Советские резисторы. Радиоэлементы из старой аппаратуры

Радиолюбителю при сборке электрических схем часто приходится сталкиваться с определением номинала неизвестных компонентов. Резистор используется чаще всего. С его обозначениями возникают и частые вопросы. В переводе с английского это название звучит как «Сопротивление». Они различаются как по номинальному сопротивлению, так и по допустимой мощности. Для того, чтобы мастер мог выбрать элемент с нужным номиналом на их корпусах наносят обозначение. В зависимости от типа резисторов кодировка может различаться, она бывает: буквенно-цифровая, цифровая либо цветовыми полосами. В этой статье мы расскажем подробнее, какая бывает маркировка резисторов отечественного и импортного производства, а также как расшифровать обозначения, указанные производителем.

Обозначение номинала буквами и цифрами

На сопротивлениях советского производства применяется буквенно-цифровая маркировка резисторов и обозначение цветовыми полосами (кольцами). Примером можно рассмотреть резисторы типа МЛТ, на них величина сопротивления указана цифро-буквенным способом. Резисторы до сотни Ом содержат в своей маркировке букву «R», или «Е», или «Ω». Тысячи Ом маркируются буквой «К», миллионы букву М, т.е. по буквам определяют порядок величины. При этом целые единицы от дробных отделяются этими же буквами. Давайте рассмотрим несколько примеров.

На фото сверху вниз:

  • 2К4 = 2,4 кОм или 2400 Ом;
  • 270R = 270 Ом;
  • К27 = 0,27 кОм или 270 Ом.

Маркировка третьего непонятна, возможно он развернут не той стороной. Кроме этого на резисторах от 1 Вт может присутствовать маркировка по мощности. Маркировка довольно удобна и наглядна. Она может незначительно отличаться в зависимости от типа резисторов и года их производства. Также может присутствовать дополнительная буква, которая указывает класс точности.

Импортные сопротивления, в том числе китайские, тоже могут маркироваться буквами. Яркий пример – это керамические резисторы.

В первой части обозначения указано 5W – это мощность резистора равная 5 Вт. 100R – значит, что его сопротивление в 100 Ом. Буква J говорит о допуске отклонений от номинального значения равном 5% в обе стороны. Полная таблица допусков изображена ниже. Класс точности или допустимое отклонение от номинала не всегда существенно влияет на работу схемы, хотя это зависит от их назначения.

Как определить номинал по цветовым кольцам

В последнее время выводные сопротивления чаще обозначаются с помощью цветовых полос и это относится как к отечественным, так и к зарубежным элементам. В зависимости от количества цветовых полос меняется способ их расшифровки. В общем виде он собран в ГОСТ 175-72.

Цветовая маркировка резисторов может выглядеть в виде 3, 4, 5 и 6 цветовых колец. При этом кольца могут быть смещены к одному из выводов. Тогда кольцо, которое ближе всех к проволочному выводу, считают первым и расшифровку цветного кода начинают с него. Или одно из колец может отсутствовать, обычно предпоследнее. Тогда первое это то, возле которого есть пара.

Другой вариант, когда маркировочные кольца расположены равномерно, т.е. заполняют поверхность равномерно. Тогда первое кольца определяют по цветам. Допустим, одно из крайних колец (первое) не может быть золотого цвета, тогда можно определить с какой стороны идет отчет.

Обратите внимание при таком способе маркировки из 4-х колец третье кольцо – это множитель. Как разобраться в этой таблице? Возьмем верхний резистор первое кольцо красного цвета, это 2, второе фиолетового – это 7, третье, множитель красное – это 100, а допуск у нас коричневый – это 1%. Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны.

Второй резистор имеет цветовую маркировку из 5 полос. У нас: 2, 7, 2, 100, 1%, тогда: 272*100=27200 Ом или 27,2 кОм с допуском в 1%.

У резисторов из 3 полос цветовая маркировка производится по такой логике:

  • 1 полоса – единицы;
  • 2 полоса – сотни;
  • 3 полоса – множитель.

Точность таких компонентов равна 20%.

Расшифровать цветовое обозначение вам поможет программа ElectroDroid, она доступна для Android в Play Market, в её бесплатной версии есть данная функция.

