Строение и уровни организации рнк. Структура и функции рибонуклеиновых кислот

Транспортная РНК, тРНК -рибонуклеиновая кислота, функцией которой является транспортировка АК к месту синтеза белка. Имеет типичную длину от 73 до 93 нуклеотидов и размеры около 5 нм. тРНК также принимают непосредственное участие в наращивании полипептидной цепи, присоединяясь - будучи в комплексе с аминокислотой - к кодону мРНК и обеспечивая необходимую для образования новой пептидной связи конформацию комплекса. Для каждой аминокислоты существует своя тРНК. тРНК является одноцепочечной РНК, однако в функциональной форме имеет конформацию «клеверного листа». АК ковалентно присоединяется к 3"-концу молекулы с помощью специфичного для каждого типа тРНК фермента аминоацил-тРНК-синтетазы. На участке C находится антикодон, соответствующий АК-те. тРНК синтезируются обычной РНК-полимеразой в случае прокариот и РНК-полимеразой III в случае эукариот. Транскрипты генов тРНК подвергаются многостадийному процессингу, который приводит к формированию типичной для тРНК пространственной структуры.

Процессинг тРНК включает 5 ключевых этапов:

удаление 5"-лидерной нуклеотидной последовательности;

удаление 3"-концевой последовательности;

добавление последовательности CCA на 3"-конец;

вырезание интронов (у эукариот и архей);

модификации отдельных нуклеотидов.

Транспорт тРНК осущ-ся по Ran-зависимому пути при участии транспортного фактора экспортина t, кот.распознаёт характерную вторичную и третич.стр-ру зрелой тРНК: короткие двуспиральные участки и правильно процессированные 5"- и 3"-концы. Такой механизм обеспечивает экспорт из ядра только зрелых тРНК.

62. Трансляция – узнавание кодона мРНК
Трансляция – это осуществляемый рибосомами синтез белка из аминокислот на матрице мРНК (или и РНК). Cоставляющие элементы процесса трансляции: аминокислоты, тРНК, рибосомы, мРНК, ферменты для аминоацилирования тРНК, белковые факторы трансляции (белковые факторы инициации, элонгации, терминации - специфические внерибосомные белки, необходимые для процессов трансляции), источники энергии АТФ и ГТФ, ионы магния (стабилизируют структуру рибосом). В синтезе белка участвует 20 аминокислот. Чтобы аминокислота «узнала» свое место в будущей полипепетидной цепи, она должна связаться с транспортной РНК (тРНК), выполняющей адапторную функцию. Затем тРНК, связавшаяся с аминокислотой «узнает» соответствующий кодон на мРНК. Узнавание кодона мРНК:

Взаимодействие кодон - антикодон основано на принципах комплементарности и антипараллельности:

3’----Ц - Г- А*------5’ Антикодон тРНК

5’-----Г- Ц- У*------3’ Кодон мРНК

Гипотеза качания (wobble) была предложена Ф. Криком:

3′- основание кодона мРНК имеет нестрогое спаривание с 5′- основанием антикодона тРНК: например, У (мРНК) может взаимодействовать с А и Г (тРНК)

Некоторые тРНК могут спариваться с более, чем одним кодоном.

63. Характеристика составляющих элементов процесса трансляции. Трансляция (translatio-перевод)- процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой.

Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех организмов имеются спец.органеллы-рибосомы - рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты , и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК, рибосома синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.

Для узнавания АК-т в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон CCA, а к этой тРНК будет присоединяться только АК глицин).

Прокариотическая рибосома


5S и 23S рРНК 16S рРНК

34 белка 21 белок

Рибосомы прокариот имеют константу седиментации 70S, отчего получили название 70S-частиц. Они построены из двух неодинаковых субчастиц: 30S- и 50S-субъединиц. Каждая субъединица представляет комплекс рРНК и рибосомных белков.

30S-частица содержит одну молекулу 16S-рРНК и в большинстве случаев по одной молекуле белка из более 20 видов (21) . 50S-субъединица состоит из двух молекул рРНК (23S и 5S). В ее состав входят более 30 различных белков (34), также представленных, как правило, одной копией. Большая часть рибосомальных белков выполняет структурную функцию.

