Средняя арифметическая в статистике. Среднее арифметическое значение формула


Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя величина это:

1) наиболее типичное для совокупности значение признака;

2) объем признака совокупности, распределенный поровну между единицами совокупности.

Признак, для которого рассчитывается средняя величина, в статистике называется «осредняемый».

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Важно отметить, что в процессе осреднения совокупное значение уровней признака или конечное его значение (в случае расчета средних уровней в ряду динамики) должно оставаться неизменным. Другими словами, при расчете средней величины объем исследуемого признака не должен быть искажен, и выражения, составляемые при расчетах средней, обязательно должны иметь смысл.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

,

где X i – варианта (значение) осредняемого признака;

n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где X i – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;

m – показатель степени средней;

f i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Виды степенных средних

Вид степенной
средней

Показатель
степени (m)

Формула расчета

Простая

Взвешенная

Гармоническая

Геометрическая

Арифметическая

Квадратическая

Кубическая

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым. Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,…, i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 × i 1 × i 2 ×…×i n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда



Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где X Me – нижняя граница медианного интервала;

h Me – его величина;

(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);

S Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;

m Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

,

где Х Mo – нижнее значение модального интервала;

m Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);

m Mo-1 – то же для интервала, предшествующего модальному;

m Mo+1 – то же для интервала, следующего за модальным;

h – величина интервала изменения признака в группах.

ЗАДАЧА 1

Имеются следующие данные по группе промышленных предприятий за отчетный год


предприятия

Объем продукции, млн. руб.

Среднесписочное число работников, чел.

Прибыль, тыс. руб.

197,7

10,0

13,5

22,8

1500

136,2

465,5

18,4

1412

97,6

296,2

12,6

1200

44,4

584,1

22,0

1485

146,0

480,0

119,0

1420

110,4

57805

21,6

1390

138,7

204,7

30,6

466,8

19,4

1375

111,8

292,2

113,6

1200

49,6

423,1

17,6

1365

105,8

192,6

30,7

360,5

14,0

1290

64,8

280,3

10,2

33,3

Требуется выполнить группировку предприятий по обмену продукции, приняв следующие интервалы:

    до 200 млн. руб.

    от 200 до 400 млн. руб.

  1. от 400 до 600 млн. руб.

    По каждой группе и по всем вместе определить число предприятий, объем продукции, среднесписочное число работников, среднюю выработку продукции на одного работника. Результаты группировки представить в виде статистической таблицы. Сформулировать вывод.

    РЕШЕНИЕ

    Произведем группировку предприятий по обмену продукции, расчет числа предприятий, объема продукции, среднесписочного числа работников по формуле простой средней. Результаты группировки и расчетов сводим в таблицу.

    Группы по объему продукции


    предприятия

    Объем продукции, млн. руб.

    Среднегодовая стоимость основных средств, млн. руб.

    Среднеспи

    сочное число работников, чел.

    Прибыль, тыс. руб.

    Средняя выработка продукции на одного работника

    1 группа

    до 200 млн. руб.

    1,8,12

    197,7

    204,7

    192,6

    10,0

    9,4

    8,8

    900

    817

    13,5

    30,6

    30,7

    28,2

    2567

    74,8

    0,23

    Средний уровень

    198,3

    24,9

    2 группа

    от 200 до 400 млн. руб.

    4,10,13,14

    196,2

    292,2

    360,5

    280,3

    12,6

    113,6

    14,0

    10,2

    1200

    1200

    1290

    44,4

    49,6

    64,8

    33,3

    1129,2

    150,4

    4590

    192,1

    0,25

    Средний уровень

    282,3

    37,6

    1530

    64,0

    3 группа

    от 400 до

    600 млн.

    2,3,5,6,7,9,11

    592

    465,5

    584,1

    480,0

    578,5

    466,8

    423,1

    22,8

    18,4

    22,0

    119,0

    21,6

    19,4

    17,6

    1500

    1412

    1485

    1420

    1390

    1375

    1365

    136,2

    97,6

    146,0

    110,4

    138,7

    111,8

    105,8

    3590

    240,8

    9974

    846,5

    0,36

    Средний уровень

    512,9

    34,4

    1421

    120,9

    Всего по совокупности

    5314,2

    419,4

    17131

    1113,4

    0,31

    В среднем по совокупности

    379,6

    59,9

    1223,6

    79,5

    Вывод. Таким образом, в рассматриваемой совокупности наибольшее число предприятий по объему продукции попало в третью группу – семь, или половина предприятий. Величина среднегодовой стоимости основных средств также в данной группе, как и большая величина среднесписочного числа работников – 9974 человек, наименее прибыльны предприятия первой группы.