Другой способ расшифровки цветового кода от компании Philips предполагает использование 4, 5 и 6 полос. Тогда последняя полоса несет информацию о температурном коэффициенте сопротивления (насколько изменяется сопротивление при изменении температуры).

Чтобы определить номинал воспользуйтесь таблицей. Обратите внимание на последнюю колонку – это ТКС.

На корпусе цветные кольца распределяются, так как показано на этой схеме:

Более подробно узнать о том, как расшифровать маркировку резисторов, вы можете из данных видео:

Маркировка SMD резисторов

В современной электронике один из ключевых факторов при разработке устройства – его миниатюризация. Этим вызвано создание безвыводных элементов. SMD-компоненты отличаются малыми размерами, за счет их безвыводной конструкции. Пусть вас не смущает такой способ монтажа, он используется в большей части современной электроники и отличается хорошей надежностью. К тому же это упрощает конструкцию многослойной печатной платы. Дословная расшифровка с переводом обозначает «устройство для поверхностного монтажа», они и монтируются на поверхность печатной платы. Из-за миниатюрных размеров возникают трудности с обозначением их номинала и характеристик на корпусе, поэтому идут на компромисс и используют методы маркировки по цифрам, с буквами или используя кодовую систему. Давайте разберемся, как маркируются SMD резисторы.

Если на SMD-резисторе нанесено 3 цифры тогда расшифровка производится следующим образом: XYZ, где X и Y – это первые две цифры номинала, а Z количество нолей. Рассмотрим на примере.

Возможно обозначение 4-мя цифрами, тогда всё таким же образом, только первые три цифры, это сотни, десятки и единицы, а последняя – нули.

Если в маркировку введены буквы, то расшифровка подобна отечественным резисторам МЛТ.

Продолжаем наш цикл справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах , они присутствуют в любой электронной схеме, даже самой простой. Делятся они на два вида: переменные и постоянные. Распространенные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0.125 до 2 Ватт. Если быть более точным, то это ряд 0.125 Вт, 0.25 Вт, 0.5 Вт, 1 Вт, 2 Вт. Конечно, есть и более мощные резисторы, например проволочные, но они редко используются в электронных схемах. На рисунке ниже изображены внешний вид и габариты резисторов, а также их обозначения на принципиальных схемах.

Из них чаще всего в электронике используются резисторы мощностью от 0.125 до 0.5 Ватт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0.1-1%. Существуют и более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется. Если резистор может менять сопротивление - его называют переменным (или подстроечным). Фото переменных резисторов:

Переменные резисторы также бывают проволочные и непроволочные , проволочные обычно бывают рассчитаны на большую мощность. Устройство непроволочного переменного резистора можно видеть на рисунке:

Устроен резистор следующим образом, на основании из гетинакса в виде дуги нанесен слой из сажи смешанной с лаком. У этого резистора между первым и вторым контактом (на рисунке), другими словами между крайними выводами сопротивление неизменно, а между средним и крайними выводами изменяется при вращении ручки резистора. К этому слою обладающему сопротивлением прилегает подвижный контакт, соединенный с центральным выводом. Очень часто при интенсивном использовании регулятором, этот слой сажи истирается, и сопротивление резистора при вращении ручки резистора изменяется скачкообразно, становясь иногда даже больше максимального положенного по номиналу. Из-за этого износа и происходит шуршание и треск из динамиков, а иногда при сильном износе звучание пропадает совсем. Переменные резисторы бывают как одинарные, так и сдвоенные, сдвоенные обычно используются в устройствах со стерео звучанием. Также к переменным резисторам относятся подстроечные резисторы:

Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отвёрткой. Также переменные резисторы бывают однооборотные и многооборотные. Схематическое изображение переменного и подстроечного резистора на рисунке ниже:

На советских резисторах МЛТ был написан номинал резистора, на импортных резисторах маркировка осуществляется нанесением разноцветных колец, в первых двух кольцах закодирован номинал, третье кольцо множитель, четвёртое кольцо это допуск резистора (для обычных не прецизионных резисторов).