Эукариотическая рибосома


5S; 5,8S и 28S рРНК 18S рРНК

не менее 50 белков не менее 33 белков

Рибосома состоит из большой и малой субъединиц. Основу структуры каждой субъединицы составляет сложн образом свернутая рРНК. К каркасу из рРНК прикрепл рибосомн белки.

Коэффициент седиментации полной эукариотической рибосомы составляет около 80 единиц Сведберга (80S), а коэффициент седиментации ее субчастиц составляет 40S и 60S.

Меньшая 40S-субчастица состоит из одной молекулы 18S-рРНК и 30-40 белковых молекул. Большая 60S-субчастица содержит три типа рРНК с коэффициентами седиментации 5S, 5,8S и 28S и 40-50 белков (например, рибосомы гепатоцитов крысы включают 49 белков).

Функциональные участки рибосом

Р – пептидильный участок для пептидил тРНК

А – аминоацильный участок для аминоацил тРНК

Е – участок для выхода тРНК из рибосомы

Рибосома содержит 2 функциональных участка для взаимодействия с тРНК: аминоацильный (акцепторный) и пептидильный (донорный). Аминоацил-тРНК попадает в акцепторный участок рибосомы и взаимодействует с образованием водородных связей между триплетами кодона и антикодона. После образования водородных связей система продвигается на 1 кодон и оказывается в донорном участке. Одновременно в освободившемся акцепторном участке оказывается новый кодон, и к нему присоединяется соответствующий аминоацил-т-РНК.

Рибосомы: строение, финкция

Рибосомы являются цитоплазматическими центрами биосинтеза белка. Они состоят из большой и малой субъединиц, различающихся коэффициентами седиментации (скоростью осаждения при центрифугировании), выражаемые в единицах Сведберга – S.

Рибосомы присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию в биосинтезе белков. В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов. Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20-30 нм. Состоит рибосома из большой и малой субъединиц, различающихся коэффициентами седиментации (скоростью осаждения при центрифугировании), выражаемые в единицах Сведберга – S. Эти субъединицы объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называется полисомой . Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка).

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Молекулы РНК в отличие от ДНК построены из одной полинуклеотидной цепи. Однако в этой цепи (для рРНК и мРНК) имеются ком­плементарные друг другу участки, которые могут взаимодействовать, образуя двойные спирали. При этом соединяются водородными связями нуклеотидные пары А-У и Г-Ц. Такие спирализованные участки (их назы­вают шпильками) обычно содержат небольшое количество нуклеотидных пар (до 20-30) и чередуются с неспирализованными участками.

Характерную вторичную структуру имеют тРНК. Они содержат четыре спирализованных участка и три (четыре) одноцепочные петли. При изображении такой структуры на плоскости получается фигура, на­зываемая «клеверным листом» (рис. справа).

Рис.. Вторичная (справа) и третичная (слева) структура тРНК

Все несколько десятков разных тРНК клетки имеют общий план пространственной структуры, но различаются в деталях. В тРНК выделяют следующие структурные участки.

1. Акцепторный конец - во всех типах тРНК имеет состав ЦЦА. К гидроксилу З"-ОН аденозина карбоксильной группой присоединяется аминокислота, которую данная тРНК доставляет к рибосомам, где проис­ходит синтез белка.

2. Антикодоновая петля - содержит специфический для каждой тРНК триплет нуклеотидов (антикодоны). Антикодон комплементарен кодону мРНК. Кодон-антикодоновое взаимодействие определяет порядок чередования аминокислот в белковой молекуле при синтезе ее на рибо­сомах.

3. Псевдоуридиловая петля (Г,С) - участвует в связывании тРНК с рибосомой.

4. Дигидроуридиловая (D) петля необходима для связывания с ферментом аминоацил-тРНК-синтетзой, которая участвует в узнавании аминокислотой своей тРНК.

5. Добавочная петля - разная у разных тРНК.

Третичная структура рнк и днк

Пространственная конфигурация спирализованной полинуклеотидной цепи (третичная структура) достаточно полно выяснена для мо­лекул РНК. Установлено, что нативные молекулы тРНК имеют примерно одинаковую третичную структуру, которая отличается от плоской струк­туры «клеверного листа» (вторичная структура) большей компактностью за счет складывания различных частей молекулы (см. рис выше).