    ЗАДАЧА 2

    Имеются следующие данные по предприятиям фирмы

    Номер предприятия, входящего в фирму

    I квартал

    II квартал

    Выпуск продукции, тыс. руб.

    Отработано рабочими человеко-дней

    Средняя выработка на одного рабочего в день, руб.

    59390,13

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:


Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:


Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

В математике и статистике среднее арифметическое (либо легко среднее ) комплекта чисел - это сумма всех чисел в этом комплекте, поделённая на их число. Среднее арифметическое является особенно всеобщим и самым распространённым представлением средней величины.

Вам понадобится

  • Знания по математике.

Инструкция

1. Пускай дан комплект из четырех чисел. Нужно обнаружить среднее значение этого комплекта. Для этого вначале обнаружим сумму всех этих чисел. Возможен эти числа 1, 3, 8, 7. Их сумма равна S = 1 + 3 + 8 + 7 = 19. Комплект чисел должен состоять из чисел одного знака, в отвратном случае толк в вычислении среднего значения теряется.

2. Среднее значение комплекта чисел равно сумме чисел S, деленной на число этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.

3. Для комплекта числе также дозволено обнаружить не только среднее арифметическое, но и среднее геометрическое. Средним геометрическим нескольких правильных вещественных чисел именуется такое число, которым дозволено заменить всякое из этих чисел так, дабы их произведение не изменилось. Среднее геометрическое G ищется по формуле: корень N-ой степени из произведения комплекта чисел, где N – число числе в комплекте. Разглядим тот же комплект чисел: 1, 3, 8, 7. Обнаружим их среднее геометрическое. Для этого посчитаем произведение: 1*3*8*7 = 168. Сейчас из числа 168 нужно извлечь корень 4-ой степени: G = (168)^1/4 = 3.61. Таким образом среднее геометрическое комплекта чисел равно 3.61.

Среднее геометрическое в совокупности применяется реже, чем арифметическое среднее, впрочем оно может быть пригодно при вычислении среднего значения показателей, изменяющихся с течением времени (заработная плата отдельного работника, динамика показателей успеваемости и т.п.).

Вам понадобится

  • Инженерный калькулятор

Инструкция

1. Для того дабы обнаружить среднее геометрическое ряда чисел, для начала надобно перемножить все эти числа. Скажем, вам дан комплект из пяти показателей: 12, 3, 6, 9 и 4. Перемножим все эти числа: 12х3х6х9х4=7776.

2. Сейчас из полученного числа надобно извлечь корень степени, равной числу элементов ряда. В нашем случае из числа 7776 необходимо будет извлечь корень пятой степени при помощи инженерного калькулятора. Полученное позже этой операции число – в данном случае число 6 – будет являться средним геометрическим для начальной группы чисел.

3. Если у вас под рукой нет инженерного калькулятора, то вычислить среднее геометрическое ряда чисел дозволено с поддержкой функции СРГЕОМ в программе Excel либо при помощи одного из онлайн-калькуляторов, намеренно предуготовленных для вычисления средних геометрических значений.

Обратите внимание!
Если понадобится обнаружить среднее геометрическое каждого для 2-х чисел, то инженерный калькулятор вам не потребуется: извлечь корень 2-й степени (квадратный корень) из всякого числа дозволено при помощи самого обыкновенного калькулятора.

Полезный совет
В различие от среднего арифметического, на геометрическое среднее не так мощно влияют огромные отклонения и колебания между отдельными значениями в исследуемом комплекте показателей.

Среднее значение – это одна из колляций комплекта чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом комплекте чисел. Среднее арифметическое значение – особенно зачастую применяемая разновидность средних.

Инструкция

1. Сложите все числа множества и поделите их на число слагаемых, дабы получить среднее арифметическое значение. В зависимости от определенных условий вычисления изредка бывает проще разделять всякое из чисел на число значений множества и суммировать итог.

2. Используйте, скажем, входящий в состава ОС Windows калькулятор, если вычислить среднее арифметическое значение в уме не представляется допустимым. Открыть его дозволено с поддержкой диалога запуска программ. Для этого нажмите «жгучие клавиши» WIN + R либо щелкните кнопку «Пуск» и выберите в основном меню команду «Исполнить». После этого напечатайте в поле ввода calc и нажмите на клавиатуре Enter либо щелкните кнопку «OK». Это же дозволено сделать через основное меню – раскройте его, перейдите в раздел «Все программы» и в сегменты «Типовые» и выберите строку «Калькулятор».

