Smd резисторы маркировка три цифры и буква. Расшифровка маркировки номиналов smd резисторов

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая - десятичный множитель, пятая - точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья - множитель, четвёртая - точность, а пятая - температурный коэффициент.

Маркировка в виде 4 колец


Маркировка в виде 5 колец


Калькулятор номиналов SMD-резисторов

Кодирование 3-я цифрами

Кодирование 4-я цифрами

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 05.10.2014

    Данный предусилитель прост и имеет хорошие параметры. Эта схема основана на TCA5550, содержащий двойной усилитель и выходы для регулировки громкости и выравнивания ВЧ, НЧ, громкости, баланса. Схема потребляет очень малый ток. Регуляторы необходимо как можно ближе расположить к микросхеме, чтобы уменьшить помехи, наводки и шум. Элементная база R1-2-3-4=100 Kohms C3-4=100nF …

  • 16.11.2014

    На рисунке показана схема простого 2-х ваттного усилителя (стерео). Схема проста в сборке и имеет низкую стоимость. Напряжение питания 12 В. Сопротивление нагрузки 8 Ом. Схема усилителя Рисунок печатной платы (стерео)

  • 20.09.2014

    Его смысл pазличен для pазных моделей винчестеpов. В отличие от высокоуpовневого фоpматиpования — создания pазделов и файловой стpуктуpы, низкоуpовневое фоpматиpование означает базовую pазметку повеpхностей дисков. Для винчестеpов pанних моделей, котоpые поставлялись с чистыми повеpхностями, такое фоpматиpование создает только инфоpмационные сектоpы и может быть выполнено контpоллеpом винчестеpа под упpавлением соответствующей пpогpаммы. …

Простой калькулятор расчёта номинала резистора по цветам.
Кликая мышкой по цветам в таблице, раcкрашиваем резистор полосками.
В итоге получаем номинал и допуск нужного нам резистора.

Первая полоса, от которой ведётся отсчёт, обычно более широкая или находится ближе к выводу резистора.

Маркировка резисторов SMD. Калькулятор онлайн

Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов - двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы.

Трёхсимвольная маркировка EIA96

Кодировка планарных элементов (SMD) в стандарте EIA-96 предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.
Первые две цифры - код номинала от 01 до 96 соответствует числу номинала от 100 до 976 согласно таблице.
Третий символ - буква - код множителя. Каждая из букв X , Y , Z , A , B , C , D , E , F , H , R , S соответствует множителю согласно таблице.
Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24 и E48 значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96 , E24 , E48 .
Сопротивление 0ом ±1%, EIA-96 в результате вычислений означает некорректный ввод.

Впишите код стандарта EIA-96 (регистр не учитывается), либо 3 цифры E24 , либо 4 цифры E48

Сопротивление: 165ом ±1%, EIA-96

Таблица EIA-96

Код Число Код Число Код Число Число Число
01 100 25 178 49 316 73 562
02 102 26 182 50 324 74 576
03 105 27 187 51 332 75 590
04 107 28 191 52 340 76 604
05 110 29 196 53 348 77 619
06 113 30 200 54 357 78 634
07 115 31 205 55 365 79 649
08 118 32 210 56 374 80 665
09 121 33 215 57 383 81 681
10 124 34 221 58 392 82 698
11 127 35 226 59 402 83 715
12 130 36 232 60 412 84 732
13 133 37 237 61 422 85 750
14 137 38 243 62 432 86 768
15 140 39 249 63 442 87 787
16 143 40 255 64 453 88 806
17 147 41 261 65 464 89 825
18 150 42 267 66 475 90 845
19 154 43 274 67 487 91 866
20 158 44 280 68 499 92 887
21 162 45 287 69 511 93 909
22 165 46 294 70 523 94 931
23 169 47 301 71 536 95 953
24 174 48 309 72 549 96 976

Трёхсимвольная маркировка E24. Допуск 5%

Маркировка из трёх цифр. Первые две цифры - число номинала.
Третья цифра - десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100, множитель 100.
3=lg1000, множитель 1000.


В данной статье используйте окно калькулятора выше, что и для EIA-96.