Для рРНК и мРНК возможно существование, а зависимости от концентрации солей и температуры, трех видов третичной структуры (рис. ниже). Первый - рыхлый беспорядочный клубок или распрямленная цепь (при повышении температуры и отсутствии солей). Второй вариант - компактный клубок с двуспиральными участками (высокая ионная сила, комнатная температура). Третий вид - компактная палочка с упорядо­чение ориентированными двуспиральными участками (низкая ионная сила, комнатная температура). Все три типа третичной структуры РНК связаны взаимными переходами.

Третичная структура ДНК зависит от того, сколько цепочек полинуклеотидов (одна или две) в ДНК. В ряде вирусов обнаружены одноцепочечные ДНК линейной и кольцевой формы. Двуцепочечные спирале­видные молекулы ДНК также могут существовать в линейной и кольце­вой форме; образование последней вызвано ковалентным соединением их открытых концов.

Рис. Третичная структура: А - ДНК: 1 - линейная одноцепочечная бактериофаг ФХ174 (и др. вирусов); 2 - кольцевая одноцепочечная ДНК вирусов и митохонд­рий; 3 - кольцевая двойная спираль ДНК; Б - РНК: 1 - рыхлый клубок или рас­прямленная цепь; 2 - компактная палочка; 3 - компактный клубок

Кроме того, полагают, что биспиральные молекулы ДНК сущест­вуют в хромосомах в виде вторично спирализованных фрагментов, свя­занных друг с другом (суперспираль). Поэтому молекулярный вес нативной ДНК достигает нескольких сотен миллионов. Следовательно, молеку­лы с молекулярной массой 10.000.000 являются субъединицами более крупных молекулярных образований (третичная структура). Именно суперспирализация обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме: вместо 8 см длины, которую она могла бы иметь в вы­тянутой форме, она занимает всего 5 нм.

Физико-химические свойства ДНК

Различные факторы, нарушающие водородные связи (повышение температуры выше 80 С, изменение рН и ионной силы, действие мочевины и др.), вызывают денатурацию ДНК, т.е. изменение пространственного расположения цепей ДНК без разрыва ковалентных связей. Двойная спираль ДНК при денатурации полностью или частично разделяется на составляющие цепи. Денатурация ДНК сопровождается усилением оптического поглощения в УФ области пуриновых и пиримидиновых оснований. Это явление называют гиперхромным эффектом . При денатурации уменьшается также высокая вязкость, присущая растворам нативной ДНК. При восстановлении первоначальной двухспиральной структуры ДНК, в результате ренатурации, поглощение при 260 нм азотистыми основаниями вследствие их «экранированности» уменьшается. Это явление называют гипохромным эффектом .

«Расплетение» каждой ДНК на составляющие ее цепи осуществляется в пределах определенного интервала температур. Средняя точка этого интервала называется температурой плавления. Температура плавления ДНК зависит в стандартных условиях (определенная рН и ионная сила) от соотношения азотистых оснований. Г-Ц пары, содержащие три водородные связи, более прочные, поэтому, чем больше в ДНК содержание Г-Ц пар, тем выше температура плавления.

Функции ДНК . В последовательности нуклеотидов молекулах ДНК закодирована генетическая информация. Основными функциями ДНК являются, во-первых, обеспечение воспроизводства самой себя в ряду клеточных поколений и поколений организмов, во-вторых, обеспечение синтеза белков. Эти функции обусловлены тем, что молекулы ДНК служат матрицей в первом случае для репликации, т.е. копирования информации в дочерних молекулах ДНК, во втором – для транскрипции, т.е. для перекодирования информации в структуру РНК.

Рис. 5 Кривая плавления (денатурации ДНК)

Комплементарные цепи ДНК, разделенные при денатурации, при определенных условиях могут вновь соединиться в двойную спираль. Этот процесс называется РЕНАТУРАЦИЕЙ. Если денатурация произошла не полностью и хотя бы несколько оснований не утратили взаимодействия водородными связями, ренатурация протекает очень быстро.

