Уран элемент. Свойства, добыча, применение и цена урана

В сообщении посла Ирака в ООН Мохаммеда Али аль-Хакима от 9 июля говорится, что в распоряжение экстремистов ИГИЛ (Исламское государство Ирака и Леванта) . МАГАТЭ (Международное агентство по атомной энергии) поспешило заявить, что использованные Ираком ранее ядерные вещества имеют низкие токсические свойства, а потому захваченные исламистами материалы .

Источник в правительстве США, знакомый с ситуацией, сообщил агентству Reuters, что похищенный боевиками уран, вероятнее всего, не является обогащённым, поэтому едва ли может быть использован для изготовления ядерного оружия. Власти Ирака официально уведомили Организацию Объединённых Наций об этом инциденте и призвали «предотвратить угрозу его применения», сообщает РИА «Новости».

Соединения урана крайне опасны. О том, чем именно, а также о том, кто и как может производить ядерное топливо, рассказывает АиФ.ru.

Что такое уран?

Уран — химический элемент с атомным номером 92, серебристо-белый глянцеватый металл, периодической системе Менделеева обозначается символом U. В чистом виде он немного мягче стали, ковкий, гибкий, содержится в земной коре (литосфере) и в морской воде и в чистом виде практически не встречается. Из изотопов урана изготавливают ядерное топливо.

Уран — тяжёлый, серебристо-белый глянцеватый металл. Фото: Commons.wikimedia.org / Original uploader was Zxctypo at en.wikipedia.

Радиоактивность урана

В 1938 году немецкие физики Отто Ган и Фриц Штрассман облучили ядро урана нейтронами и сделали открытие: захватывая свободный нейтрон, ядро изотопа урана делится и выделяет огромную энергию за счёт кинетической энергии осколков и излучения. В 1939-1940 годах Юлий Харитон и Яков Зельдович впервые теоретически объяснили, что при небольшом обогащении природного урана ураном-235 можно создать условия для непрерывного деления атомных ядер, то есть придать процессу цепной характер.

Что такое обогащённый уран?

Обогащённый уран — это уран, который получают при помощи технологического процесса увеличения доли изотопа 235U в уране. В результате природный уран разделяют на обогащённый уран и обеднённый. После извлечения 235U и 234U из природного урана оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6). Обеднённый уран в два раза менее радиоактивен, чем природный, в основном за счёт удаления из него 234U. Из-за того что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

В ядерной энергетике используют только обогащённый уран. Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используют как топливо в ядерных реакторах и в ядерном оружии. Выделение изотопа U235 из природного урана — сложная технология, осуществлять которую под силу не многим странам. Обогащение урана позволяет производить атомное ядерное оружие — однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер с образованием более лёгких элементов.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг).

Сердечник снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана. Фото: Commons.wikimedia.org / Original uploader was Nrcprm2026 at en.wikipedia

В каких странах производят обогащённый уран?

  • Франция
  • Германия
  • Голландия
  • Англия
  • Япония
  • Россия
  • Китай
  • Пакистан
  • Бразилия

10 стран, дающих 94 % мировой добычи урана. Фото: Commons.wikimedia.org / KarteUrangewinnung

Чем опасны соединения урана?

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана предельно допустимая концентрация (ПДК) в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК — 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжёлые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Применение урана в мирных целях

  • Небольшая добавка урана придаёт красивую жёлто-зелёную окраску стеклу.
  • Уран натрия используется как жёлтый пигмент в живописи.
  • Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).
  • В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.
  • Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.

Изотоп — разновидности атомов химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа.

Элемент III группы таблицы Менделеева, принадлежащий к актиноидам; тяжёлый слаборадиоактивный металл. Торий имеет ряд областей применения, в которых подчас играет незаменимую роль. Положение этого металла в периодической системе элементов и структура ядра предопределили его применение в области мирного использования атомной энергии.

*** Олигурия (от греч. oligos — малый и ouron — моча) — уменьшение количества отделяемой почками мочи.

И его соединения используются в основном в качестве ядерного горючего в ядерных реакторахЯдерный реактор (атомный реактор) - устройство для осуществления управляемой ядерной цепной реакции деления.

Деление ядер происходит в активной зоне реактора, в которой сосредоточено ядерное топливо, и сопровождается высвобождением значительного количества энергии.

Ядерные реакторы различают: по энергии нейтронов, вызывающих деление ядер (ядерные реакторы на тепловых, быстрых и промежуточных нейтронах); по характеру распределения ядерного топлива (гомогенные и гетерогенные); по используемому замедлителю (графитовые, водо-водяные и др.); по назначению (энергетические, исследовательские) и т. д.

Реакторы используют для выработки электрической энергии на атомных электростанциях и в ядерных силовых установках атомных судов, для научных исследований, воспроизводства ядерного топлива и т. д. . Малообогащенная смесь изотопов урана применяется в стационарных реакторах атомных электростанций. Продукт высокой степени обогащения - в ядерных реакторах, работающих на быстрых нейтронах.

235 U является источником ядерной энергии в ядерном оружииЯдерное оружие - овокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения; обладает громадной разрушительной силой. По мощности зарядов и дальности действия ядерное оружие делится на тактическое, оперативно-тактическое и стратегическое. Применение ядерного оружия в войне гибельно для всего человечества. . Этот тип находит наибольшее применение.

238 U служит источником вторичного ядерного горючего - плутония.

Геология

Основное применение урана в Геологии - определение возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов. Этим занимается геохронология. Существенное значение имеет также решение задачи о смешении и источниках .

Дополнительные сферы применения урана

Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топливаТопливо - горючие вещества, применяемые для получения при их сжигании тепловой энергии; основная составная часть - углерод.

По происхождению топливо делится на природное (нефть, уголь, природный газ, горючие сланцы, торф, древесина) и искусственное (кокс, моторные топлива, генераторные газы и др.), по агрегатному состоянию - на твердое, жидкое и газообразное. Основная характеристика топлива - теплота сгорания.

Для сопоставления различных видов топлива и суммарного учета его запасов принята единица учета - условное топливо, для которого низшая теплота сгорания принята 29,3 МДж/кг (7000 ккал/кг).

В связи с развитием техники термин «топливо» стал применяться в более широком смысле и распространился на все материалы, служащие источником энергии (Водородная энергетика, Ракетное топливо, Ядерное топливо). для ядерных реактивных двигателей (рабочее тело - водород + гексан).

Небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу (урановое стекло).

Уранат натрия Na 2 U 2 O 7 использовался как жёлтый пигмент в живописи.

Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).

В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.

Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалыМагнитострикционные материалы - магнитомягкие материалы, у которых достаточно велик эффект магнитострикции: никель, алфер, пермаллой, пермендюр, ряд ферритов и др. Применяются в качестве преобразователей электромагнитной энергии в другие виды (например, в механическую), датчиков давления и т. п. .

Некоторые соединения урана светочувствительны.

Обеднённый уран

Такой уран используется для радиационнойРадиация (ионизирующее излучение) - потоки частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению его атомов или молекул. Это электроны, позитроны, протоны, нейтроны и другие элементарные частицы, а также атомные ядра и электромагнитное излучение гамма-, рентгеновского и оптического диапазонов.

В случае нейтральных частиц (g-кванты, нейтроны) ионизацию осуществляют вторичные заряженные частицы, образующиеся при взаимодействии нейтральных частиц с веществом (электроны и позитроны - в случае g-квантов, протоны или ядра отдачи - в случае нейтронов) защиты и балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов.

Для этих целей в самолёте «Боинг-747» содержится 1500 кг обеднённого урана.

Материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Самое известное применение обеднённого урана - в качестве сердечников для бронебойных снарядов.

Впервые уран в качестве сердечника для снарядов был применен в Третьем рейхе.

