Уравнение состояния идеального газа записывается в виде. Газовые законы

Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон (1799-1864) вывел уравнение состояния идеального газа, объединив законы Бойля - Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V 1 , имеет давление p 1 и находится при температуре T 1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами р 2 , V 2 , Т 2 (рис. 63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1 - 1¢, 2) изохорного (изохора 1¢ - 2).

В соответствии с законами Бойля - Мариотта (41.1) и Гей-Люссака (41.5) запишем:

(42.1) (42.2)

Исключив из уравнений (42.1) и (42.2) p¢ 1 , получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина pV/T остается постоянной, т. е.

Выражение (42.3) является уравнением Клапейрона, в котором В - газовая постоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834-1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем V m . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V m , поэтому постоянная B будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению

(42.4)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона - Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях (р 0 = 1,013×10 5 Па, T 0 = 273,15 К, V m = 22,41×10 -3 м э /моль): R = 8,31 Дж/(моль×К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона - Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем V m , то при тех же условиях масса m газа займет объем V= (т/М)× V m , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона - Менделеева для массы т газа

(42.5)

где v=m/M - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:

Исходя из этого уравнение состояния (42.4) запишем в виде

где N A /V m = n- концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

(42.6)

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м 3 газа при нормальных условиях, называется числом Лошмндта*:

Основное уравнение

Молекулярно-кинетической теории

Идеальных газов

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим одно атомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS (рис. 64) и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс m 0 v - (- т 0 ) = 2т 0 v, где m 0 - масса молекулы, v - ее скорость. За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой vDt (рис. 64). Число этих молекул равно nDSvDt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке DS под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул - 1/6 - движется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет

l / 6 nDSvDt. При столкновении с площадкой эти молекулы передадут ей импульс

Тогда давление газа, оказываемое им на стенку сосуда,

Если газ в объеме V содержит N молекул, движущихся со скоростями v 1 ,v 2 , ..., v n , то целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность молекул таза. Уравнение (43.1) с учетом (43.2) примет вид

Выражение (43.3) называется основным уравнением молекулярно-кинетнческой теории идеальных газов. Точный расчет с учетом движения молекул по всевозможным направлениям дает ту же формулу.

(43.4) (43.5)

Учитывая, что n=N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m=Nm 0 , то уравнение (43.4) можно переписать в виде

Для одного моля газа т = М (М - молярная масса), поэтому

где F m - молярный объем. С другой стороны, по уравнению Клапейрона - Менделеева, pV m = RT. Таким образом,

(43.6)

Так как M = m 0 N A - масса одной молекулы, а N А - постоянная Авогадро, то из уравнения (43.6) следует, что

(43.7)

где k=R/N A - постоянная Больцмана. Отсюда найдем, что при комнатной температуре молекулы кислорода имеют среднюю квадратичную скорость 480 м/с, водорода - 1900 м/с. При температуре жидкого гелия те же скорости будут соответственно 40 и 160 м/с.

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа

(использовали формулы (43.5) и (43.7)) пропорциональна термодинамической температуре и зависит только от нее. Из этого уравнения следует, что при Т=0 = 0, т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии поступательного движения молекул идеального газа, и формула (43.8) раскрывает молекулярно-кинетическое толкование температуры.

Уравнение Менделеева Клапейрона берет свое начало от французского инженера Клапейрона Б. жившего с 1799 по 1864 годы. Так как у параметров состояния идеального газа есть связь, он соединил имеющиеся экспериментальные законы газов и выявил связь в параметрах.

pW/T = const

А Менделеев Д.И. наш русский ученый живший с 1834 по 1907 года, соединил его с законом Авогадро. Из данного закона следует что, если Р и Т одинаковы то моль какого бы ни было газа занимает равный молярный объем. Wm=22.4л. Из чего и следует вывод Менделеева - постоянное значение в правой части уравнения, одинаково для любого газа. Обозначение пишется как R, а называется - универсальная газовая постоянная.

Цифровое выражение R вычисляем путем подстановки. Уравнение Менделеева Клапейрона выглядит как:

PW = nRT

в нем:
Р - газовое давление, W - литровый объем, T - температура, измеряется в кельвинах, n - число молей, R - УГП.