В цитоплазме клеток содержатся три основных функциональных вида РНК. Это матричные РНК – мРНК, выполняющие функции матриц белкового синтеза, рибосомные РНК – рРНК, выполняющие роль структурных компонентов рибосом, и транспортные РНК – тРНК, участвующие в трансляции (переводе) информации мРНК в последовательность аминокислот в белке.

В таблице 2 представлены отличия ДНК от РНК по строению, локализации в клетке и функциям.


Таблица 2 Отличия ДНК от РНК

Взаимодействие и строение ИРНК, ТРНК, РРНК — трех основных нуклеиновых кислот, рассматривает такая наука, как цитология. Она поможет выяснить, какова роль транспортной (ТРНК) в клетках. Эта очень маленькая, но в то же время неоспоримо важная молекула принимает участие в процессе комбинирования белков, из которых состоит организм.

Каково строение ТРНК? Очень интересно рассмотреть «изнутри» это вещество, узнать его биохимию и биологическую роль. А также, как строение ТРНК и ее роль в синтезе белка взаимосвязаны?

Что такое ТРНК, как она устроена?

Транспортная рибонуклеиновая кислота участвует в построении новых белков. Почти 10 % всех рибонуклеиновых кислот — транспортные. Чтобы было понятно, из каких химических элементов образована молекула, расскажем строение вторичной структуры ТРНК. Вторичная структура рассматривает все основные химические связи между элементами.

Состоящая из полинуклеотидной цепи. Азотистые основания в ней связаны водородными связями. Как и в ДНК, РНК имеет 4 азотистые основания: аденин, цитозин, гуанин, и урацил. В этих соединениях аденин всегда связан с урацилом, а гуанин, как обычно, с цитозином.

Почему нуклеотид имеет приставку рибо-? Просто все линейные полимеры, имеющие рибозу вместо пентозы в основании нуклеотида, называются рибонуклеиновыми. А транспортная РНК - это один из 3 видов именно такого, рибонуклеинового полимера.

Строение ТРНК: биохимия

Заглянем в самые глубокие слои строения молекулы. Эти нуклеотиды имеют 3 составляющие:

  1. Сахароза, во всех видах РНК участвует рибоза.
  2. Фосфорная кислота.
  3. Азотистые и пиримидины.

Азотистые основания соединяются между собой крепкими связями. Принято разделять основания на пуриновые и пиримидиновые.

Пурины - это аденин и гуанин. Аденину соответствует адениловый нуклеотид из 2 взаимосвязанных колец. А гуанину — соответствует такой же «однокольцовый» гуаниновый нуклеотид.

Пирамидины — это цитозин и урацил. Пиримидины имеют структуру из одного кольца. Тимина в РНК нет, так как его заменяет такой элемент, как урацил. Это важно понять, прежде чем обращать внимание на другие особенности строения ТРНК.

Виды РНК

Как видим, строение ТРНК кратко не описать. Нужно углубиться в биохимию, чтобы понять назначение молекулы и ее истинную структуру. Какие еще известны рибосомные нуклеотиды? Различают также матричную или информационную и рибосомную нуклеиновые кислоты. Сокращенно ИРНК и РРНК. Все 3 молекулы тесно сотрудничают в клетке друг с другом, чтобы организм получал правильно структурированные глобулы белка.

Невозможно представить работу одного полимера без помощи 2 других. Особенности строения ТРНК становятся более понятны, когда рассматриваются во взаимосвязи с функциями, которые напрямую связаны с работой рибосом.

Строение ИРНК, ТРНК, РРНК во многом похожи. Все имеют в основании рибозу. Однако структура и функции у них разные.

Открытие нуклеиновых кислот

Швейцарцем Иоганном Мишером были найдены в ядре клетки в 1868 году макромолекулы, названные нуклеинами впоследствии. Название «нуклеины» происходит от слова (nucleus) - ядро. Хотя немного позже было установлено, что у одноклеточных существ, не имеющих ядра, эти вещества также присутствуют. В середине XX века получена Нобелевская премия за открытие синтеза нуклеиновых кислот.

в синтезе белка

Само название — транспортная РНК говорит об основной функции молекулы. Эта нуклеиновая кислота «привозит» с собой необходимую аминокислоту, требуемую рибосомной РНК для создания конкретного белка.