Встречается маркировка большим, чем четыре, количеством колец, расшифровать маркировку поможет следующий рисунок:

Иногда возникает надобность узнать номинал резистора, а по цветовой маркировке это сделать, по каким-либо причинам затруднительно. В таком случае нужно обратиться к принципиальной схеме устройства. На таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы измерения не указываются), 100 К означает 100 КилоОм, 2 М означает 2 МегаОма. Иногда при сборке какой-либо схемы нужного номинала нет под рукой, но есть много резисторов других номиналов, в таком случае может помочь последовательное или параллельное соединение резисторов. Формулы подсчета всем известны из учебников физики, но если кто подзабыл, приведу здесь их:

При последовательном соединении



При параллельном соединении

В последнее время многие переходят на SMD детали, из них наиболее распространены резисторы размеров 0805 и 1206. Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра количество нулей. Пример : нанесена маркировка 332 , это значит 33 плюс два нуля, получается 3300, то есть 3.3 КилоОма. Менее распространены в электронике, но тем не менее находят применение терморезисторы и фоторезисторы. На рисунке ниже изображено схематическое изображение терморезисторов:

У терморезисторов сопротивление зависит от температуры. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный. Терморезистор изображен на фотографии ниже:

На следующем рисунке изображён фоторезистор, как его рисуют на схемах:

Он представляет собой полупроводниковый прибор, сопротивление которого меняется под действием света.

Фоторезисторы особенно широко используются в устройствах автоматики. Привожу типовую схему включения полупроводникового фотодетектора:

Обсудить статью РЕЗИСТОРЫ

Прежде всего, определимся с понятием и обозначением сопротивления, как электрической величины. Согласно теории сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока. В международной системе единиц (СИ) единицей измерения сопротивления является Ом (Ω). Для электротехники это относительно небольшая величина, поэтому мы чаще будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого нужно усвоить следующую табличку:

1 кОм = 1000 Ом;
1 Мом = 1000 кОм;

И наоборот:

1 Ом = 0.001 кОм;
1 кОм = 0.001 Мом;

Ничего сложного, но знать это надо твердо.

Теперь о номиналах (величинах). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми номиналами. Изготовление высокоточных резисторов – дело трудоемкое и используются такие резисторы лишь в специальной высокоточной аппаратуре. Вы, к примеру, не найдете в обычном магазине резистора на 1.9 кОм и в такой точности чаще всего нет необходимости – она нужна редко, а если нужна, то для этого существуют подстроечные резисторы.

Весь стандартный ряд, с которым мы будем сталкиваться, я здесь приводить не буду – он достаточно длинный и учить его специально не стоит. Лучше научимся отличать один резистор от другого. Маркировать приборы могут по-разному. Самая удобная, по моему мнению, была цифровая маркировка. Делалась она, к примеру, на самых ходовых в свое время резисторах типа МЛТ.

Одного взгляда на резистор было достаточно, чтобы узнать какое у него сопротивление

К примеру, на втором сверху резисторе читаем 2,2 и ниже К5% . Номинал этого резистора – 2.2 килоома с точностью 5%. Для мегаомных резисторов используется «М» вместо «К» а омы обозначаются буквами «R», «Е» или вообще без буквы:

470 — 470 Ом
18Е — 18 Ом

Очень часто любая из букв может стоять вместо запятой:

2к2 – 2,2 килоома
М15 – 0,15 мегаом или 150 килоом

Вот и вся хитрость. Еще один параметр – мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (сгорания). Снова вернемся к верхнему рисунку. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0.5 Вт, 0.25 Вт, 0.125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0.5. Остальные на глаз. Конечно, выпускаются (но большинство, увы, выпускалось) и другие типы (и мощности) с «человеческой» маркировкой, перечислять я их не буду, а принцип обозначения у них тот же.

ПЭВР-30, к примеру, выглядит как приличных размеров цилиндр, но маркируется так же

Но эта мода уже практически отошла, взамен цифр появились цветные полоски и специальные коды и с этим придется мириться.

Что это за резистор и каков его номинал? Для этого придется обратиться к специальным таблицам, которые я здесь и привожу.

Это детали, пожалуй, наиболее многочисленны в приемниках и усилителях. В транзисторном приемнике средней сложности, например, их может быть 20-25 штук. Используют же их для ограничения тока в цепях, для создания на отдельных участках цепей падений напряжений, для разделения пульсирующего тока на его составляющие, для регулирования громкости, тембра звука и т.д.