Обеднённый уран используется в современной танковой броне (в боевом танке СШАСоединенные Штаты Америки (United States of America), США (USA) - государство в Северной Америке. Численность населения 300 млн человек на 2007 год - третье место в мире). Столица - Вашингтон. Крупные города: Нью-Йорк, Лос-Анджелес, Чикаго, Хьюстон, Филадельфия, Финикс, Сиэтл, Сан-Диего, Даллас, Сан-Антонио, Детройт, Сан-Хосе, Сан-Франциско, Бостон. M-1 «Абрамс»), который стоит на вооружении армии и морской пехоты США, Египта, Саудовской Аравии, Кувейта и Австралии. Танк назван в честь генерала Крейтона Абрамса.

Использование урана в технике

Краткое содержание раздела

Основные области применения урана.

Развитие ЯЭ. Достигнутый уровень и перспективы. Оценка необходимого для этих целей количества урана.

Запасы урана и уранодобывающая промышленность. Уровень производства урановых концентратов. Тенденции и конъюнктура развития производства и потребления урана.

Основные этапы (переделы) в технологии получения соединений, металла, сплавов урана, изготовления тепловыделяющих элементов (ТВЭЛ) и тепловыделяющих сборок (ТВС).

Уран относится к радиоактивным элементам и области его применения в значительной степени определяются изотопным составом. Природный уран состоит из трёх изотопов:

Удельная радиоактивность природного урана составляет 0,67 микрокюри/г (разделяется практически пополам между U-234 и U-238, U-235 вносит маленький вклад). Природный уран достаточно радиоактивен для засвечивания фотопластинки за время около часа.

Ещё в древнейшие времена (I-й век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики. Осколки керамики с желтой глазурью (содержащие более 1% оксида урана) находили среди развалин Помпеи и Геркуланума. Появление уранового стекла оценивается, по крайней мере, 79 г н.э., которым датируют мозаику, найденную на римской вилле на мысе Посиллипо в Неаполитанском заливе (Италия) в 1912 году и содержащей жёлтое стекло с содержанием оксида урана около 1% (см. Дополнительные материалы к разделу 3). Начиная с конца средних веков настуран (уранит) начал добываться из серебряных рудников Габсбургов вблизи города Яхимов в Богемии (в настоящее время Яхимов, Чехия) и был использован как краситель в местном стекольном производстве.

В современной истории первым применением технологически произведённых соединений урана также было приготовление окрашенных (главным образом красных, оранжевых и коричневых) глазурей для керамических изделий, а также изготовление уранового стекла, имеющего жёлто-зелёную окраску и способного флуоресцировать под действием солнечного или ультрафиолетового света.

Широкое производство изделий из уранового стекла было начато в Европе в 20-30-е годы XIX века и продолжалось до 50-х годов ХХ века. Богемский мастер Джозеф Ридль разработал способ варки стекла новых оттенков - желтого и зеленого, причем такое таинственное свечение давал им урановый краситель. Ридль занимался производством изделий из уранового стекла с 1830 по 1848 г. В 1830-е годы новомодное урановое стекло начали выпускать и в России на Гусевском заводе. Для урановых стёкол рекомендуются кальциевые, цинковые, бариевые составы предпочтительно с высоким содержанием калия и бора, это обеспечивает более интенсивную флуоресценцию стекла. Свинцовые стёкла не дают флуоресценцию, потому что поглощают ультрафиолетовые лучи. Для урановых стекол без флуоресценции могут быть применены и свинцовые составы стёкол, например в ювелирных изделиях для имитации топаза - такие стекла имеют жёлтый цвет, сравнимый с топазами. Содержание урана должно быть сравнительно большим, так как красящая способность урана в стеклянных составах невелика. Содержание урана колеблется от 0,3…1,5 % UO 3 до 4…6 % UO 3 . Однако, при более высоком введении оксида урана флуоресценция стекла постепенно слабеет. Уран вводят в шихту в виде оксидов (UO 2 , U 3 O 8 или UO 3), ураната натрия (Na 2 UO 4 или Na 2 U 2 O 7) или нитрата уранила.



В настоящее время незначительное количество уранового стекла и изделий из него производится в Чехии. Также уран вводится в некоторые сорта оптических стёкол, например боро-силикатное оптическое стекло жёлтое ЖС19, содержащее 1,37% UO 3 , или цинк-фосфатное оптическое стекло зелёное ЗС7, содержащее 2,8% UO 3 .

Наибольшее применение в современной технологии имеет изотоп урана 235 U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии. Выделение изотопа U 235 из природного урана - сложная технологическая проблема. Степень обогащения по U-235 в ядерном топливе для АЭС колеблется в пределах 2-4.5%, для оружейного использования - минимум 80%, а более предпочтительно 90%. В США уран-235 оружейного качества обогащен до 93.5%; промышленность способна выдавать 97.65% - уран такого качества используется в реакторах для военно-морского флота. В 1998 году изотопное отделение Оак-Риджской Национальной лаборатории (ORNL) поставляло 93% U-235 по цене 53$/г.

Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порожденные термоядерной реакцией). Термоядерные боезаряды часто содержат слой обеднённого урана, окружающий основной термоядерный заряд. Этот слой изначально служит реакционной массой, позволяющей достичь более сильного сжатия при детонации и более полного возникновения термоядерной реакции. Высокий поток высокоэнергетичных нейтронов, образующийся в результате термоядерной реакции приводит к делению U-238, что повышает мощность боезаряда. Такое оружие относят к типу оружия, работающего по схеме «деление-синтез-деление», представляющей три последовательные этапа взрыва. Энергия, выделяющаяся при завершающем делении обеднённого урана, составляет значительную долю общей мощности термоядерного устройства. Например, 77% от 10,4 мегатонн мощности термоядерного взрыва Айви Майк в 1952 г. происходило от деления обеднённого урана. Поскольку обеднённый уран не имеет критической массы, его можно добавлять к термоядерному заряду практически в неограниченном количестве. Мощность, выделившаяся при испытании «царь бомбы» в СССР в 1961 г. составила «только» 50 мегатонн (90% которой происходило от самой термоядерной реакции) потому что на финальной стадии сборки обеднённый уран заменили свинцом. При использовании обеднённого урана мощность взрыва составила бы 100 мегатонн.

Важная область применения этого изотопа урана - производство плутония-239. В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 Pu, который затем используется как ядерное топливо. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.

После извлечения U-235 из природного урана, оставшийся материал носит название "обедненный уран", т.к. он обеднен 235-ым изотопом. В США хранится около 560 тыс. т. обедненного гексафторида урана (UF 6), в России – около 700 тыс. т.

Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него U-234. Из-за того, что основное использование урана - производство энергии, обедненный уран является бесполезным продуктом с низкой экономическое ценностью. Нахождение путей использования обедненного урана представляет собой большую проблему для обогатительных предприятий.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Две важнейшие сферы использования обедненного урана: использование его для радиационной защиты (как это не странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете Боинг-747, выпущенном до середины 1980-х годов, содержится 400-1500 кг обедненного урана для этих целей. Проблема, связанная с использованием урана в гражданских самолётах, состоит в том, что в случае аварии уран сгорает при пожаре и попадает в окружающую среду в виде оксида. При столкновении двух Боингов-747 в аэропорту Тенериф в 1977 при пожаре сгорело 3000 кг урана. Другой известный случай аварии такого рода, приведшей к попаданию крана в окружающую среду, - это катастрофа в 1992 г. в Амстердаме. В настоящее время Боинг и МакДоннелл-Дуглас не используют урановые противовесы в гражданских самолётах.

Обедненный уран в значительной степени применяется при бурении нефтяных скважин в виде ударных штанг (при канатном бурении), его вес погружает инструмент в скважины, наполненные буровым раствором. Еще этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах. Несколько неожиданным применением является использование урана в гоночных автомобилях Формулы 1. Согласно правилам, минимальный вес автомобиля должен составлять 600 кг, но конструкторы изначально пытаются уменьшить массу насколько это возможно, а затем доводят её до 600 кг, размещая балласты из обеднённого урана и добиваясь при этом наилучшей балансировки.