Четырёхсимвольная маркировка E48. Допуск 2%

Маркировка состоит из четырёх цифр. Первые три цифры - число номинала.
Четвёртая цифра - десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100; Множитель 100.
3=lg1000, множитель 1000.
И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48 ), либо вводить 4 цифры в общее верхнее окно.

Введите код SMD резистора E48

Сопротивление: 22.2kом ±2%, E48

Кому-то полезным может быть набор калькуляторов для расчёта сопротивления резисторов, соединённых параллельно.
Материал по ссылке:

Радиолюбителю при сборке электрических схем часто приходится сталкиваться с определением номинала неизвестных компонентов. Резистор используется чаще всего. С его обозначениями возникают и частые вопросы. В переводе с английского это название звучит как «Сопротивление». Они различаются как по номинальному сопротивлению, так и по допустимой мощности. Для того, чтобы мастер мог выбрать элемент с нужным номиналом на их корпусах наносят обозначение. В зависимости от типа резисторов кодировка может различаться, она бывает: буквенно-цифровая, цифровая либо цветовыми полосами. В этой статье мы расскажем подробнее, какая бывает маркировка резисторов отечественного и импортного производства, а также как расшифровать обозначения, указанные производителем.

Обозначение номинала буквами и цифрами

На сопротивлениях советского производства применяется буквенно-цифровая маркировка резисторов и обозначение цветовыми полосами (кольцами). Примером можно рассмотреть резисторы типа МЛТ, на них величина сопротивления указана цифро-буквенным способом. Резисторы до сотни Ом содержат в своей маркировке букву «R», или «Е», или «Ω». Тысячи Ом маркируются буквой «К», миллионы букву М, т.е. по буквам определяют порядок величины. При этом целые единицы от дробных отделяются этими же буквами. Давайте рассмотрим несколько примеров.

На фото сверху вниз:

  • 2К4 = 2,4 кОм или 2400 Ом;
  • 270R = 270 Ом;
  • К27 = 0,27 кОм или 270 Ом.

Маркировка третьего непонятна, возможно он развернут не той стороной. Кроме этого на резисторах от 1 Вт может присутствовать маркировка по мощности. Маркировка довольно удобна и наглядна. Она может незначительно отличаться в зависимости от типа резисторов и года их производства. Также может присутствовать дополнительная буква, которая указывает класс точности.

Импортные сопротивления, в том числе китайские, тоже могут маркироваться буквами. Яркий пример – это керамические резисторы.

В первой части обозначения указано 5W – это мощность резистора равная 5 Вт. 100R – значит, что его сопротивление в 100 Ом. Буква J говорит о допуске отклонений от номинального значения равном 5% в обе стороны. Полная таблица допусков изображена ниже. Класс точности или допустимое отклонение от номинала не всегда существенно влияет на работу схемы, хотя это зависит от их назначения.

Как определить номинал по цветовым кольцам

В последнее время выводные сопротивления чаще обозначаются с помощью цветовых полос и это относится как к отечественным, так и к зарубежным элементам. В зависимости от количества цветовых полос меняется способ их расшифровки. В общем виде он собран в ГОСТ 175-72.

Цветовая маркировка резисторов может выглядеть в виде 3, 4, 5 и 6 цветовых колец. При этом кольца могут быть смещены к одному из выводов. Тогда кольцо, которое ближе всех к проволочному выводу, считают первым и расшифровку цветного кода начинают с него. Или одно из колец может отсутствовать, обычно предпоследнее. Тогда первое это то, возле которого есть пара.

Другой вариант, когда маркировочные кольца расположены равномерно, т.е. заполняют поверхность равномерно. Тогда первое кольца определяют по цветам. Допустим, одно из крайних колец (первое) не может быть золотого цвета, тогда можно определить с какой стороны идет отчет.

Обратите внимание при таком способе маркировки из 4-х колец третье кольцо – это множитель. Как разобраться в этой таблице? Возьмем верхний резистор первое кольцо красного цвета, это 2, второе фиолетового – это 7, третье, множитель красное – это 100, а допуск у нас коричневый – это 1%. Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны.

Второй резистор имеет цветовую маркировку из 5 полос. У нас: 2, 7, 2, 100, 1%, тогда: 272*100=27200 Ом или 27,2 кОм с допуском в 1%.