Для резисторов сравнительно небольших сопротивлений, рассчитанных на токи в несколько десятков миллиампер, используют тонкую проволоку из никелина, нихрома и некоторых других металлических сплавов. Это проволочные резисторы. Для резисторов больших сопротивлений, рассчитанных на сравнительно небольшие токи, используют различные сплавы металлов и углерод, которые тонкими слоями наносят на изоляционные материалы. Эти резисторы называют непроволочными резисторами.

Как проволочные, так и непроволочные резисторы могут быть постоянными, т.е. с неизменными сопротивлениями, и переменными, сопротивления которых в процессе работы можно изменять от некоторых минимальных до их максимальных значений.

Основные характеристики резистора: номинальное, т.е. указанное на его корпусе сопротивление, номинальная мощность рассеяния и наибольшее возможное отклонение действительного сопротивления от номинального. Мощностью рассеяния называют ту наибольшую мощность тока, которую резистор может длительное время выдерживать и рассеивать в виде тепла без ущерба для его работы. Если, например, через резистор сопротивлением 100 Ом течет ток 0,1 А, то он рассеивает мощность 1 Вт. Если резистор не рассчитан на такую мощность, то он может быстро сгореть. Номинальная мощность рассеяния - это, по существу, характеристика электрической прочности резистора.

Наша промышленность выпускает постоянные и переменные резисторы разных конструкций и номиналов: от нескольких ом до десятков и сотен мегаом. Из постоянных наиболее распространены металлопленочные резисторы МЛТ (Металлизованные Лакированные Теплостойкие). Конструкция резистора этого типа показана в несколько увеличенном виде на рис. 59, а. Его основой служит керамическая трубка, на поверхность которой нанесен слой специального сплава, образующего токопроводящую пленку толщиной 0,1 мкм. У высокоомных резисторов этот слой может иметь форму спирали. На концы стержня с токопроводящим покрытием напрессованы металлические колпачки, к которым приварены контактные выводы резистора. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Резисторы MЛT изготовляют на мощности рассеяния 2, 1, 0,5, 0,25 и 0,125 Вт. Их обозначают соответственно: МЛТ-2, МЛТ-1, МЛТ-0,5, МЛТ-0,25 и МЛТ-0,125. Внешний вид этих резисторов и условные изображения мощностей рассеяния на принципиальных схемах показаны на рис. 59,б и в. Со временем ты научишься распознавать мощности рассеяния резисторов по их внешнему виду.

Наибольшее возможное отклонение действительного сопротивления резистора от номинального выражают в процентах. Если, например, номинал резистора 100 кОм с допуском ±10%, это значит, что его фактическое сопротивление может быть от 90 до 110 кОм. Номиналы постоянных резисторов, выпускаемых нашей промышленностью, указаны в приложении 3, помещенном в конце книги.

Рис. 59. Постоянные резисторы

Таблица этого приложения будет твоим справочным листком. Она подскажет тебе, резисторы каких номиналов и допусков можно искать в магазинах или у товарищей.

Переменный непроволочный резистор устроен так (на рис. 60 резистор СП-1 показан без защитной крышки): к круглому пластмассовому основанию приклеена дужка из гетинакса, покрытая тонким слоем сажи, перемешанной с лаком. Этот слой, обладающий сопротивлением, и является собственно разистором. От обоих концов слоя сделаны выводы. В центр основания впрессована втулка. В ней вращается ось, а вместе с осью фигурная гетинаксовая пластинка. На внешнем конце пластинки укреплена токосъемная щетка (ползунок) из нескольких пружинящих проволочек, которая соединена со средним выводным лепестком. При вращении оси щетка перемещается по слою сажи на дужке, вследствие чего изменяется сопротивление между средним и крайними выводами. Сверху резистор закрыт металлической крышкой, предохраняющей его от повреждений.