Но самое известное применение обеднённого урана - в качестве сердечников для бронебойных снарядов (подкалиберные снаряды с супертяжелым сердечником). При определенном сплаве с другими металлами и термической обработке (сплавление с 2% Mo или 0,75-3,5% Ti, быстрая закалка разогретого до 850 °С металла в воде или масле, дальнейшее выдерживание при 450 °С 5 часов) металлический уран становиться тверже и прочнее стали (прочность на разрыв > 1600 МПа). В сочетании с большой плотностью, это делает закаленный уран чрезвычайно эффективным для пробивания брони, аналогичным по эффективности значительно более дорогому монокристаллическому вольфраму. Процесс разрушения брони сопровождается измельчением в пыль большинства урана, проникновением пыли внутрь защищенного объекта и воспламенением ее на воздухе с другой стороны. Около 300 тонн обедненного урана остались на поле боя во время Бури в Пустыне (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава). Армия США использует уран в снарядах для танковых пушек калибра 120 или 105 мм (М1 Абрамс и М60А3) и калибра 25-мм пушки М242, смонтированной на М2 Брэдли и LAV-AT. Пули с урановыми сердечниками (калибра 20, 25 и 30 мм) используются морской пехотой, ВВС и ВМФ США. Российская (советская) армия использует обеднённый уран в снарядах для танковых пушек с конца 1970-х, главным образом для 115-мм пушки танка Т-62 и 125-мм пушки танков Т-64, Т-72, Т-80 и Т-90. Снаряды для танковых пушек и орудий флота, содержащие обеднённый уран, также используются армиями Великобритании, Израиля, Франции, Китая, Пакистана и т.д. Всего подобные вооружения производятся в 18 странах.

По причине высокой плотности обедненный уран также используется в современной танковой броне (в виде «сэндвича» между двумя листами броневой стали), например, танков M-1 "Абрамс" (модификации M1A1HA и M1A2), построенных после 1998 г.

В настоящее время ведутся разработки по замене свинца обеднённым ураном при производстве противовесов для лифтов и подъёмных кранов.

; атомный номер 92, атомная масса 238,029; металл. Природный Уран состоит из смеси трех изотопов: 238 U - 99,2739% с периодом полураспада T ½ = 4,51·10 9 лет, 235 U - 0,7024% (T ½ = 7,13·10 8 лет) и 234 U - 0,0057% (T ½ = 2,48·10 5 лет).

Из 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240 долгоживущий - 233 U (T ½ = 1 ,62·10 5 лет); он получается при нейтронном облучении тория. 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Историческая справка. Уран открыт в 1789 немецким химиком М. Г. Клапротом и назван им в честь планеты Уран, открытой В. Гершелем в 1781. В металлическом состоянии Уран получен в 1841 французским химиком Э. Пелиго при восстановлении UCl 4 металлическим калием. Первоначально Уран приписывали атомную массу 120, и только в 1871 году Д. И. Менделеев пришел к выводу, что эту величину надо удвоить.

Длительное время уран представлял интерес только для узкого круга химиков и находил ограниченное применение для производства красок и стекла. С открытием явления радиоактивности Урана в 1896 году и радия в 1898 году началась промышленного переработка урановых руд с целью извлечения и использования радия в научных исследованиях и медицине. С 1942 года, после открытия в 1939 году явления деления ядер, Уран стал основным ядерным топливом.

Распространение Урана в природе. Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Среднее содержание Урана в земной коре (кларк) 2,5·10 -4 % по массе, в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5 ·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в форме простых и комплексных ионов, особенно в форме карбонатных комплексов. Важную роль в геохимии Урана играют окислительно-восстановительные реакции, поскольку соединения Урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (например, сероводородных).

Известно около 100 минералов Урана; промышленное значение имеют 12 из них. В ходе геологической истории содержание Урана в земной коре уменьшилось за счет радиоактивного распада; с этим процессом связано накопление в земной коре атомов Рb, He. Радиоактивный распад Урана играет важную роль в энергетике земной коры, являясь существенным источником глубинного тепла.

Физические свойства Урана. Уран по цвету похож на сталь, легко поддается обработке. Имеет три аллотропических модификации - α, β и γ с температурами фазовых превращений: α → β 668,8 °С, β → γ 772,2 °С; α-форма имеет ромбическую решетку (а = 2,8538Å, b = 5.8662Å, с = 4.9557Å), β-форма - тетрагональную решетку (при 720 °С а = 10,759Å, b = 5,656Å), γ-форма - объемноцентрированную кубическую решетку (при 850 °С а = 3,538Å). Плотность Урана в α-форме (25 °С) 19,05 г/см 3 ; t пл 1132 °С; t кип 3818 °С; теплопроводность (100-200 °С), 28,05 вт/(м·К) , (200-400 °С) 29,72 вт/(м·К) ; удельная теплоемкость (25 °С) 27,67 кдж/(кг·К) ; удельное электросопротивление при комнатной температуре около 3·10 -7 ом·см, при 600 °С 5,5·10 -7 ом·см; обладает сверхпроводимостью при 0,68 К; слабый парамагнетик, удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 .

Механические свойства Урана зависят от его чистоты, от режимов механической и термической обработки. Среднее значение модуля упругости для литого Уран 20,5·10 -2 Мн/м 2 ; предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 ; прочность повышается после закалки из β- и γ-фаз; средняя твердость по Бринеллю 19,6-21,6·10 2 Мн/м 2 .

Облучение потоком нейтронов (которое имеет место в ядерном реакторе) изменяет физико-механические свойства Урана: развивается ползучесть и повышается хрупкость, наблюдается деформация изделий, что заставляет использовать Уран в ядерных реакторах в виде различных урановых сплавов.

Уран - радиоактивный элемент. Ядра 235 U и 233 U делятся спонтанно, а также при захвате как медленных (тепловых), так и быстрых нейтронов с эффективным сечением деления 508·10 -24 см 2 (508 барн) и 533·10 -24 см 2 (533 барн) соответственно. Ядра 238 U делятся при захвате только быстрых нейтронов с энергией не менее 1 Мэв; при захвате медленных нейтронов 238 U превращается в 239 Рu, ядерные свойства которого близки к 235 U. Критическая масса Урана (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара - около 50 кг, для шара с отражателем - 15-23 кг; критическая масса 233 U- примерно 1/3 критической массы 235 U.

Химические свойства Урана. Конфигурация внешней электронной оболочки атома Урана 7s 2 6d l 5f 3 . Уран относится к реакционноспособным металлам, в соединениях проявляет степени окисления +3, +4, + 5, +6, иногда +2; наиболее устойчивы соединения U (IV) и U (VI). На воздухе медленно окисляется с образованием на поверхности пленки оксида (IV), которая не предохраняет металл от дальнейшего окисления. В порошкообразном состоянии Уран пирофорен и горит ярким пламенем. С кислородом образует оксид (IV) UO 2 , оксид (VI) UО 3 и большое число промежуточных оксидов, важнейший из которых U 3 O 8 . Эти промежуточные оксиды по свойствам близки к UO 2 и UO 3 . При высоких температуpax UO 2 имеет широкую область гомогенности от UO 1, 60 до UO 2,27 . С фтором при 500-600 °С образует тетрафторид UF 4 (зеленые игольчатые кристаллы, малорастворимые в воде и кислотах) и гексафторид UF 6 (белое кристаллическое вещество, возгоняющееся без плавления при 56,4 °С); с серой - ряд соединений, из которых наибольшее значение имеет US (ядерное горючее). При взаимодействии Урана с водородом при 220 °С получается гидрид UH 3 ; с азотом при температуре от 450 до 700 °С и атмосферном давлении - нитрид U 4 N 7 , при более высоком давлении азота и той же температуре можно получить UN, U 2 N 3 и UN 2 ; с углеродом при 750-800 °С - монокарбид UC, дикарбид UC 2 , а также U 2 С 3 ; с металлами образует сплавы различных типов. Уран медленно реагирует с кипящей водой с образованием UO 2 н Н 2 , с водяным паром - в интервале температур 150-250 °С; растворяется в соляной и азотной кислотах, слабо - в концентрированной плавиковой кислоте. Для U (VI) характерно образование иона уранила UO 2 2+ ; соли уранила окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах; соли U (IV) окрашены в зеленый цвет и менее растворимы; ион уранила чрезвычайно способен к комплексообразованию в водных растворах как с неорганических, так и с органических веществами; наиболее важны для технологии карбонатные, сульфатные, фторидные, фосфатные и других комплексы. Известно большое число уранатов (солей не выделенной в чистом виде урановой кислоты), состав которых меняется в зависимости от условий получения; все уранаты имеют низкую растворимость в воде.