У молекулы ТРНК функций немного. Первая — распознавание кодона ИРНК, вторая функция — это доставка строительных «кирпичиков» — аминокислот для синтеза белка. Еще некоторые специалисты выделяют акцепторную функцию. То есть присоединение по ковалентному принципу аминокислот. Помогает «прикрепить» эту аминокислоту такой фермент, как аминоцил-ТРНК-синтатаз.

Как строение ТРНК связано с ее функциями? Эта особенная рибонуклеиновая кислота устроена так, что на одной ее стороне имеются азотистые основания, которые всегда соединяются попарно. Это известные нам элементы — А, У, Ц, Г. Ровно 3 «буквы» или азотистые основания, составляют антикодон — обратный набор элементов, который взаимодействует с кодоном по принципу комплементарности.

Эта важная особенность строения ТРНК гарантирует, что ошибок при декодировании матричной нуклеиновой кислоты не будет. Ведь от точной последовательности аминокислот зависит правильно ли синтезируется нужный организму в настоящее время белок.

Особенности строения

Каковы особенности строения ТРНК и ее биологическая роль? Это очень древняя структура. Ее размеры где-то 73 - 93 нуклеотида. Молекулярная масса вещества - 25 000-30 000.

Строение вторичной структуры ТРНК можно разобрать, изучив 5 основных элементов молекулы. Итак, состоит эта нуклеиновая кислота из таких элементов:

  • петля для контакта с ферментом;
  • петля для контакта с рибосомой;
  • антикодоновая петля;
  • акцепторный стебель;
  • сам антикодон.

И также выделяют малую вариабельную петлю во вторичной структуре. Одно плечо у всех видов ТРНК одинаково — стебель из двух остатков цитозина и одного — аденозина. Именно в этом месте происходит связь с 1 из 20 имеющихся в наличии аминокислот. Для каждой аминокислоты предназначен отдельный фермент — свой аминоацил-тРНК.

Вся информация, которая шифрует строение всех содержится в самой ДНК. Строение ТРНК у всех живых существ на планете практически идентичное. Она будет выглядеть, как лист, если рассматривать ее в 2-D формате.

Однако если взглянуть объемно, то молекула напоминает L-образную геометрическую структуру. Это считается третичная структура ТРНК. Но для удобства изучения ее принято визуально «раскручивать». Третичная структура образуется вследствие взаимодействия элементов вторичной структуры, тех частей, которые взаимокомплиментарны.

Плечи ТРНК или кольца играют важную роль. Одно плечо, например, необходимо для химической связи с определенным ферментом.

Характерной особенностью нуклеотида является наличие огромного числа нуклеозидов. Этих минорных нуклеозидов более 60 видов.

Строение ТРНК и кодирование аминокислот

Мы знаем, что антикодон ТРНК составляет 3 молекулы. Каждому антикодону соответствует определенная, «личная» аминокислота. Эта аминокислота соединена с молекулой ТРНК с помощью специального фермента. Как только 2 аминокислоты объединяются, связи с ТРНК распадаются. Все химические соединения и ферменты нужны до необходимого времени. Именно так взаимосвязаны строение и функции ТРНК.

Всего в клетке присутствует 61 тип таких молекул. Математических вариаций может быть 64. Однако 3 вида ТРНК отсутствуют по причине того, что именно такое количество стопкодонов в ИРНК не имеет антикодонов.

Взаимодействие ИРНК и ТРНК

Рассмотрим взаимодействие вещества с ИРНК и РРНК, а также особенности строения ТРНК. Структура и назначение макромолекулы взаимосвязаны.

Структура ИРНК копирует информацию с отдельного участка ДНК. Сама ДНК слишком крупное соединение молекул, и она никогда не выходит из ядра. Поэтому нужна посредническая РНК — информационная.

На основе последовательности молекул, которые скопировала ИРНК, рибосома строит белок. Рибосома — это отдельная полинуклеотидная структура, строение которой нужно разъяснить.

Рибосомная ТРНК: взаимодействие

Рибосомная РНК это огромная органелла. Ее молекулярный вес 1 000 000 - 1 500 000. Почти 80 % всего количества РНК — именно рибосомные нуклеотиды.

Она как бы захватывает цепь ИРНК и ждет антикодонов, которые принесут с собой молекулы ТРНК. Состоит рибосомная РНК из 2 субъединиц: малой и большой.

