Свойства степеней, формулировки, доказательства, примеры. Показательная функция

ЧАСТЬ II. ГЛАВА 6
ПОСЛЕДОВАТЕЛЬНОСТИ ЧИСЕЛ

Понятие о степени с иррациональным показателем

Пусть а- какое-нибудь положительное число и а - иррациональное.
Какой смысл следует придать выражению а*?
Чтобы сделать изложение более наглядным, проведем его на частном
примере. Именно, положим а - 2 и а = 1 , 624121121112 . . . .
Здесь, а - бесконечная десятичная дробь, составленная по такому
закону: начиная с четвертого десятичного знака, для изображения а
употребляются только цифры 1 и 2, и при этом количество’ цифр 1,
записываемых подряд перед цифрой 2, все время увеличивается на
одну. Дробь а непериодическая, так как иначе количество цифр 1,
записываемых подряд в его изображении, было бы ограниченным.
Следовательно, а - иррациональное число.
Итак, какой же смысл следует придать выражению
21,в2Ш1Ш1Ш11Ш11Ш. . . р
Чтобы ответить на этот вопрос, составим последовательности значений
а с недостатком и избытком с точностью до (0,1)*. Получим
1,6; 1,62; 1,624; 1,6241; …, (1)
1,7; 1,63; 1,625; 1,6242; . . . (2)
Составим соответствующие последовательности степеней числа 2:
2М. 2М*; 21*624; 21’62*1; …, (3)
21Д. 21»63; 2*»62Ву 21,6Ш; . (4)
Последовательность (3) возрастает, так как возрастает последовательность
(1) (теорема 2 § 6).
Последовательность (4) убывает, так как убывает последовательность
(2).
Каждый член последовательности (3) меньше каждого члена последовательности
(4), и, таким образом, последовательность (3) ограничена
сверху, а последовательность (4) ограничена снизу.
На основании теоремы о монотонной ограниченной последовательности
каждая из последовательностей (3) и (4) имеет предел. Если

384 Понятие о степени с иррациональным показателем. .

теперь, окажется, что разность последовательностей (4) и (3) сходится
к нулю, то из этого будет вытекать, что обе эти последовательности,
имеют общий предел.
Разность первых членов последовательностей (3) и (4)
21-7 - 21’* = 2|,в (20*1 - 1) < 4 (У 2 - 1).
Разность вторых членов
21’63 - 21,62 = 21,62 (2°’01 - 1) < 4 (l0 j/2f - 1) и т. д.
Разность п-х членов
0,0000. ..0 1
2>.««…(2 » - 1) < 4 (l0“/ 2 - 1).
На основании теоремы 3 § 6
lim 10″ / 2 = 1.
Итак, последовательности (3) и (4) имеют общий предел. Этот
предел является единственным вещественным числом, которое больше
всех членов последовательности (3) и меньше всех членов последовательности
(4), его и целесообразно считать точным значением 2*.
Из сказанного вытекает, что и вообще целесообразно принять
следующее определение:
Опр е д е л ение. Если а^> 1, то степенью числа а с иррациональным
показателем а называется такое действительное число,
которое больше всех степеней этого числа, показатели которых есть
рациональные приближения а с недостатком, и меньше всех степеней
этого числа, показатели которых - рациональные приближения а с
избытком.
Если а<^ 1, то степенью числа а с иррациональным показателем а
называется такое действительное число, которое больше всех степеней
этого числа, показатели которых - рациональные приближения а
с избытком, и меньше всех степеней этого числа, показатели которых
- рациональные приближения а с недостатком.
.Если а- 1, то степенью его с иррациональным показателем а
является 1.
Пользуясь понятием предела, это определение можно сформулировать
так:
Степенью положительного числа с иррациональным показателем
а называется предел, к которому стремится последовательность
рациональных степеней этого числа при условии, что последовательность
показателей этих степеней стремится к а, т. е.
аа = lim аЧ
Ъ — *
13 Д, К. Фатщеев, И. С. Со минский


В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

Степень с рациональным показателем, её свойства.

Выражение а n определено для всех а и n, кроме случая а=0 при n≤0. Напомним свойства таких степеней.

Для любых чисел а, b и любых целых чисел m и п справедливы равенства:

A m *a n =a m+n ; a m:а n =a m-n (а≠0); (а m) n = а mn ; (ab) n = a n *b n ; (b≠0); а 1 =а; а 0 =1 (а≠0).

Отметим также следующее свойство:

Если m>n, то а m >а n при а>1 и а m <а n при 0<а<1.

В этом пункте мы обобщим понятие степени числа, придав смысл выражениям типа 2 0.3 , 8 5/7 , 4 -1/2 и т. д. Естественно при этом дать определение так, чтобы степени с рациональными показателями обладали теми же свойствами (или хотя бы их частью), что и степени с целым показателем. Тогда, в частности, n-я степень числа должна быть равна а m . Действительно, если свойство

(a p) q =a pq

выполняется, то



Последнее равенство означает (по определению корня n-й степени), что число должно быть корнем п-й степени из числа а m .

Определение.

Степенью числа а>0 с рациональным показателем r=, где m — целое число, а n — натуральное (n > 1), называется число

Итак, по определению

(1)

Степень числа 0 определена только для положительных показателей; по определению 0 r = 0 для любого r>0.