Уран и его соединения радиационно и химически токсичны. Предельно допустимая доза (ПДД) при профессиональном облучении 5 бэр в год.

Получение Урана. Уран получают из урановых руд, содержащих 0,05-0,5% U. Руды практически не обогащаются, за исключением ограниченного способа радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом Урана в кислый раствор в виде UО 2 SO 4 или комплексных анионов 4- , а в содовый раствор - в виде 4- . Для извлечения и концентрирования Урана из растворов и пульп, а также для очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органических растворителями (трибутилфосфат, алкилфосфорные кислоты, амины). Далее из растворов добавлением щелочи осаждают уранаты аммония или натрия или гидрооксид U(OH) 4 . Для получения соединений высокой степени чистоты технические продукты растворяют в азотной кислоте и подвергают аффинажным операциям очистки, конечными продуктами которых являются UO 3 или U 3 О 8 ; эти оксиды при 650-800 °С восстанавливаются водородом или диссоциированным аммиаком до UO 2 с последующим переводом его в UF 4 обработкой газообразным фтористым водородом при 500-600 °С. UF 4 может быть получен также при осаждении кристаллогидрата UF 4 ·nН 2 О плавиковой кислотой из растворов с последующим обезвоживанием продукта при 450 °С в токе водорода. В промышленности основные способом получения Уран из UF 4 является его кальциетермическим или магниетермическим восстановление с выходом Урана в виде слитков массой до 1,5 т. Слитки рафинируются в вакуумных печах.

Очень важным процессом в технологии Урана является обогащение его изотопом 235 U выше естественного содержания в рудах или выделение этого изотопа в чистом виде, поскольку именно 235 U - основные ядерное горючее; осуществляется это методами газовой термодиффузии, центробежными и другими методами, основанными на различии масс 238 U и 235 U; в процессах разделения Уран используется в виде летучего гексафторида UF 6 . При получении Урана высокой степени обогащения или изотопов учитываются их критические массы; наиболее удобный способ в этом случае - восстановление оксидов Урана кальцием; образующийся при этом шлак СаО легко отделяется от Урана растворением в кислотах. Для получения порошкообразного Урана, оксида (IV), карбидов, нитридов и других тугоплавких соединений применяются методы порошковой металлургии.

Применение Урана. Металлический Уран или его соединения используются в основном в качестве ядерного горючего в ядерных реакторах. Природная или малообогащенная смесь изотопов Урана применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения - в ядерных силовых установках или в реакторах, работающих на быстрых нейтронах. 235 U является источником ядерной энергии в ядерном оружии. 238 U служит источником вторичного ядерного горючего - плутония.

Уран в организме. В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В золе растений (при содержании Уран в почве около 10 -4 %) его концентрация составляет 1,5·10 -5 %. В наибольшей степени Уран накапливается некоторыми грибами и водорослями (последние активно участвуют в биогенной миграции Урана по цепи вода - водные растения - рыба - человек). В организм животных и человека Уран поступает с пищей и водой в желудочно-кишечный тракт, с воздухом в дыхательные пути, а также через кожные покровы и слизистые оболочки. Соединения Уран всасываются в желудочно-кишечном тракте - около 1% от поступающего количества растворимых соединений и не более 0,1% труднорастворимых; в легких всасываются соответственно 50% и 20%. Распределяется Уран в организме неравномерно. Основное депо (места отложения и накопления) - селезенка, почки, скелет, печень и, при вдыхании труднорастворимых соединений, - легкие и бронхолегочные лимфатические узлы. В крови Уран (в виде карбонатов и комплексов с белками) длительно не циркулирует. Содержание Уран в органах и тканях животных и человека не превышает 10 -7 г/г. Так, кровь крупного рогатого скота содержит 1·10 -8 г/мл, печень 8·10 -8 г/г, мышцы 4·10 -11 г/г, селезенка 9·10 8-8 г/г. Содержание Урана в органах человека составляет: в печени 6·10 -9 г/г, в легких 6·10 -9 -9·10 -9 г/г, в селезенке 4,7·10 -7 г/г, в крови 4-10 -10 г/мл, в почках 5,3·10 -9 (корковый слой) и 1,3·10 -8 г/г (мозговой слой), в костях 1·10 -9 г/г, в костном мозге 1 -Ю -8 г/г, в волосах 1,3·10 -7 г/г. Уран, содержащийся в костной ткани, обусловливает ее постоянное облучение (период полувыведения Урана из скелета около 300 суток). Наименьшие концентрации Урана - в головном мозге и сердце (10 -10 г/г). Суточное поступление Урана с пищей и жидкостями - 1,9·10 -6 г, с воздухом - 7·10 -9 г. Суточное выведение Уран из организма человека составляет: с мочой 0,5·10 -7 - 5·10 -7 г, с калом - 1,4·10 -6 -1,8·10 -6 г, с волосами - 2·10 -8 г.

По данным Международной комиссии по радиационной защите, среднее содержание Урана в организме человека 9·10 -5 г. Эта величина для различных районов может варьировать. Полагают, что Уран необходим для нормальной жизнедеятельности животных и растений.

Токсическое действие Уран обусловлено его химические свойствами и зависит от растворимости: более токсичны уранил и других растворимые соединения Урана. Отравления Ураном и его соединениями возможны на предприятиях по добыче и переработке уранового сырья и других промышленного объектах, где он используется в технологическом процессе. При попадании в организм Уран действует на все органы и ткани, являясь общеклеточным ядом. Признаки отравления обусловлены преимущественным поражением почек (появление белка и сахара в моче, последующая олигурия); поражаются также печень и желудочно-кишечный тракт. Различают острые и хронические отравления; последние характеризуются постепенным развитием и меньшей выраженностью симптомов. При хронической интоксикации возможны нарушения кроветворения, нервной системы и др. Полагают, что молекулярный механизм действия Урана связан с его способностью подавлять активность ферментов.

Уран (U) — элемент с атомным номером 92 и атомным весом 238,029. Является радиоактивным химическим элементом III группы периодической системы Дмитрия Ивановича Менделеева, относится к семейству актиноидов. Уран — очень тяжёлый (в 2,5 раза тяжелее железа, более чем в 1,5 раза тяжелее свинца), серебристо-белый глянцевитый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами.

Природный уран состоит из смеси трех изотопов: 238U (99,274 %) с периодом полураспада 4,51∙109 лет; 235U (0,702 %) с периодом полураспада 7,13∙108 лет; 234U (0,006 %) с периодом полураспада 2,48∙105 лет. Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U. Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца 206Pb и 207Pb.

