Антираковая диета. Продукты, которые мы должны есть, чтобы защититься от опасного недуга автора Хаят Давид

1.2.1 Кинематические характеристики подтягивания. 1.2.1.1 Пространственные характеристики. Нередко из-за неудачно выбранного исходного положения спортсмен на соревнованиях не может показать результат, который без труда демонстрирует на тренировках. Ненадёжный хват,

Из книги Развитие интеллектуальных способностей подростков в условиях спортивной деятельности: теоретико-методологические и организационные предпосылки автора Кузьменко Галина Анатольевна

1.2.1.2 Временны?е характеристики. Время виса при подтягивании. Спортсмены, претендующие на высокий спортивный результат, должны обеспечить надёжный хват на протяжении всех четырёх минут, отведённых на выполнение упражнения. Для большинства спортсменов, имеющих

Из книги автора

1.2.2 Динамические характеристики подтягивания. К основным динамическим характеристикам относятся сила и масса. Сила в механике – это мера взаимодействия тел. Масса – это с одной стороны количество материи, содержащейся в теле, а с другой – мера инертности тела. В

Из книги автора

Материалы и их характеристики Полиэстер, иногда обозначается английской аббревиатурой PES, можно увидеть в плетеных веревках из трех прядей, плетенках, сердечниках с плетеной оболочкой и др. Поверхность может быть как гладкой, так и слегка шероховатой для большего

Из книги автора

Из книги автора

Таблица характеристики продуктов

Из книги автора

4.3. Процесс развития интеллектуальных способностей подростка-спортсмена: взаимообусловленность актуальной модели интеллекта и модели деятельности Разум есть тот сознаваемый человеком закон, по которому должна совершаться его жизнь. Л. Н. Толстой Процесс развития

Предмет биомеханики

Движение лежит в основе жизнедеятельности человека. Разнообразные химические и физические процессы в клетках тела, работа сердца и течение крови, дыхание, пищеварение и выделение; перемещение тела в пространстве и частей тела относительно друг друга; сложнейшая нервная деятельность, являющаяся физиологическим механизмом психики, восприятие и анализ внешнего и внутреннего мира – все это различные формы движения материи. Закономерности механического движения изучаются механикой. Предметом механики как науки является изучение изменений пространственного расположения тел и тех причин, или сил, которые вызывают эти изменения. Биомеханика – наука о законах механического движения в живых системах. Она изучает движения с точки зрения законов механики, свойственных всем без исключения механическим движениям материальных тел. Объект познания биомеханики – двигательные действия человека как системы взаимно связанных активных движений и положений его тела. Область изучения биомеханики – механические и биологические причины возникновения движений, особенности их выполнения в различных условиях. Общая задача изучения движений состоит в оценке эффективности приложения сил для достижения поставленной цели.

Задачи биомеханики спорта

Общая задача изучения движений человека в биомеханике спорта – оценка эффективности приложения сил для более совершенного достижения поставленной цели.

Изучение движений в биомеханике спорта в конечном счете направлено на то, чтобы найти совершенные способы двигательных действий и научить лучше их исполнять. Поэтому оно имеет ярко выраженную педагогическую направленность.

Частные задачи биомеханики спорта состоят в изучении следующих основных вопросов:

а) строение, свойства и двигательные функции тела спортсмена;

б) рациональная спортивная техника и

в) техническое совершенствование спортсмена.

Поскольку особенности движений зависят от объекта движений – тела человека, в биомеханике спорта изучают (с точки зрения биомеханики) строение опорно-двигательного аппарата, его механические свойства и функции (включая показатели двигательных качеств) с учетом возрастных и половых особенностей, влияния уровня тренированности и т.п. Короче говоря, первая группа задач – изучение самих спортсменов, их особенностей и возможностей.



Чтобы эффективно выступать на соревнованиях, спортсмен должен владеть наиболее рациональной для него техникой. От того, из каких движений и как построены двигательные действия, зависит их совершенство. Поэтому в биомеханике спорта детально исследуют особенности различных групп движений и возможности их совершенствования. Изучают ныне существующую спортивную технику, а также разрабатывают новую, более рациональную.