Степень с иррациональным показателем.

Иррациональное число можно представить в виде предела последовательности рациональных чисел : .

Пусть . Тогда существуют степени с рациональным показателем . Можно доказать, что последовательность этих степеней является сходящейся. Предел этой последовательности называется степенью с основанием и иррациональным показателем : .

Зафиксируем положительное число а и поставим в соответствие каждому числу . Тем самым получим числовую функцию f(x) = a x , определенную на множестве Q рациональных чисел и обладающую ранее перечисленными свойствами. При а=1 функция f(x) = a x постоянна, так как 1 x =1 для любого рационального х.



Нанесем несколько точек графика функции у =2 x предварительно вычислив с помощью калькулятора значения 2 x на отрезке [—2; 3] с шагом 1/4 (рис. 1, а), а затем с шагом 1/8 (рис. 1, б).Продолжая мысленно такие же построения с шагом 1/16, 1/32 и т. д., мы видим, что получающиеся точки можно соединить плавной кривой, которую естественно считать графиком некоторой функции, определенной и возрастающей уже на всей числовой прямой и принимающей значения в рациональных точках (рис. 1, в). Построив достаточно большое число точек графика функции , можно убедиться в том, что аналогичными свойствами обладает и эта функция (отличие состоит в том, что функция убывает на R).

Эти наблюдения подсказывают, что можно так определить числа 2 α и для каждого иррационального α, что функции, задаваемые формулами y=2 x и будут непрерывными, причем функция у=2 x возрастает, а функция убывает на всей числовой прямой.

Опишем в общих чертах, как определяется число a α для иррациональных α при а>1. Мы хотим добиться того, чтобы функция у = a x была возрастающей. Тогда при любых рациональных r 1 и r 2 , таких, что r 1 <α должно удовлетворять неравенствам a r 1 <а α <а r 1 .

Выбирая значения r 1 и r 2 , приближающиеся к х, можно заметить, что и соответствующие значения a r 1 и a r 2 будут мало отличаться. Можно доказать, что существует, и притом только одно, число у, которое больше всех a r 1 для всех рациональных r 1 и меньше всех a r 2 для всех рациональных r 2 . Это число у по определению есть а α .

Например, вычислив с помощью калькулятора значения 2 x в точках х n и х` n , где х n и х` n — десятичные приближения числа мы обнаружим, что, чем ближе х n и х` n к , тем меньше отличаются 2 x n и 2 x` n .

Так как , то



и, значит,



Аналогично, рассматривая следующие десятичные приближения по недостатку и избытку, приходим к соотношениям

;

;

;

;

.

Значение вычисленное на калькуляторе, таково:

.

Аналогично определяется число a α для 0<α<1. Кроме того полагают 1 α =1 для любого α и 0 α =0 для α>0.

Показательная функция.


При a > 0, a = 1, определена функция y = a x , отличная от постоянной. Эта функция называется показательной функцией с основанием a .

y = a x при a > 1:

Графики показательных функций с основанием 0 < a < 1 и a > 1 изображены на рисунке.

Основные свойства показательной функции y = a x при 0 < a < 1:

  • Область определения функции - вся числовая прямая.
  • Область значений функции - промежуток (0; + ) .
  • Функция строго монотонно возрастает на всей числовой прямой, то есть, если x 1 < x 2 , то a x 1 > a x 2 .
  • При x = 0 значение функции равно 1.
  • Если x > 0 , то 0 < a < 1 и если x < 0, то a x > 1.
  • К общим свойствам показательной функции как при0 < a < 1, так и при a > 1 относятся:
    • a x 1 a x 2 = a x 1 + x 2 , для всех x 1 и x 2.
    • a − x = ( a x ) − 1 = 1 a x для любого x .
    • n a x = a

Информационный бум В биологии - колонии микробов в чашке Петри Кролики в Австралии Цепные реакции – в химии В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела.В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела. Выбрасывание адреналина в кровь и его разрушение А так же утверждают, что количество информации удваивается каждые 10 лет.А так же утверждают, что количество информации удваивается каждые 10 лет.


(3/5) -1 a 1 3 1/2 (4/9) 0 a *81 (1/2) -3 a -n 36 1/2* 8 1/ /3 2 -3,5


Выражение 2 х 2 2 =4 2 5 = = =1/2 4 =1/16 2 4/3 = 32 4 = ,5 = 1/2 3,5 =1/2 7= 1/(8 2)= 2/16 2)=




3=1, … 1; 1,7 1,73; 1,732;1,73205; 1, ;… последовательность возрастает 2 1 ; 2 1,7 ; 2 1,73 ;2 1,732 ; 2 1,73205 ; 2 1, ;… последовательность возрастает Ограниченная, а значит сходится к одному пределу - значение 2 3


Можно определить π 0












10 10 18 Свойства функции у = а х п \ п а >10 10 10 10 10 title="Свойства функции у = а х п \ п а >10 21


Количество информации удваивается каждые 10 лет По оси Ох – по закону арифметической прогрессии:1,2,3,4…. По оси Оу – по закону геометрической прогрессии: 2 1,2 2,2 3,2 4 … График показательной функции, его называют экспонентой (от латинского exponere - выставлять напоказ)



Просмотров