В настоящее время известно 23 искусственных радиоактивных изотопов урана с массовыми числами от 217 до 242. «Долгожителем» среди них является 233U с периодом полураспада 1,62∙105 лет. Он получается в результате нейтронного облучения тория, способен к делению под воздействием тепловых нейтронов.

Уран открыт в 1789 году немецким химиком Мартином Генрихом Клапротом в результате его опытов с минералом настуран — «урановая смолка». Название новый элемент получил в честь недавно открытой (1781) Уильямом Гершелем планеты — Уран. Последующие полвека полученное Клапротом вещество считалось металлом, однако в 1841 году это опроверг французский химик Эжен Мелькиор Пелиго, который доказал окисную природу урана (UO2), полученного немецким химиком. Самому Пелиго удалось получить металлический уран при восстановлении UCl4 металлическим калием, а так же определить атомный вес нового элемента. Следующим в развитии знаний об уране и его свойствах был Д. И. Менделеев — в 1874 году, опираясь на разработанную им теорию о периодизации химических элементов, он поместил уран в самой дальней клетке своей таблицы. Определенный ранее Пелиго атомный вес урана (120) русский химик удвоил, верность таких предположений была подтверждена через двенадцать лет опытами немецкого химика Циммермана.

На протяжении многих десятилетий уран представлял интерес лишь для узкого круга химиков и естествоиспытателей, применение его также было ограничено — производство стекла и красок. Только с открытием радиоактивности этого металла (в 1896 году Анри Беккерелем) началась промышленная переработка урановых руд с 1898 года. Гораздо позже (1939 год) было открыто явление деления ядер, и с 1942 года уран стал основным ядерным топливом.

Важнейшее свойство урана состоит в том, что ядра некоторых его изотопов способны к делению при захвате нейтронов, в результате такого процесса выделяется громадное количество энергии. Это свойство элемента № 92 используется в ядерных реакторах, служащих источниками энергии, а также лежит в основе действия атомной бомбы. Уран используют в геологии для определения возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов (геохронология). В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин. Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления), например уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи.

Биологические свойства

Уран довольно распространенный элемент в биологической среде, концентраторами этого металла считаются некоторые виды грибов и водорослей, которые входят в цепочку биологического круговорота урана в природе по схеме: вода — водные растения - рыба - человек. Таким образом, с пищей и водой уран попадает в организм человека и животных, а точнее в желудочно-кишечный тракт, где всасывается около процента от поступивших легкорастворимых соединений и не более 0,1 % труднорастворимых. В дыхательные пути и легкие, а также в слизистые оболочки и кожные покровы этот элемент попадает с воздухом. В дыхательных путях, а особенно легких усвоение происходит гораздо интенсивнее: легкорастворимые соединения всасываются на 50 %, а труднорастворимые на 20 %. Таким образом, уран обнаруживается в небольших количествах (10-5 - 10-8 %) в тканях животных и человека. В растениях (в сухом остатке) концентрация урана зависит от его содержания в почве, так при почвенной концентрации 10-4 % в растении содержится 1,5∙10-5 % и менее. Распределение урана по тканям и органам неравномерно, основные места скопления - это костные ткани (скелет), печень, селезенка, почки, а также легкие и бронхо-легочные лимфатические узлы (при попадании в легкие труднорастворимых соединений). Из крови уран (карбонаты и комплексы с белками) довольно быстро выводится. В среднем содержание 92-го элемента в органах и тканях животных и человека составляет 10-7 %. К примеру, в крови крупнорогатого скота содержится 1∙10-8 г/мл урана, в человеческой крови 4∙10-10 г/г. Печень КРС содержит 8∙10-8 г/г, у человека в том же органе 6∙10-9 г/г; селезенка КРС содержит 9∙10-8 г/г, у человека - 4,7∙10-7 г/г. В мышечных тканях крупнорогатого скота накапливается до 4∙10-11 г/г. Кроме того, в человеческом организме уран содержится в легких в пределах 6∙10-9 - 9∙10-9 г/г; в почках 5,3∙10-9 г/г (корковый слой) и 1,3∙10-8 г/г (мозговой слой); в костной ткани 1∙10-9 г/г; в костном мозге 1∙10-8 г/г; в волосах 1,3∙10-7 г/г. Находящийся в костях уран обуславливает постоянное облучение костной ткани (период полного выведения урана из скелета 600 суток). Менее всего этого металла в головном мозге и сердце (около 10-10 г/г). Как говорилось ранее основные пути поступления урана в организм - вода, пища и воздух. Суточная доза поступающего в организм металла с пищей и жидкостями составляет 1,9∙10-6 г, с воздухом - 7∙10-9 г. Однако, каждые сутки уран выводится из организма: с мочой от 0,5∙10-7 г до 5∙10-7 г; с калом от 1,4∙10-6 г до 1,8∙10-6 г. Потери с волосами, ногтями и отмершими чешуйками кожи - 2∙10-8 г.

Ученые предполагают, что уран в мизерных количествах необходим для нормального функционирования организма человека, животных и растений. Однако его роль в физиологии до сих пор не выяснена. Установлено, что среднее содержание 92-го элемента в организме человека составляет порядка 9∙10-5 г (Международная комиссия по радиационной защите). Правда, эта цифра несколько колеблется для различных районов и территорий.

Несмотря на свою пока еще не известную, но определенную биологическую роль в живых организмах, уран остается одним из опаснейших элементов. В первую очередь это проявляется в токсическом действии данного металла, что обусловлено его химическими свойствами, в частности от растворимости соединений. Так, например, более токсичны растворимые соединения (уранил и другие). Чаще всего отравления ураном и его соединениями происходят на обогатительных фабриках, предприятиях по добыче и переработке уранового сырья и других производственных объектах, где уран участвует в технологических процессах.

Проникая в организм, уран поражает абсолютно все органы и их ткани, ведь действие происходит на уровне клетки: он подавляет активность ферментов. Первично поражаются почки, что проявляется в резком увеличении сахара и белка в моче, впоследствии развивается олигурия. Поражению подвергается ЖКТ и печень. Отравления ураном подразделяются на острые и хронические, причем последние развиваются постепенно и могут протекать бессимптомно или со слабо выраженными проявлениями. Однако в последствии хронические отравления приводят к нарушениям кроветворения, нервной системы и прочим серьезным нарушениям здоровья.

В тонне гранитной породы содержится примерно 25 грамм урана. Энергия, способная выделиться при сгорании в реакторе этих 25 грамм, сравнима с энергией, которая выделяется при сгорании 125 тонн каменного угля в топках мощных тепловых котлов! Исходя из этих данных, можно предположить, что в недалеком будущем гранит станут считать одним из видов минерального топлива. Всего же в относительно тонком двадцатикилометровом поверхностном слое земной коры содержится примерно 1014 тонн урана, при переводе в энергетический эквивалент получается просто колоссальная цифра — 2,36.1024 киловатт-часов. Даже все вместе взятые разрабатываемые, разведанные и предполагаемые месторождения горючих ископаемых не способны дать и миллионной доли этой энергии!

Известно, что урановые сплавы, подвергнутые термической обработке, отличаются большими пределами текучести, ползучести и повышенной коррозионной стойкостью, меньшей склонностью к формоизменению изделий при колебаниях температуры и под воздействием облучения. Исходя из этих принципов, в начале XX века и вплоть до тридцатых годов уран в виде карбида применяли в производстве инструментальных сталей. Кроме того, он шел на замену вольфрама в некоторых сплавах, что было дешевле и доступнее. В производстве ферроурана доля U составляла до 30 %. Правда во второй трети XX века такое применение урана сошло на нет.