3. Введите ступенчато все числа множества, нажимая на клавиатуре позже всего из них (помимо последнего) клавишу «Плюс» либо щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже дозволено как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.

4. Нажмите клавишу с косой чертой (слэш) либо щелкните данный значок в интерфейсе калькулятора позже ввода последнего значения множества и напечатайте число чисел в последовательности. После этого нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.

5. Дозволено для этой же цели применять табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если позже ввода всего числа вы будете нажимать Enter либо клавишу со стрелкой вниз либо вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.

6. Выделите все введенные значения и в левом нижнем углу окна редактора (в строке состояния) увидите среднеарифметическое значение для выделенных ячеек.

7. Щелкните следующую за последним введенным числом ячейку, если вам не довольно только увидеть среднее арифметическое значение. Раскройте выпадающий список с изображением греческой буквы сигма (Σ) в группе команд «Редактирование» на вкладке «Основная». Выберите в нем строку «Среднее » и редактор вставит необходимую формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Среднее арифметическое – одна из мер центральной склонности, обширно применяемая в математике и статистических расчетах. Обнаружить среднее арифметическое число для нескольких значений дюже легко, но у всякой задачи есть свои нюансы, знать которые для выполнения правильных расчетов примитивно нужно.

Что такое среднее арифметическое число

Среднее арифметическое число определяет усредненное значение для каждого начального массива чисел. Другими словами, из некоторого множества чисел выбирается всеобщее для всех элементов значение, математическое сопоставление которого со всеми элементами носит приближенно равный нрав. Среднее арифметическое число применяется, предпочтительно, при составлении финансовых и статистических отчетов либо для расчетов количественных итогов проведенных сходственных навыков.

Как обнаружить среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой? (мю) либо x (икс с чертой). Дальше алгебраическую сумму следует поделить на число чисел в массиве. В рассматриваемом примере чисел было пять, следственно среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с негативными числами

Если в массиве присутствуют негативные числа, то нахождение среднего арифметического значения происходит по аналогичному алгорифму. Разница имеется только при рассчетах в среде программирования, либо же если в задаче есть добавочные данные. В этих случаях нахождение среднего арифметического чисел с различными знаками сводится к трем действиям:1. Нахождение всеобщего среднего арифметического числа стандартным способом;2. Нахождение среднего арифметического негативным чисел.3. Вычисление среднего арифметического позитивных чисел.Результаты всякого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по способу вычисления среднего арифметического целых чисел, но сокращение итога производится по требованиям задачи к точности результата.При работе с естественными дробями их следует привести к всеобщему знаменателю, тот, что умножается на число чисел в массиве. В числителе результата будет сумма приведенных числителей начальных дробных элементов.

Среднее геометрическое чисел зависит не только от безусловной величины самих чисел, но и от их числа. Невозможно путать среднее геометрическое и среднее арифметическое чисел, от того что они находятся по различным методологиям. При этом среднее геометрическое неизменно поменьше либо равно среднему арифметическому.

Вам понадобится

  • Инженерный калькулятор.

Инструкция

1. Рассматривайте, что в всеобщем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует числу чисел. Скажем, если надобно обнаружить среднее геометрическое пяти чисел, то из произведения необходимо будет извлекать корень пятой степени.

2. Для нахождения среднего геометрического 2-х чисел используйте основное правило. Обнаружьте их произведение, позже чего извлеките из него квадратный корень, от того что числа два, что соответствует степени корня. Скажем, для того дабы обнаружить среднее геометрическое чисел 16 и 4, обнаружьте их произведение 16 4=64. Из получившегося числа извлеките квадратный корень?64=8. Это и будет желанная величина. Обратите внимание на то, что среднее арифметическое этих 2-х чисел огромнее и равно 10. Если корень не извлекается нацело, произведите округление итога до надобного порядка.