У резисторов из 3 полос цветовая маркировка производится по такой логике:

  • 1 полоса – единицы;
  • 2 полоса – сотни;
  • 3 полоса – множитель.

Точность таких компонентов равна 20%.

Расшифровать цветовое обозначение вам поможет программа ElectroDroid, она доступна для Android в Play Market, в её бесплатной версии есть данная функция.

Другой способ расшифровки цветового кода от компании Philips предполагает использование 4, 5 и 6 полос. Тогда последняя полоса несет информацию о температурном коэффициенте сопротивления (насколько изменяется сопротивление при изменении температуры).

Чтобы определить номинал воспользуйтесь таблицей. Обратите внимание на последнюю колонку – это ТКС.

На корпусе цветные кольца распределяются, так как показано на этой схеме:

Более подробно узнать о том, как расшифровать маркировку резисторов, вы можете из данных видео:

Маркировка SMD резисторов

В современной электронике один из ключевых факторов при разработке устройства – его миниатюризация. Этим вызвано создание безвыводных элементов. SMD-компоненты отличаются малыми размерами, за счет их безвыводной конструкции. Пусть вас не смущает такой способ монтажа, он используется в большей части современной электроники и отличается хорошей надежностью. К тому же это упрощает конструкцию многослойной печатной платы. Дословная расшифровка с переводом обозначает «устройство для поверхностного монтажа», они и монтируются на поверхность печатной платы. Из-за миниатюрных размеров возникают трудности с обозначением их номинала и характеристик на корпусе, поэтому идут на компромисс и используют методы маркировки по цифрам, с буквами или используя кодовую систему. Давайте разберемся, как маркируются SMD резисторы.

Если на SMD-резисторе нанесено 3 цифры тогда расшифровка производится следующим образом: XYZ, где X и Y – это первые две цифры номинала, а Z количество нолей. Рассмотрим на примере.

Возможно обозначение 4-мя цифрами, тогда всё таким же образом, только первые три цифры, это сотни, десятки и единицы, а последняя – нули.

Если в маркировку введены буквы, то расшифровка подобна отечественным резисторам МЛТ.

Устройство, конструкция и технология производства чип-резисторов

SMD-резисторы широко распространены и ими уже никого не удивишь. Но, несмотря на это, немногие интересуются их устройством и конструкцией. А, зря! Тут есть чем утолить голод любопытства, ведь чип-резисторы впитали в себя все самые передовые технологии и методы производства резисторов.

Устройство SMD-резистора

В основе практически любого чип-резистора лежит так называемая плёночная технология (Film Technology), где резистивный слой представляет собой тонкую или толстую плёнку, нанесённую на изоляционную подложку, которая является основанием и заодно служит для отвода тепла.

В общих чертах SMD-резистор устроен так.

Типовой SMD-резистор состоит из керамической подложки, на которую нанесён резистивный слой. Сопротивление этого слоя зависит от его толщины, формы и материала из которого он изготовлен. Для окончательной "подгонки" до номинального сопротивления используется лазерный тримминг. О нём мы ещё поговорим.

Так как от толщины плёнки зависит как сложность изготовления изделия, так и его технические характеристики, то чип-резисторы делят на две большие группы:

    Толстоплёночные (Thick Film Chip Resistors). Толщина плёнки ~0,0027"...0,00039" (70...10 мкм). Считаются самыми дешёвыми резисторами;

    Тонкоплёночные (Thin Film Chip Resistors). Толщина плёнки 0,00025" (6,35 мкм) и вплоть до 50 нм.

Резисторы с толстой и тонкой плёнкой несколько различаются по устройству и технологии производства, хотя внешне их отличить довольно трудно.

Толстоплёночные чип-резисторы. Технология производства.

Толстоплёночные резисторы изготавливают печатным методом. В них резистивный слой, который представляет собой пасту, наносят на поверхность подложки с помощью трафаретов. Затем производят термообработку (вжигание) получившегося отпечатка при температуре 700-900 0 С в конвейерной печи, благодаря чему образуется крепкая монолитная структура.

Паста состоит из смеси нескольких компонентов:

    Функциональная основа - высокодисперсный порошок резистивного материала (нанопорошок с размером частиц 500-100 нм и менее);

    Стеклосвязка . Мелкодисперсный низкоплавкий стекольный порошок (стеклянная фритта) на основе свинцово-боро-алюмо силикатных стекол;

    Органические связующие вещества необходимые для придания пасте вязкости.