Как известно в недрах нашей Земли идет постоянный процесс распада изотопов урна. Так вот, учеными было подсчитано, что мгновенное высвобождении энергии всей массы этого металла, заключенного в земную оболочку, разогрело бы нашу планету до температуры в несколько тысяч градусов! Однако такое явление, к счастью, невозможно - ведь выделение тепла идет постепенно - по мере того, как ядра урана и его производных проходят ряд радиоактивных длительных превращений. О продолжительности таких преобразований можно судить по периодам полураспадов природных изотопов урана, например, для 235U он равен 7 108 лет, а для 238U - 4,51 109 лет. Тем не менее, урановое тепло значительно подогревает Землю. Если бы во всей массе Земли было бы столько же урана, как в верхнем двадцатикилометровом слое, то температура на планете была бы значительно выше, чем сейчас. Однако при продвижении к центру Земли концентрация урана снижается.

В ядерных реакторах отрабатывается лишь незначительная часть загруженного урана, связано это с зашлаковыванием топлива продуктами деления: 235U выгорает, цепная реакция постепенно затухает. Однако ТВЭЛы по-прежнему заполнены ядерным горючим, которое необходимо снова употребить. Для этого старые тепловыделяющие элементы демонтируют и отправляют на переработку - их растворяют в кислотах, а уран извлекают из получившегося раствора методом экстракции, осколки деления, от которых нужно избавиться, остаются в растворе. Таким образом, получается, что урановая промышленность практически безотходное химическое производство!

Заводы по разделению изотопов урана занимают территорию в несколько десятков гектаров, примерно такого же порядка и площадь пористых перегородок в разделительных каскадах завода. Это связано со сложностью диффузионного метода разделения изотопов урана - ведь для того чтобы повысить концентрацию 235U от 0,72 до 99 % необходимо несколько тысяч диффузионных ступеней!

Ураново-свинцовым методом геологам удалось узнать возраст самых древних минералов, при исследовании метеоритных пород удалось определить примерную дату зарождения нашей планеты. Благодаря «урановым часам» определили возраст лунного грунта. Что интересно, оказалось, что уже в течение 3 млрд лет на Луне нет вулканической деятельности и естественный спутник Земли остается пассивным телом. Ведь даже самые молодые куски лунного вещества прожили срок больше возраста древнейших земных минералов.

История

Использование урана началось очень давно — еще в I веке до нашей эры природная окись урана использовалась для изготовления жёлтой глазури, использовавшейся при окраске керамики.

В новое время изучение урана происходило постепенно - несколькими этапами, с непрерывным нарастанием. Началом послужило открытие этого элемента в 1789 году немецким натурфилософом и химиком Мартином Генрихом Клапротом, который восстановил добытую из саксонской смоляной руды («урановая смолка») золотисто-жёлтую «землю» до чёрного металлоподобного вещества (оксид урана - UO2). Название было дано в честь самой далёкой из известных в те времена планет - Урана, которую в свою очередь открыл в 1781 году Уильям Гершель. На этом первый этап в изучении нового элемента (Клапрот был уверен в том, что он открыл новый металл) заканчивается, наступает перерыв более чем на пятьдесят лет.

1840 год можно считать началом новой вехи в истории изучения урана. Именно с этого года проблемой получения металлического урана занялся молодой химик из Франции Эжен Мелькиор Пелиго (1811-1890), вскоре (1841) ему это удалось - металлический уран был получен при восстановлении UCl4 металлическим калием. Кроме того, он доказал, что открытый Клапротом уран на самом деле всего лишь его оксид. Также француз определил предположительный атомный вес нового элемента - 120. Затем вновь наступает длительный перерыв в изучении свойств урана.

Лишь в 1874 году появляются новые предположения о природе урана: Дмитрий Иванович Менделеев, следуя разработанной им теории о периодизации химических элементов, находит место новому металлу в своей таблице, размещая уран в последней клетке. Кроме того, Менделеев увеличивает ранее предполагаемый атомный вес урана в двое, не ошибившись и в этом, что подтвердили опыты немецкого химика Циммермана 12 лет спустя.

С 1896 года открытия в области изучения свойств урана «посыпались» одно за другим: в упомянутом выше году совершенно случайно (при исследовании фосфоресценции кристаллов уранилсульфата калия) 43-летний профессор физики Антуан Анри Беккерель открывает «Лучи Беккереля», впоследствии переименованные в радиоактивность Марией Кюри. В том же году Анри Муассан (вновь химик из Франции) разрабатывает способ получения чистого металлического урана.

В 1899 году Эрнестом Резерфордом была обнаружена неоднородность излучения урановых препаратов. Выяснилось, что есть два вида излучения - альфа- и бета-лучи, различные по своим свойствам: они несут различный электрический заряд, имеют различную длину пробега в веществе и ионизирующая способность их также различна. Годом позже были обнаружены и гамма-лучи Полем Вийаром.

Эрнест Резерфорд и Фредерик Содди совместно разработали теорию радиоактивности урана. На основе этой теории в 1907 году Резерфорд предпринял первые опыты по определению возраста минералов при изучении радиоактивных урана и тория. В 1913 году Ф. Содди ввёл понятие об изотопах (от древне-греческого изо - «равный», «одинаковый», и топос - «место»). В 1920 году этот же ученый предположил, что изотопы можно использовать для определения геологического возраста горных пород. Его предположения оказались верны: в 1939 г. Aльфред Oтто Карл Нир оздал первые уравнения для расчёта возраста и применил масс-спектрометр для разделения изотопов.

В 1934 году Энрико Ферми провел ряд опытов по бомбардировке химических элементов нейтронами - частицами, открытыми Дж. Чедвиком в 1932 году. В результате этой операции в уране появлялись неизвестные прежде радиоактивные вещества. Ферми и другие ученые, участвовавшие в его опытах, предположили, что им удалось открыть трансурановые элементы. В течение четырех лет предпринимались попытки обнаружения трансурановых элементов среди продуктов нейтронного обстрела. Закончилось все в 1938 году, когда немецкие химики Отто Ган и Фриц Штрассман установили, что, захватывая свободный нейтрон, ядро изотопа урана 235U делится, при этом выделяется (в расчете на одно ядро урана) достаточно большая энергия, в основном, за счёт кинетической энергии осколков и излучения. Продвинутся дальше, немецким химикам не удалось. Обосновать их теорию смогли Лиза Мейтнер и Отто Фриш. Это открытие было истоком использования внутриатомной энергии, как в мирных, так и в военных целях.

Нахождение в природе

Среднее содержание урана в земной коре (кларк) 3∙10-4 % по массе, это означает, что его больше в недрах земли, чем серебра, ртути, висмута. Уран характерный элемент для гранитного слоя и осадочной оболочки земной коры. Так, в тонне гранита — около 25 грамм элемента № 92. Всего в относительно тонком, двадцатикилометровом, верхнем слое Земли заключено более 1000 тонн урана. В кислых изверженных породах 3,5∙10-4 %, в глинах и сланцах 3,2∙10-4 %, особенно обогащённых органикой, в основных породах 5∙10-5 %, в ультраосновных породах мантии 3∙10-7 %.

Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в виде простых и комплексных ионов, особенно в форме карбонатных комплексов. Немаловажную роль в геохимии урана играют окислительно-восстановительные реакции, все потому, что соединения урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (сероводородах).

Известно более сотни минеральных руд урана, они различны по химическому составу, происхождению, концентрации урана, из всего многообразия лишь дюжина представляет практический интерес. Основными представителями урана, имеющими наибольшее промышленное значение, в природе можно считать окислы - уранинит и его разновидности (настуран и урановая чернь), а также силикаты - коффинит, титанаты - давидит и браннерит; водные фосфаты и арсенаты уранила - урановые слюдки.