К примеру: Кислород находится в емкости на 2,6 литра, под давлением 2,3атм и 26 градусах С. Неизвестно сколько в емкости содержится молей О 2 ?

По закону газа находим сколько молей n

n = PW/RT из чего: n = (2.3 атм*2,6л)/(0,0821 л*атм/моль*К*299К) = 0,24 моль О 2

Температуру нужно обязательно переводить в кельвины (273 0 С + 26 0 С) = 299К. Во избежание ошибок при решении уравнений, надо обращать внимание на величины в которых даются данные для уравнения Менделеева-Клапейрона Давление может быть в мм рт.столба - переводим в атмосферы (1 атм = 760мм р/с). Если же в паскалях при переводе в атмосферы, важно помнить что 101325 Па = 1атм.

Если производить расчеты где единицы измерения в м 3 и Па. Здесь нужно использовать R = 8,314 Дж/К*моль (постоянная газовая).

Рассмотрим на примере:

Дано: Объем Гелия 16,5 литров, температура - 78 0 С, давление 45,6атм. Какой будет его объем в нормальных условиях? Количество молей? Мы можем быстро выяснить сколько молей n в нем содержится, с помощью Уравнения Менделеева-Клапейрона, но как быть если забылось значение R. В нормальных условиях 1 моль (1атм и 273К) заполняет 22,4 литра. То есть

PW = nRT, из этого следует, R = PW/nT = (1атм*22,4л)/(1 моль*273К) = 0,082

Если сделать так, что бы R сократилась. Получим следующий вариант решения.
Начальные данные: Р 1 = 45,6атм, W 1 = 16.5л, Т 1 =351К.
Конечные данные: Р 2 = 1атм, W 2 = ?, Т 2 =273К.

Мы видим что уравнение ровно справедливо и для исходных и для конечных данных
P 1 W 1 = nRT 1
P 2 W 2 = nRT 2

Для того чтобы узнать объем газа, поделим значения в уравнении
P 1 W 1 /P 2 W 2 = T 1 /T 2 ,
вставим известные нам значения
W 2 = 45.6 * 16.5 * 273 / 351 = 585 литров

Значит в нормальных условиях объем гелия будет 585 литров. Делим 585 на молярный газовый объем в норм. условиях (22,4 л/*моль) получим сколько молей в гелии 585 / 22,4 = 26,1м.

Заметка: Если у Вас проблемы связанные с прокладкой коммуникаций бестраншейным способом, зайдите по ссылке - прокол под газопровод (http://www.prokolgnb.ru) и узнайте как их решить.

Берём формулу и подставляем в неё . Получаем:

p = nkT.

Вспомним теперь, что A , где ν - число молей газа:

,

pV = νRT. (3)

Соотношение (3) называется уравнением Менделеева - Клапейрона . Оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа - давления, объёма и температуры. Поэтому уравнение Менделеева - Клапейрона называется ещё уравнением состояния идеального газа .

Учитывая, что , где m - масса газа, получим другую форму уравнения Менделеева - Клапейрона:

(4)

Есть ещё один полезный вариант этого уравнения. Поделим обе части на V :

Но - плотность газа. Отсюда

(5)

В задачах по физике активно используются все три формы записи (3)-(5).

Изопроцессы

На протяжении этого раздела мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

µ = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением , объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.

2. Изобарный процесс идёт при постоянном давлении газа: p = const.

3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

При изотермическом процессе температура газа постоянна. В ходе процесса меняются только давление газа и его объём.



Установим связь между давлением p и объёмом V газа в изотермическом процессе. Пусть температура газа равна T . Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p 1 ,V 1 ,T , а во втором - p 2 ,V 2 ,T . Эти значения связаны уравнением Менделеева - Клапейрона:

Как мы сказали с самого начала, масса газа m и его молярная масса µ предполагаются неизменными. Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части: p 1V 1 = p 2V 2.

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

pV = const.

Данное утверждение называется законом Бойля - Мариотта . Записав закон Бойля - Мариотта в виде

p = ,

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Клапейрона - Менделеева уравнение, найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной температурой Т.