Данные об изменениях спортивной техники в процессе тренировки позволяют разрабатывать основу методики технического совершенствования спортсмена. Исходя из особенностей рациональной техники, определяют рациональные пути ее построения, средства и методы повышения спортивно-технического мастерства.

Таким образом, биомеханическое обоснование технической подготовки спортсменов подразумевает: определение особенностей и уровня подготовленности тренирующихся, планирование рациональной спортивной техники, подбор вспомогательных упражнений и «создание тренажеров для специальной физической и технической подготовки, оценку применяемых методов тренировки и контроль за их эффективностью.

Временные характеристики

Временные характеристики раскрывают движение во времени: когда оно началось и закончилось (момент времени), как долго длилось (длительность движения), как часто выполнялось движение (темп), как они были построены во времени (ритм). Вместе с пространственно-временными характеристиками они определяют характер движений человека.

Момент времени – это временная мера положения точки тела и системы. Момент времени (t) определяют промежутком времени до него от начала отсчета: [t] = Т.

Момент времени определяют не только для начала и окончания движения, но и для других важных мгновенных положений. В первую очередь это моменты существенного изменения движения: заканчивается одна часть (фаза) движения и начинается следующая (например, отрыв стопы от опоры в беге – это момент окончания фазы отталкивания и начала фазы полета). По моментам времени определяют длительность движения.

Длительность движения – это его временная мера, которая измеряется разностью моментов времени окончания и начала движения.

Темп движений – это временная мера их повторности. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений):

Темп – величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот. В повторяющихся (циклических) движениях темп может служить показателем совершенства техники.

Ритм движений (временной) – это временная мера соотношения частей движений. Он определяется по соотношению длительности частей движения:

Ритм движений характеризует, например, отношение времени опоры к времени полета в беге или времени амортизации (сгибания колена) к времени отталкивания (выпрямления ноги) при опоре.

Пространственно-временные характеристики движения

По пространственно-временным характеристикам определяют, как изменяются положения и движения человека во времени, как быстро человек изменяет свои положения (скорость) и движения (ускорение).

Скорость точки – это пространственно-временная мера движения точки (быстроты изменения ее положения). Скорость равна первой производной по времени от расстояния в рассматриваемой системе отсчета:

Скорость точки определяется по изменению ее координат во времени. Скорость – величина векторная, она характеризует быстроту движения и его направление. Так как скорость движений человека чаще всего не постоянная, а переменная (движение неравномерное и криволинейное), для разбора упражнений определяют мгновенные скорости.

Ускорение точки – это пространственно-временная мера изменения движения точки (быстрота изменения движения – по величине и направлению скорости). Ускорение точки равно первой производной по времени от скорости этой точки в рассматриваемой системе отсчета:

Ускорение точки определяется по изменению ее скорости во времени. Ускорение – величина векторная, характеризующая быстроту изменения скорости по ее величине и направлению в данный момент.

Инерционные характеристики

Свойство инертности тел раскрывается в первом законе Ньютона:

«Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы, не изменят это состояние».

Иначе говоря, всякое тело сохраняет скорость, пока ее не изменяв силы.

Понятие об инертности:

Любые тела сохраняют скорость неизменной при отсутствии внешних воздействий одинаково. Это свойство, не имеющее меры, и предлагается называть инерцией 1. Разные тела изменяют скорость под действием сил по-разному. Это их свойство, следовательно, имеет меру: его называют инертностью. Именно инертность и представляет интерес, когда надо оценить, как изменяется скорость.

Инертность – свойство физических тел, проявляющееся в постепенном изменении скорости с течением времени под действием сил.