Уранинит - UO2 присутствует преимущественно в древних - докембрийских породах в виде четких кристаллических форм. Уранинит образует изоморфные ряды с торианитом ThO2 и иттро-церианитом (Y,Ce)O2. Кроме того, все ураниниты содержат продукты радиогенного распада урана и тория: K, Po, He, Ac, Pb, а также Ca и Zn. Собственно уранинит - высокотемпературный минерал, характерен для гранитных и сиенитовых пегматитов в ассоциации со сложными ниобо-тантало-титанатами урана (колумбит, пирохлор, самарскит и другие), цирконом, монацитом. Кроме того, уранинит встречается в гидротермальных, скарновых и осадочных породах. Крупные месторождения уранинита известны в Канаде, Африке, Соединенных Штатах Америки, Франции и Австралии.

Настуран (U3O8), он же урановая смолка или смоляная обманка, образующий скрытокристаллические колломорфные агрегаты - вулканогенный и гидротермальный минерал, представлен в палеозойских и более молодых высоко- и среднетемпературных образованиях. Постоянные спутники настурана – сульфиды, арсениды, самородные висмут, мышьяк и серебро, карбонаты и некоторые другие элементы. Эти руды очень богаты ураном, но крайне редко встречаются, зачастую в сопровождении радия, это легко объяснимо: радий является прямым продуктом изотопного распада урана.

Урановые черни (рыхлые землистые агрегаты) представлены в основном в молодых - кайнозойских и моложе образованиях, характерны для гидротермальных сульфидно-урановых и осадочных месторождений.

Также уран извлекается в виде побочного продукта из руд, содержащих менее 0,1 %, например, из золотоносных конгломератов.

Основные месторождения урановых руд расположены в США (Колорадо, Северная и Южная Дакота), Канаде (провинции Онтарио и Саскачеван), ЮАР (Витватерсранд), Франции (Центральный массив), Австралии (Северная территория) и многих других странах. В России основным урановорудным регионом является Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана.

Применение

Современная атомная энергетика просто немыслима без элемента № 92 и его свойств. Хотя еще не так давно — до пуска первого ядерного реактора урановые руды добывались в основном для извлечения из них радия. Небольшие количества урановых соединений использовали в некоторых красителях и катализаторах. По сути дела, уран считался элементом, который не имеет почти никакого промышленного значения, и как кардинально изменилась ситуация после открытия способности изотопов урана к делению! Этот металл мгновенно получил статус стратегического сырья № 1.

В наше время основная область применения металлического урана, так же как и его соединений - топливо для ядерных реакторов. Так в стационарных реакторах АЭС применяется малообогащенная (природная) смесь изотопов урана, а в силовых ядерных установках и в реакторах на быстрых нейтронах используется уран высокой степени обогащения.

Наибольшее применение имеет изотоп урана 235U, ведь в нем возможна самоподдерживающаяся цепная ядерная реакция, что не характерно для других изотопов урана. Благодаря именно этому свойству 235U используется как топливо в ядерных реакторах, а также в ядерном оружии. Однако выделение изотопа 235U из природного урана - сложная и дорогостоящая технологическая проблема.

Самый распространенный в природе изотоп урана 238U может делиться, если его бомбардируют высокоэнергетическими нейтронами. Такое свойство данного изотопа используют для увеличения мощности термоядерного оружия - используются нейтроны, порождённые термоядерной реакцией. Кроме того, из изотопа 238U получают изотоп плутония 239Pu, который в свою очередь также может использоваться в ядерных реакторах и в атомной бомбе.

В последнее время большое применение находит искусственно получаемый в реакторах из тория изотоп урана 233U, его получают, облучая в нейтронном потоке ядерного реактора торий:

23290Th + 10n → 23390Th -(β–)→ 23391Pa –(β–)→ 23392U

233U делится тепловыми нейтронами, кроме того, в реакторах с 233U может происходить расширенное воспроизводство ядерного горючего. Так при выгорании в ториевом реакторе килограмма 233U в нем же должно накопиться 1,1 кг нового 233U (в результате захвата нейтронов ядрами тория). В ближайшем будущем уран-ториевый цикл в реакторах на тепловых нейтронах - главный конкурент уран-плутониевого цикла воспроизводства ядерного горючего в реакторах на быстрых нейтронах. Уже сейчас существуют и работают реакторы, использующие этот нуклид в качестве топлива (KAMINI в Индии). 233U также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Другие искусственные изотопы урана не играют заметной роли.

После того, как из природного урана извлекают «нужные» изотопы 234U и 235U, оставшееся сырье (238U) носит название «обеднённый уран», он в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Так как основное использование урана - производство энергии, по этой причине обедненный уран - малополезный продукт с низкой экономической ценностью. Однако из-за своей низкой цены, а также большой плотности и чрезвычайно высокого сечения захвата он используется для радиационной защиты, и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. Кроме того, обедненный уран применяется как балласт в космических спускаемых аппаратах и гоночных яхтах; в высокоскоростных роторах гироскопов, больших маховиках, при бурении нефтяных скважин.

Однако самое известное применение обедненного урана - это использование его в военных целях - в качестве сердечников для бронебойных снарядов и современной танковой броне, например, танка M-1 «Абрамс».

Менее известные области применения урана в основном связаны с его соединениями. Так малая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу, некоторые соединения урана светочувствительны, по этой причине уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.

Карбид 235U в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей. Сплавы железа и обеднённого урана (238U) применяются как мощные магнитострикционные материалы. Уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи, ранее соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).

Производство

Уран получают из урановых руд, которые значительно различаются по ряду признаков (по условиям образования, по «контрастности», по содержанию полезных примесей и др.), основным из которых является процентное содержание урана. Согласно этому признаку различают пять сортов руд: очень богатые (содержат свыше 1 % урана); богатые (1-0,5 %); средние (0,5-0,25 %); рядовые (0,25-0,1 %) и бедные (менее 0,1 %). Однако даже из руд, содержащих 0,01-0,015 % урана, этот металл извлекается в качестве побочного продукта.

За годы освоения уранового сырья разработано немало способов выделения урана из руд. Это связано и со стратегическим значением урана в некоторых областях, и с разнообразием его природных проявлений. Однако, несмотря на все разнообразие методов, и сырьевой базы, любое урановое производство состоит из трех стадий: предварительное концентрирование урановой руды; выщелачивание урана и получение достаточно чистых соединений урана осаждением, экстракцией или ионным обменом. Далее в зависимости от назначения получаемого урана, следует обогащение продукта изотопом 235U или сразу же восстановление элементарного урана.

Итак, первоначально происходит концентрирование руды — порода измельчается и заливается водой. При этом более тяжелые элементы смеси осаждаются быстрее. В породах, содержащих первичные минералы урана, происходит их быстрое осаждение, так как они весьма тяжелы. При концентрировании руд, содержащих вторичные минералы урана, происходит осаждение пустой породы, которая гораздо тяжелее вторичных минералов, но может содержать весьма полезные элементы.

Урановые руды почти не обогащаются, исключением является органический способ радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану.

Следующая стадия в урановом производстве - это выщелачивание, таким образом, происходит переход урана в раствор. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом урана в кислый раствор в виде UO2SO4 или комплексных анионов , а в содовый раствор - в виде 4- комплексного аниона. Метод, при котором применяется серная кислота - дешевле, однако, он не всегда применим - если сырье содержит четырехвалентный уран (урановая смолка), который не растворяется в серной кислоте. В таких случаях используют щелочное выщелачивание или окисляют четырехвалентный уран до шестивалентного состояния. Использование каустической соды (едкого натра) целесообразно при выщелачивании руды, содержащей магнезит или доломит, на растворение которых требуется слишком много кислоты.

После стадии выщелачивания раствор содержит не только уран, но и другие элементы, которые так же, как и уран экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. В такой ситуации для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, дабы на разных стадиях исключать нежелательный элемент. Одно из преимуществ методов ионного обмена и экстракции - достаточно полно извлекается уран из бедных растворов.