3. Дабы обнаружить среднее геометрическое больше чем 2-х чисел, тоже используйте основное правило. Для этого обнаружьте произведение всех чисел, для которых надобно обнаружить среднее геометрическое. Из полученного произведения извлеките корень степени, равной числу чисел. Скажем, дабы обнаружить среднее геометрическое чисел 2, 4 и 64, обнаружьте их произведение. 2 4 64=512. От того что необходимо обнаружить итог среднего геометрического 3 чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, следственно воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка “x^y”. Наберите число 512, нажмите кнопку “x^y”, позже чего наберите число 3 и нажмите кнопку “1/х”, дабы обнаружить значение 1/3, нажмите кнопку “=”. Получим итог возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.

4. С поддержкой инженерного калькулятора дозволено обнаружить среднее геометрическое иным методом. Обнаружьте на клавиатуре кнопку log. Позже этого возьмите логарифм для всего из чисел, обнаружьте их сумму и поделите ее на число чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Скажем, для того дабы обнаружить среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе комплект операций. Наберите число 2, позже чего нажмите кнопку log, нажмите кнопку “+”, наберите число 4 и вновь нажмите log и “+”, наберите 64, нажмите log и “=”. Итогом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число поделите на 3, от того что это число чисел, по которым ищется среднее геометрическое. Из итога возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В итоге получится число 8, это и есть желанное среднее геометрическое.

Обратите внимание!
Среднее значение не может быть огромнее самого большого числа в комплекте и поменьше самого маленького.

Полезный совет
В математической статистике среднее значение величины именуется математическим ожиданием.

Самым распространенным видом средней является средняя арифметическая.

Средняя арифметическая простая

Простая среднеарифметическая величина представляет собой среднее слагаемое, при определении которого общий объем данного признака в данных поровну распределяется между всеми единицами, входящими в данную совокупность. Так, среднегодовая выработка продукции на одного работающего — это такая величина объема продукции, которая приходилась бы на каждого работника, если бы весь объем выпущенной продукции в одинаковой степени распределялся между всеми сотрудниками организации. Среднеарифметическая простая величина исчисляется по формуле:

Простая средняя арифметическая — Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности

Пример 1. Бригада из 6 рабочих получает в месяц 3 3,2 3,3 3,5 3,8 3,1 тыс.руб.

Найти среднюю заработную плату
Решение: (3 + 3,2 + 3,3 +3,5 + 3,8 + 3,1) / 6 = 3,32 тыс. руб.

Средняя арифметическая взвешенная

Если объем совокупности данных большой и представляет собой ряд распределения, то исчисляется взвешенная среднеарифметическая величина. Так определяют средневзвешенную цену за единицу продукции: общую стоимость продукции (сумму произведений ее количества на цену единицы продукции) делят на суммарное количество продукции.

Представим это в виде следующей формулы:

Взвешенная средняя арифметическая — равна отношению (суммы произведений значения признака к частоте повторения данного признака) к (сумме частот всех признаков).Используется, когда варианты исследуемой совокупности встречаются неодинаковое количество раз.

Пример 2. Найти среднюю заработную плату рабочих цеха за месяц

Средняя заработная плата может быть получена путем деления общей суммы заработной платы на общее число рабочих:

Ответ: 3,35 тыс.руб.

Средняя арифметическая для интервального ряда

При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем — среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.

Средние, вычисляемые из интервальных рядов являются приближенными.

Пример 3 . Определить средний возраст студентов вечернего отделения.

Средние, вычисляемые из интервальных рядов являются приближенными. Степень их приближения зависит от того, в какой мере фактическое распределение единиц совокупности внутри интервала приближается к равномерному.

При расчете средних в качестве весов могут использоваться не только абсолютные, но и относительные величины (частость):

Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т.е.

2.Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических этих величин:

3.Алгебраическая сумма отклонений индивидуальных значений признака от средней равна нулю:

4.Сумма квадратов отклонений вариантов от средней меньше, чем сумма квадратов отклонений от любой другой произвольной величины , т.е.

Тема 5. Средние величины как статистические показатели

Понятие средней величины. Область применения средних величин в статистическом исследовании

Средние величины используются на этапе обработки и обобщения полученных первичных статистических данных. Потребность определения средних величин связана с тем, что у различных единиц исследуемых совокупностей индивидуальные значения одного и того же признака, как правило, неодинаковы.

Средней величиной называют показатель, который характеризует обобщенное значение признака или группы признаков в исследуемой совокупности.

Если исследуется совокупность с качественно однородными признаками, то средняя величина выступает здесь как типическая средняя . Например, для групп работников определенной отрасли с фиксированным уровнем дохода определяется типическая средняя расходов на предметы первой необходимости, т.е. типическая средняя обобщает качественно однородные значения признака в данной совокупности, каковым является доля расходов у работников данной группы на товары первой необходимости.