Рибосому называют «фабрикой», поскольку в этой органелле и происходит весь синтез нужных для повседневной жизни веществ. Это также очень древняя структура клетки.

Как происходит синтез белка в рибосоме?

Строение ТРНК и ее роль в синтезе белка взаимосвязаны. Расположенный антикодон на одной из сторон рибонуклеиновой кислоты подходит по своей форме для основной функции — доставки аминокислот к рибосоме, где происходит поэтапное выстраивание белка. По сути, ТРНК выполняет роль посредника. Ее задача лишь принести необходимую аминокислоту.

Когда информация считывается с одной части ИРНК, рибосома движется дальше по цепи. Матрица нужна только для передачи кодированной информации о конфигурации и функции отдельно взятого белка. Далее подходит к рибосоме другая ТРНК со своими азотистыми основаниями. Она также декодирует следующую часть ИРНК.

Декодирование происходит следующим образом. Азотистые основания объединяются по принципу комплементарности точно так же, как в самой ДНК. Соответственно, ТРНК видит, куда ему нужно «причалить» и в какой «ангар» отправить аминокислоту.

Затем в рибосоме выбранные таким способом аминокислоты химически связываются, шаг за шагом формируется новая линейная макромолекула, которая после окончания синтеза закручивается в глобулу (шар). Использованные ТРНК и ИРНК, выполнив свою функцию, удаляются от «фабрики» белка.

Когда первая часть кодона соединяется с антикодоном, определяется рамка считывания. Впоследствии, если происходит по каким-то причинам сдвиг рамки, то какой-то признак белка будет бракован. Рибосома же не может вмешаться в этот процесс и решить проблему. Только после завершения процесса 2 субъединицы РРНК снова объединяются. В среднем на каждые 10 4 аминокислот приходится по 1 ошибке. На 25 уже собранных белков обязательно встречается хоть 1 ошибка репликации.

ТРНК как реликтовые молекулы

Так как ТРНК, возможно, существовали во времена зарождения жизни на земле, ее называют реликтовой молекулой. Считается, что РНК первейшая структура, которая существовала до ДНК, а затем эволюционировала. Гипотеза мира РНК — сформулирована в 1986 году лауреатом Уолтером Гильбертом. Однако доказать это пока сложно. В защиту теории выступают очевидные факты — молекулы ТРНК в состоянии хранить блоки информации и как-то реализовывать эти сведения, то есть выполнять работу.

Но противники теории утверждают - небольшой период жизни вещества не может гарантировать, что ТРНК хороший носитель любой биологической информации. Эти нуклеотиды быстро распадаются. Срок жизни ТРНК в клетках человека колеблется от нескольких минут до нескольких часов. Некоторые виды могут продержаться до суток. А если говорить о таких же нуклеотидах в бактериях, то тут сроки намного меньше — до нескольких часов. К тому же строение и функции ТРНК слишком сложны, чтобы молекула могла стать первичным элементом биосферы Земли.

70-90Н | вторичная стр-ра- клеверный лист | CCA 3" const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле - защита от рибонуклеаз? долгоживущие | Разнообразие первичных структур tРНК - 61+1 - по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур - 20 (по кол-ву аминокислот) | рекогниция - образование ковалентной связи м-у tРНК и актой | аминоацил-тРНК-синтетазы присоединяют акты к тРНК

Функция тРНК заключается в переносе аминокислот из цитоплазмы в рибосомы, в которых происходит синтез белков.
тРНК связывающие одну аминокислоту называются изоакцепторными.
Всего в клетке одновременно существует 64 различных тРНК.
Каждая тРНК спаривается только со своим кодоном.
Каждая тРНК распознает свой собственный кодон без участия аминокислоты. Связавшиеся с тРНК аминокислоты химически модифицировали, после чего анализировали получившийся полипептид, который содержал модифицированную аминокислоту. Цистеинил-тРНКCys (R=CH2-SH) восстанавливали до аланил-тРНКCys (R=CH3).
Большинство тРНК, не зависимо от их нуклеотидной последовательности, имеют вторичную структуру в форме клеверного листа из-за наличия в ней трех шпилек.