Сохранение скорости неизменной (движение как бы по инерции) в реальных условиях возможно только тогда, когда все внешние силы, приложенные к телу, взаимно уравновешены. В остальных случаях неуравновешенные внешние силы изменяют скорость тела в соответствии с мерой его инертности. Момент инерции тела – это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс всех материальных точек тела на квадраты их расстояний от данной оси

Радиус инерции тела – это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квадратным из отношения момента инерции (относительно данной оси) к массе тела.

Инерционная характеристика представляет собой зависимость момента инерции Jрабочей машины от времени, линейного или углового пути. Момент инерции используется для определения времени пуска и торможения, исследования переходных процессов и определения динамических усилий и моментов,.

Величина момента инерции машин определяется массами движущихся деталей и грузов и радиусами инерции.

J прив =J дв +J m 1 +J m 2 +J чер +J бар /i ред, (3.13)

где J прив -приведенный момент инерции сиcтемы;

J дв =0,0056 кгм 2 - момент инерции двигателя;

J m 1 -момент инерции 1-ой половины муфты;

J m 2 -момент инерции 2-ой половины муфты;

J чер момент инерции червячной пары;

J бар =0,11 кгм 2 - момент инерции барабана сепаратора;

Примем некоторые допущения в кинематической схеме:

    зазоры в червячной паре не учитываем;

    момент инерции ведущей части муфты отнесем к моменту инерции двигателя;

    момент инерции ведомой части муфты и червячной пары отнесем к моменту инерции барабана сепаратора;

После допущений:

J прив =J дв +J бар /i ред (3.14)

J прив =0,0056+0,11/0,231=2,07 ,кгм 2

Приведенный момент инерции системы достаточно велик, т.к. передаточное число червячной передачи очень мало(i ред =0,231);

Нагрузочная характеристика

Нагрузочная характеристика рабочей машины представляет зависимость момента сопротивления М с, или мощности Р с рабочей машины от времениt, угловогоили линейногоSпути. Они необходимы для определения режима работы двигателя, выбора его мощности и проверки на перегрузочную способность, .

Рисунок 3.4 – Характер изменения параметров электродвигателя и муфты

Сепараторы относятся к машинам, работающим с практически постоянной нагрузкой. Режим работы, в основном, продолжительный (2…2,5часа).

В процессе работы сепаратора выделяют 3 периода его работы:

1)Разгон барабана сепаратора до установившейся скорости  уст;

2)Холостой ход при  уст (жидкость в барабан не поступает);

3)Работа под нагрузкой;

Проанализировав технологическую и кинематическую характеристики сепаратора, делаем вывод что, момент сопротивления сепаратора практически постоянный, независящий от времени (нагрузка постоянная)

М снагр =2М ׀ схх Нм

P экв =P ном под нагр Вт (3.15)

Энергетическая характеристика

Энергетическая характеристика показывает распределение энергии между отдельными рабочими узлами машины и энергоемкость машины в целом. Изучение энергетической характеристики позволяет обосновать место установки приводного двигателя для привода рабочей машины, имеющей несколько рабочих органов .

Пусковая мощность привода барабана сепаратора:

Р пуск =J бар ·ω 2 бар /t·η мех, Вт,(3.16)

где t время разгона барабана до рабочей частоты вращения (120…180 сек);

η мех =0,7…0,8механический КПД.

Р пуск =2,06·680 2 /150·0,8=7938 ,Вт

Р хх =М хх ·ω дв Вт, (3.17)

где Р хх =5,07·157=796 ,Втпотребная мощность на холостом ходу;

Р нагр =М нагр ·ω дв Вт, (3.18)

Где Р нагр =9,13·157=1433 ,Втпотребная мощность двигателя под нагрузкой;

Отношение потребной мощности на холостом ходу и под нагрузкой:

Р хх ·100% / Р нагр =796·100% /1433 =55% (3.19)

При полной нагрузке потребная мощность двигателя на холостом ходу составляет 55%, она идет на вращение барабана сепаратора, а 45% мощность, потребная на сообщение кинетической энергии жидкости, поступающей в барабан, а также на гидродинамические потери и увеличение потерь в подшипниках и передаточном механизме при нагрузке.



Просмотров