При исследовании совокупности с качественно разнородными признаками на первый план может выступить нетипичность средних показателей. Такими, к примеру, являются средние показатели произведенного национального дохода на душу населения (разные возрастные группы), средние показатели урожайности зерновых культур по всей территории России (районы разных климатических зон и разных зерновых культур), средние показатели рождаемости населения по всем регионам страны, средние температуры за определенный период и т.д. Здесь средние величины обобщают качественно разнородные значения признаков или системных пространственных совокупностей (международное сообщество, континент, государство, регион, район и т.д.) или динамических совокупностей, протяженных во времени (век, десятилетие, год, сезон и т.д.). Такие средние величины называют системными средними .

Таким образом, значение средних величин состоит в их обобщающей функции. Средняя величина заменяет большое число индивидуальных значений признака, обнаруживая общие свойства, присущие всем единицам совокупности. Это, в свою очередь, позволяет избежать случайных причин и выявить общие закономерности, обусловленные общими причинами.

Виды средних величин и методы их расчета

На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой.

    степенные средние ;

    структурные средние .

Введем следующие условные обозначения:

Величины, для которых исчисляется средняя;

Средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

Частота (повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней:

(5.1)

при k = 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = -2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.

Формула средней арифметической (простой ) имеет вид

где n - численность совокупности.

Например, средняя заработная плата работников предприятия вычисляется как средняя арифметическая:


Определяющими показателями здесь являются заработная плата каждого работника и число работников предприятия. При вычислении средней общая сумма заработной платы осталась прежней, но распределенной как бы между всеми работниками поровну. К примеру, необходимо вычислить среднюю заработную плату работников небольшой фирмы, где заняты 8 человек:

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной , которая имеет вид

(5.3)

Так, нам необходимо рассчитать средний курс акций какого-то акционерного общества на торгах фондовой биржи. Известно, что сделки осуществлялись в течение 5 дней (5 сделок), количество проданных акций по курсу продаж распределилось следующим образом:

    1 - 800 ак. - 1010 руб.

    2 - 650 ак. - 990 руб.

    3 - 700 ак. - 1015 руб.

    4 - 550 ак. - 900 руб.

    5 - 850 ак. - 1150 руб.

Исходным соотношением для определения среднего курса стоимости акций является отношение общей суммы сделок (ОСС) к количеству проданных акций (КПА):

ОСС = 1010 ·800+990·650+1015·700+900·550+1150·850= 3 634 500;

КПА = 800+650+700+550+850=3550.

В этом случае средний курс стоимости акций был равен

Необходимо знать свойства арифметической средней, что очень важно как для ее использования, так и при ее расчете. Можно выделить три основных свойства, которые наиболее всего обусловили широкое применение арифметической средней в статистико-экономических расчетах.

Свойство первое (нулевое ): сумма положительных отклонений индивидуальных значений признака от его среднего значения равна сумме отрицательных отклонений. Это очень важное свойство, поскольку оно показывает, что любые отклонения (как с +, так и с -), вызванные случайными причинами, взаимно будут погашены.

Доказательство:

Свойство второе (минимальное ): сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа (а), т.е. есть число минимальное.

Доказательство.

Составим сумму квадратов отклонений от переменной а:

(5.4)

Чтобы найти экстремум этой функции, необходимо ее производную по а приравнять нулю:

Отсюда получаем:

(5.5)

Следовательно, экстремум суммы квадратов отклонений достигается при . Этот экстремум - минимум, так как функция не может иметь максимума.

Свойство третье : средняя арифметическая постоянной величины равна этой постоянной: при а = const.

Кроме этих трех важнейших свойств средней арифметической существуют так называемые расчетные свойства , которые постепенно теряют свою значимость в связи с использованием электронно-вычислительной техники:

    если индивидуальное значение признака каждой единицы умножить или разделить на постоянное число, то средняя арифметическая увеличится или уменьшится во столько же раз;

    средняя арифметическая не изменится, если вес (частоту) каждого значения признака разделить на постоянное число;

    если индивидуальные значения признака каждой единицы уменьшить или увеличить на одну и ту же величину, то средняя арифметическая уменьшится или увеличится на ту же самую величину.

Средняя гармоническая . Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.

Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:

В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид

Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.



Просмотров