Особенности структуры тРНК

На 3"-конце молекулы всегда находятся четыре неспаренных нуклеотида, причем три из них – это обязательно ССА. 5"- и 3"-концы цепи РНК образуют акцепторный стебель. Цепи удерживают-ся вместе благодаря комплементарному спарива-нию семи нуклеотидов 5"-конца с семью нуклеотида-ми, находящимися вблизи 3"-конца. 2. У всех моле-кул имеется шпилька T?C, обозначаемая так пото-му, что она содержит два необычных остатка: рибо-тимидин (Т) и псевдоуридин (?). Шпилька состоит из двухцепочечного стебля из пяти спаренных осно- ваний, включая пару G-C, и петли длиной семь нуклеотидов. Тринуклеотид Т?С всегда расположен
в одном и том же месте петли. 3. В антикодоновой шпильке стебель всегда представлен семью спарен-
ными основаниями. Триплет, комплементарный родственному кодону,– антикодон – находится в пет-
ле, состоящей из семи нуклеотидов. С 5"-конца антикодон фланкируют инвариантный остаток ура-
цила и модифицированный цитозин, а к его 3"-концу примыкает модифицированный пурин, как правило
аденин. 4. Еще одна шпилька состоит из стебля длиной три-четыре пары нуклеотидов и петли варь-
ирующего размера, часто содержащей урацил в вос-становленной форме – дигидроурацил (DU). Наиболее сильно варьируют нуклеотидные по-следовательности стеблей, число нуклеотидов меж-ду антикодоновым стеблем и стеблем Т?С (вариа-бельная петля), а также размер петли и локализация остатков дигидроурацила в DU-петле.
[Сингер, 1998].

Третичная структура тРНК

L-образная структура.

Присоединение аминокислот к тРНК

Для того чтобы аминокислота могла образовывать полипептидную цепь она должна присоединиться к тРНК с помощью фермента аминоацил-тРНК-синтетазы. Этот фермент образует ковалентную связь между карбоксильной группой аминокислоты и гидроксильной группой рибозы на 3’-конце тРНК при участии АТФ. Аминоацил-тРНК-синтетаза узнает специфический кодон не из-за наличия антикодона на тРНК, а по наличию специфического сайта узнавания на тРНК.
Всего в клетке имеется 21 различных аминоацил-тРНК-синтетаз.
Присоединение происходит в две стадии:
1. Карбоксильная группа аминокислоты присоединяется к а-фосфату АТФ. Полученный нестабильный аминоацил-аденилат стабилизируется связываясь с ферментом.
2. Перенос аминоацильной группы аминоацил-аденилата на 2’ или 3’-OH-группу концевой рибозы тРНК
Некоторые аминоацил-тРНК-синтетазы состоят из одной полипептидной цепи, другие – из двух или четырех идентичных цепей, каждая молекулярной массой от 35 до 115 кДа. Некоторые димерные и тетрамерные ферменты состоят из субъединиц двух типов. Четкой корреляции между размером молекулы фермента или характером его субъединичной структуры и специфичностью не существует.
Специфичность фермента определяется его прочным связыванием с акцепторным концом тРНК, DU-участком и вариабельной петлей. Некоторые ферменты, по-видимому, не распознают антикодоновый триплет и катализируют реакцию аминоацетилирования даже при измененном антикодоне. Однако отдельные ферменты проявляют пониженную активность по отношению к таким модифицированным тРНК и при замене антикодона присоединяют не ту аминокислоту.

70-90н | вторичная стр-ра- клеверный лист | CCA 3" const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле - защита от рибонуклеаз? долгоживущие | Разнообразие первичных структур tРНК - 61+1 - по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур - 20 (по кол-ву аминокислот)

Имеются два вида тРНК связывающие метионин тРНКFMet и тРНКMMet у прокариот и, тРНКIMetи тРНКMMet - у эукариот. К каждой тРНК добавляется метионин с помощью соответствующих аминоацил-тРНК-синтетез. метионин присоединенный к тРНКFMet и тРНКIMet формилируется ферментом метионил-тРНК-трансформилазой до Fmet-тРНКFMet. тРНК нагруженные формилметионином узнают инициаторный кодон AUG.

Литература:

К сожалению, список литературы отсутствует.



Просмотров