К. у. записывается в виде pV = ВТ, где коэффициент пропорциональности В зависит от массы газа. Д. И. Менделеев, используя Авогадро закон, вывел в 1874 уравнение состояния для 1 моля идеального газа pV = RT, где R - универсальная Газовая постоянная. Для газа, имеющего общую массу М и молекулярную массу (См. Молекулярная масса) μ,

, или pV=NkT,"

где N - число частиц газа, k - Больцмана постоянная. К. у. представляет собой Уравнение состояния, идеального газа, которое объединяет Бойля - Мариотта закон (зависимость между р и V при Т = const), Гей-Люссака закон (См. Гей-Люссака законы) (зависимость V от Т при р = const) и Авогадро закон (согласно этому закону, газы при одинаковых значениях р, V и Т содержат одинаковое число молекул N ).

К. у. - наиболее простое уравнение состояния, применимое с определённой степенью точности к реальным газам при низких давлениях и высоких температурах (например, атмосферный воздух, продукты сгорания в газовых двигателях и др.), когда они близки по своим свойствам к идеальному газу (См. Идеальный газ).

  • - выражает связь наклона кривой равновесия двух фаз с теплотой фазового перехода и изменением фазового объёма...

    Физическая энциклопедия

  • - термодинамич. ур-ние, относящееся к процессам перехода в-ва из одной фазы в другую...

    Физическая энциклопедия

  • - аналитическая запись задачи о разыскании значений аргументов, при к-рых значения двух данных функций равны...

    Математическая энциклопедия

  • - математическое утверждение, справедливое для некоторого подмножества всех возможных значений переменной величины. Например, уравнение вида х2=8-2х верно только для определенных значений х...

    Научно-технический энциклопедический словарь

  • - Требование того, чтобы математическое выражение принимало определенное значение. Например, квадратное уравнение записывается в виде: ах2+bх+с=0...

    Экономический словарь

  • - КЛАПЕЙРОНА уравнение, зависимость между давлением p, абсолютной температурой T и объемом V идеального газа массы M: pV=BT, где B=M/m . Установлена французским ученым Б.П.Э. Клапейроном в 1834...

    Современная энциклопедия

  • - устанавливает связь между изменениями равновесных значений темп-ры Т и давления р однокомпонентной системы при фазовых переходах первого рода...
  • - найденная Б.П.Э. Клапейроном зависимость между физ. величинами, определяющими состояние идеального газа: pV = BT, где коэф. В зависит от массы газа М и его мол. массы...

    Естествознание. Энциклопедический словарь

  • - матем. запись задачи о разыскании значений аргументов, при к-рых значения двух данных функций равны...

    Естествознание. Энциклопедический словарь

  • - дифференц. ур-ние, устанавливающее связь между давлением р и термодинамич. темп-рой Т чистого в-ва в состояниях, соответствующих фазовому переходу первого рода...
  • - Клапейрона - Менделеева уравнение, - ур-ние состояния идеального газа: pVm =RT, где р - давление, Т - термодинамическая температура газа, Vm - молярный объём газа, R - газовая постоянная...

    Большой энциклопедический политехнический словарь

  • - Соединение данных чисел при помощи знаков различных действий наз. алгебраическим выражением. Напр. /3. Если выполнить указанные действия, то в результате получим 5...

    Энциклопедический словарь Брокгауза и Евфрона

  • - термодинамическое уравнение, относящееся к процессам перехода вещества из одной фазы в другую...
  • - Клапейрона - Менделеева уравнение, найденная Б. П. Э. Клапейроном зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной...

    Большая Советская энциклопедия

  • - в математике, аналитическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны...

    Большая Советская энциклопедия

  • - математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны...