После всех перечисленных операций уран переводят в твердое состояние - в один из окислов или в тетрафторид UF4. Такой уран содержит примеси с большим сечением захвата тепловых нейтронов - литий, бор, кадмий, редкоземельные металлы. В конечном продукте их содержание не должно превышать стотысячных и миллионных долей процента! Для этого снова уран растворяется, в этот раз уже в азотной кислоте. Уранилнитрат UO2(NO3)2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2. При температуре от 430 до 600° C окись урана реагирует с сухим фтористым водородом и превращается в тетрафторид UF4. Уже из этого соединения обычно получают металлический уран с помощью кальция или магния обычным восстановлением.

Физические свойства

Металлический уран — очень тяжелый, он тяжелее железа в два с половиной раза, а свинца - в полтора! Это один из самых тяжелых элементов, которые хранятся в недрах Земли. Своим серебристо-белым цветом и блеском уран напоминает сталь. Чистый металл пластичен, мягок, имеет высокую плотность, но в тоже время легко поддается обработке. Уран электроположителен, обладает незначительными парамагнитными свойствами - удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 , имеет малую электропроводность, но высокую реакционную способность. Этот элемент имеет три аллотропических модификации: α, β и γ. α-форма имеет ромбическую кристаллическую решетку со следующими параметрами: a = 2,8538 Å, b = 5,8662 Å, с = 4б9557 Å. Эта форма стабильна в температурном коридоре от комнатных температур до 667,7° C. Плотность урана в α-форме при температуре 25° C составляет 19,05 ±0,2 г/см 3 . β-форма имеет тетрагональную кристаллическую решетку, стабильна в интервале температур от 667,7° C до 774,8° C. Параметры четырехугольной решетки: a = 10,759 Å, b = 5,656 Å. γ-форма с объемно-центрированной кубической структурой, стабильна от 774,8° C до точки плавления (1132° C).

Увидеть все три фазы можно в процессе восстановления урана. Для этого используется специальный аппарат, который представляет собой стальную бесшовную трубу, которая футеруется оксидом кальция, это необходимо, чтобы сталь трубы не взаимодействовала с ураном. В аппарат загружают смесь тетрафторида урана и магния (или кальция), после чего нагревают до 600° C. При достижении этой температуры включают электрический запал, мгновенно протекает экзотермическая реакция восстановления, при этом загруженная смесь полностью плавится. Жидкий уран (температура 1132° C) за счет своего веса полностью опускается на дно. После полного осаждения урана на дно аппарата начинается охлаждение, уран кристаллизуется, его атомы выстраиваются в строгом порядке, образуя кубическую решетку - это и есть γ-фаза. Следующий переход происходит при 774° C - кристаллическая решетка остывающего металла становится тетрагональной, что соответствует β-фазе. Когда температура слитка падает до 668° C, атомы вновь перестраивают свои ряды, располагаясь волнами в параллельных слоях - α-фаза. Далее никаких изменений уже не происходит.

Основные параметры урана всегда относятся к α-фазе. Температура плавления (tпл) 1132° С, температура кипения урана (tкип) 3818° С. Удельная теплоемкость при комнатной температуре 27,67 кдж/(кг·К) или 6,612 кал/(г·° С). Удельное электрическое сопротивление при температуре 25° С примерно 3·10 -7 ом·см, а уже при 600° С 5,5·10 -7 ом·см. Теплопроводность урана также меняется в зависимости от температуры: так в интервале 100-200° С она равна 28,05 вт/(м·К) или 0,067 кал/(см·сек·° С), а при повышении до 400° С увеличивается до 29,72 вт/(м·К) 0,071 кал/(см·сек·° С). Уран обладает сверхпроводимостью при при 0,68 К. Средняя твердость по Бринеллю 19,6 - 21,6·10 2 Мн/м 2 или 200-220 кгс/мм 2 .

Многие механические свойства 92-го элемента зависят от его чистоты, от режимов термической и механической обработки. Так для литого урана предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 или 38-48 кгс/мм 2 , среднее значение модуля упругости 20,5·10 -2 Мн/м2 или 20,9·10 -3 кгс/мм 2 . Прочность урана повышается после закалки из β- и γ-фаз.

Облучение урана потоком нейтронов, взаимодействие с водой, охлаждающей топливные элементы из металлического урана, другие факторы работы в мощных реакторах на тепловых нейтронах - все это приводит к изменениям физико-механических свойства урана: металл становится хрупким, развивается ползучесть, происходит деформация изделий из металлического урана. По этой причине в ядерных реакторах используются урановые сплавы, например с молибденом, такой сплав устойчив к действию воды, упрочняет металл, сохраняя высокотемпературную кубическую решетку.

Химические свойства

В химическом отношении уран весьма активный металл. На воздухе он окисляется с образованием на поверхности радужной пленки двуокиси UO2, которая не предохраняет металл от дальнейшего окисления, как это происходит с титаном, цирконием и рядом других металлов. С кислородом уран образует двуокись UO2, трехокись UO3 и большое количество промежуточных окислов, важнейшим из которых является U3O8, по свойствам эти окислы сходны с UO2 и UO3. В порошкообразном состоянии уран пирофорен и может воспламениться при незначительном нагреве (150 °C и выше), горение сопровождается ярким пламенем, в итоге образуется U3O8. При температуре 500-600 °C уран взаимодействует с фтором с образованием малорастворимых в воде и кислотах игольчатой формы кристаллов зеленого цвета — тетрафторида урана UF4, а также UF6 - гексафторида (белые кристаллы, возгоняемые без плавления при температуре 56,4 °C). UF4, UF6 - примеры взаимодействия урана с галогенами с образованием галогенидов урана. Уран легко соединяется с серой, образуя ряд соединений, из которых наибольшее значение имеет US - ядерное горючее. С водородом уран взаимодействует при 220 °C с образованием гидрида UH3, который химически очень активен. При дальнейшем нагреве UH3 разлагается на водород и порошкообразный уран. Взаимодействие с азотом происходит при более высоких температурах - от 450 до 700 °C и атмосферном давлении получается нитрид U4N7, с повышением давления азота при тех же температурах можно получить UN, U2N3 и UN2. При более высоких температурах (750-800 °C) уран взаимодействует с углеродом с образованием монокарбида UC, дикарбида UC2, а также U2C3. Уран взаимодействует с водой с образованием UO2 и H2, причем с холодной водой медленнее, а с горячей активнее. Кроме того, реакция протекает и с водяным паром при температурах от 150 до 250 °C. Этот металл растворяется в соляной HCl и азотной HNO3 кислотах, менее активно в сильно концентрированной плавиковой кислоте, медленно реагирует с серной H2SO4 и ортофосфорной H3PO4 кислотами. Продуктами реакций с кислотами являются четырехвалентные соли урана. Из неорганических кислот и солей некоторых металлов (золото, платина, медь, серебро, олово и ртуть) уран способен вытеснять водород. Со щелочами уран не взаимодействует.

В соединениях уран способен проявлять следующие степени окисления: +3, +4, +5, +6, иногда +2. U3+ в природных условиях не существует и может быть получен только в лаборатории. Соединения пятивалентного урана по большей части не устойчивы и довольно легко разлагаются на соединения четырех и шестивалентного урана, которые являются наиболее устойчивыми. Для шестивалентного урана характерно образование иона уранила UO22+, соли которого окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах. Примером соединений шестивалентного урана может послужить триоксид урана или урановый ангидрид UO3 (оранжевый порошок), имеющий характер амфотерного оксида. При растворении которого в кислотах образуются соли, например уранилхлорид урана UO2Cl2. При действии щелочей на растворы солей уранила получаются соли урановой кислоты H2UO4 - уранаты и двуурановой кислоты H2U2O7 - диуранаты, например, уранат натрия Na2UO4 и диуранат натрия Na2U2O7. Соли четырехвалентного урана (тетрахлорид урана UCl4) окрашены в зеленый цвет и менее растворимы. При длительном нахождении на воздухе соединения, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.



Просмотров