Рис. 60. Конструкции и графическое изображение переменных резисторов на схемах

Так или примерно так устроены почти все переменные резисторы, в том числе типов СП (Сопротивление Переменное), СПО (Сопротивление Переменное Объемное) и ВК. Резисторы ТК отличаются от резисторов ВК только тем, что на их крышках смонтированы выключатели, используемые для включения источников питания. Принципиально так же устроены и малогабаритные дисковые переменные резисторы, например типа СП3-3в.

Переменные непроволочные резисторы изготовляют с номинальными сопротивлениями, начиная с 47 Ом, с допусками отклонения от номинала ± 20, 25 и 30%.

На принципиальных схемах, чтобы не загромождать их, используют систему сокращенных обозначений сопротивлений резисторов, при которой наименования единиц их сопротивлений (Ом, кОм, МОм) при числах не ставят. Такая система обозначения номинальных сопротивлений резисторов применена и в этой книге.

Сопротивления резисторов от 1 до 999 Ом обозначают на принципиальных схемах целыми числами, соответствующими омам, а сопротивления резисторов от 1 до 999 кОм - цифрами, указывающими число килоом, с буквой «к». Большие сопротивления резисторов указывают в мегаомах с буквой «М». Вот несколько примеров обозначения сопротивлений резисторов на схемах: R1 270 соответствует 270 Ом; R2 6.8к - 6800 Ом: R3 56 к - 56 кОм (56 000 Ом); R4 220 к - 220 кОм (0,22 МОм); R5 1.5 М - 1,5 МОм.

Сразу же сделаю оговорку: для подавляющего большинства радиолюбительских конструкций без ущерба для их работы допустимо отклонение от указанных на схемах номиналов резисторов в пределах до ± 10-15%. Это значит, что резистор сопротивлением, например, 5,1 кОм может быть заменен резистором ближайшего к нему номинала, т. е. резистором с номиналом 4,7 или 5.6 кОм.

Представь себе такой случай. Тебе нужен резистор определенного сопротивления. А у тебя нет такого, но есть резисторы других номиналов. Можно ли из них составить резистор нужного сопротивления? Можно, конечно, если знать элементарный расчет последовательного и параллельного соединений сопротивлений электрических цепей и резисторов. При последовательном соединении резисторов (рис. 61, а) их общее сопротивление равно сумме сопротивлений всех соединенных в эту цепочку резисторов, т. е.

Рис. 61. Последовательное (а) и параллельное (б) соединения резисторов

Так, например, если R1 = 15 кОм и R2 = 33 кОм, то их общее сопротивление R = 15 + 33 = 48 кОм (ближайшие номиналы 47 и 51 кОм).

При параллельном соединении резисторов (рис. 61,б),их общее сопротивление R уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора. Результирующее сопротивление цепи из параллельно соединенных резисторов рассчитывают по такой формуле:

Допустим, что R1 = 20 кОм, a R2 = 30 кОм. Общее сопротивление участка цепи, состоящей из этих двух резисторов, равно: R = R1 R2/(R1+R2) = 20 30/(20+30) = 12 кОм. Когда параллельно соединяют два резистора с одинаковыми номиналами, их общее сопротивление равно половине сопротивления каждого из них.

Слово «резистор » произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах (Ом), килоомах (кОм) или мегаомах (МОм). Номинальные значения сопротивлений указываются на корпусе резисторов , однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы , они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления (ТКС) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С. В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е – 27 Ом
  • 4Е7 – 4,7 Ом
  • К680 – 680 Ом
  • 1К5 – 1,5 кОм
  • 43К – 43 кОм
  • 2М4 – 2,4 МОм
  • 3М – 3 МОм

Различают два основных вида резисторов : нерегулируемые (постоянные ) и регулируемые (переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭВ-Р

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы , лакированные эмалью, теплостойкие:

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R , после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.


Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.


Сопротивление резистора ориентировочное

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка * .

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.


Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.


Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость


Регулируемый резистор с двумя дополнительными отводами


Сдвоенный переменный резистор


Двойной переменный резистор


Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.


Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления (ТКС) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления (ТКС) таких резисторов положительный.


Терморезисторы (термисторы)


Условное графическое обозначение варисторов

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное ) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах , например – СН-1-2-1-100 .

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.


Условное графическое обозначение фоторезисторов

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление ), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1 .

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное ). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1 .



Просмотров