    Большой энциклопедический словарь

"Клапейрона уравнение" в книгах

Уравнение теплопроводности

Из книги Истории давние и недавние автора Арнольд Владимир Игоревич

Уравнение теплопроводности Провалился под лёд я без лыж в первые дни мая, переходя по льду входящее теперь в черту Москвы стометровое озеро «Миру - мир». Началось с того, что лёд подо мной стал слегка прогибаться, и под кедами показалась вода. Вскоре я понял, что форма льда

Узор «Уравнение»

Из книги Обувь для дома своими руками автора Захаренко Ольга Викторовна

Узор «Уравнение» Этот узор вяжется так:1-й и 13-й ряд: *2 п. светлой нити, 2 п. темной нити, 1 п. светлой нити, 1 п. темной нити, 3 п. светлой нити, 1 п. темной нити, 1 п. светлой нити, 2 п. темной нити, 1 п. светлой нити*, повторите от * до *; Узор «Уравнение»2-й и все четные ряды: выполняйте все

Уравнение Дюпона

Из книги МВА за 10 дней. Самое важное из программ ведущих бизнес-школ мира автора Силбигер Стивен

Уравнение Дюпона Ученые имеют привычку давать простым концепциям импозантные названия. Ваш словарь МВА будет неполон без «уравнения Дюпона». Эта диаграмма показывает, как соотносятся между собой некоторые наиболее важные аналитические коэффициенты, при этом

Уравнение миллионера

Из книги Миллионер за минуту. Прямой путь к богатству автора Хансен Марк Виктор

Уравнение миллионера Каждые 60 секунд кто-нибудь в мире становится миллионером.Именно так. Новый миллионер «возникает» каждую минуту каждого дня. В мире буквально миллионы миллионеров.Некоторым из этих миллионеров понадобилось 60 лет, чтобы накопить свое богатство.

Уравнение Шредингера; уравнение Дирака

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Уравнение Шредингера; уравнение Дирака Выше в этой главе я уже упоминал об уравнении Шредингера, которое является хорошо определенным детерминистским уравнением, во многих отношениях аналогичным уравнениям классической физики. Правила гласят, что до тех пор, пока над

25. Уравнение профессора

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

25. Уравнение профессора В «Интерстеллар» гравитационные аномалии волнуют профессора Брэнда по двум причинам. Если он поймет их природу, это может привести к революционному скачку в наших познаниях о гравитации, к скачку столь же грандиозному, как эйнштейновская

Клапейрона уравнения

Из книги Энциклопедический словарь (К) автора Брокгауз Ф. А.

Клапейрона уравнения Клапейрона уравнения или формулы – выражают зависимость между моментами, действующими в трех последовательных опорных точках неразрезного бруса, т. е. непрерывной балки, поддерживаемой более чем двумя опорами. Уравнений этих можно составить

Аррениуса уравнение

Из книги Большая Советская Энциклопедия (АР) автора БСЭ Клапейрона уравнение Из книги Большая Советская Энциклопедия (КЛ) автора БСЭ

Уравнение

Из книги Большая Советская Энциклопедия (УР) автора БСЭ

Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р , объемом V и температурой Т . Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением

f (p , V , T ) = 0 ,

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон (1799-1864) вывел уравнение состояния идеального газа, объединив законы Бойля - Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V 1 , имеет давление p 1 и находится при температуре Т 1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами p 2 , V 2 , Т 2 (рис.63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов:

1) изотермического (изотерма 1 - 1 /),

2) изохорного (изохора 1 / - 2).

В соответствии с законами Бойля - Мариотта (41.1) и Гей-Люссака (41.5) запишем:

(42.1)

(42.2)

Исключив из уравнений (42.1) и (42.2) , получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа

. (42.3)

Выражение (42.3) является уравнением Клапейрона , в котором В - газовая постоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834-1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем V m . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V m , поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной . Уравнению

(42.4)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа , называемым также уравнением Клапейрона - Менделеева .

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях ( = 1,013×10 5 Па, = 273,15 K, = 22,41×10 -3 м 3 /моль): R = 8,31 Дж/(моль×К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона - Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем V m , то при тех же условиях масса m газа займет объем V = (m/M) V m , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона - Менделеева для массы m газа

(42.5)

где = m/M - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана : = 1,38×10 -23 Дж/К.


Исходя из этого, уравнение состояния (42.4) запишем в виде

где - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м 3 газа при нормальных условиях, называется числом Лошмидта (И. Лошмидт (1821-1895) - австрийский химик и физик): 2,68×10 25 м -3 .



Просмотров