В качестве резистивного материала для пасты используются металлы или их оксиды. В основном это оксиды рутения, серебра и палладия. Примером может служить диоксид рутения RuO 2 . Также может использоваться композиция палладий-серебро. Из-за наличия серебра в составе пасты ТКС толстоплёночных резисторов довольно высок (50 ppm/ 0 С и более).

Вжигание отпечатка пасты приводит к размягчению стеклянной фритты, которая обволакивает и связывает проводящие частицы. Финальная подгонка сопротивления до номинала осуществляется с помощью лазерной обрезки.

В следующем анимационном ролике фирмы YAGEO пошагово показан процесс изготовления SMD резисторов с толстой плёнкой.

Толстоплёночные резисторы иногда называют керметными, так как основой их резистивного слоя является смесь порошков металлов и оксидов.

Тонкоплёночный чип-резистор. Устройство и конструкция.

Тонкоплёночный чип-резистор по своему устройству схож с толстоплёночным. Основное и немаловажное отличие заключается в том, что резистивный слой на керамической подложке создаётся методом вакуумного ионного напыления. Это, пожалуй, самое важное отличие от резисторов с толстой плёнкой.

Благодаря этому удаётся сформировать очень тонкий однородный слой толщиной вплоть до 50 нм.

Резисторы с тонкой плёнкой очень термостабильны, имеют очень низкий ТКС (25 ppm/K). ТКС прецизионных резисторов может достигать ±2 ppm/ 0 С (серия PLTU от Vishay).

Материалом резистивной плёнки, как правило, служит нихром (сплав никеля и хрома). Нихромовая плёнка обладает довольно низким ТКС (до 10 ppm/ 0 С) что позволяет изготавливать очень точные резисторы с допуском в ±0,01%.

Резистивный слой.

В качестве основы резистивного слоя чип-резисторов используются различные материалы:

    Никель-хром (он же нихром, Nichrome, NiCr ). Обладает низким TCR (ТКС), который составляет 10 ppm/ 0 С (-55...+125 0 С). Благодаря этому широко используется при производстве тонкоплёночных резисторов;

    Нитрид тантала (Tantalum nitride, TaN ). Используется в тонкоплёночных резисторах, устойчивых к высокой влажности (moisture-resistant);

    Нитрид дитантала (Ta 2 N ). Его TCR составляет 25 ppm/ 0 С (-55...+125 0 С);

    Диоксид рутения (Ruthenium oxide, RuO 2 ) (используется в толстоплёночных резисторах);

    Рутенит свинца Pb 2 Ru 2 O 6 и рутенит висмута (Bi 2 Ru 2 O 7) (применяется в чип-резисторах с толстой плёнкой);

    Диоксиды рутения, легированные ванадием (Ru 0,8 V 0,2 O 2 , Ru 0,9 V 0,1 O 2 , Ru 0,67 V 0,33 O 2);

    Оксид свинца (PbO);

    Висмут иридий (Bi 2 Ir 2 O 7).

    Сплав никеля (Nikel alloy). Низкоомные (0,03...10 Ом) тонкоплёночные резисторы (Vishay, серия L-NS).

Подложка SMD-резистора (Substrate).

Наиболее используемый материал подложки SMD-резисторов - это чистая керамика на основе 94...96% поликристаллического оксида алюминия Al 2 O 3 (Alumina ). Она обладает высокой твёрдостью, хорошей адгезией, огнеупорностью и является изолятором.

Немаловажно и то, что она обладает хорошей теплопроводностью, ведь от резистивного слоя необходимо отводить тепло. Такую керамику часто применяют в качестве подложек для интегральных схем и микросборок.

Высокомощные чип-резисторы могут иметь подложку из нитрида алюминия (Aluminum nitride - AlN ). Это высокочистая керамика, обладающая высокой теплопроводностью.

Такая подложка применяется в чип-резисторах серии PCAN фирмы Vishay.

Слой пентаоксида тантала создают путём распыления, после чего происходит самостоятельный рост оксидной плёнки.

Поверх слоя Ta 2 O 5 уже наносится внешний слой эпоксидной смолы, служащий для механической защиты и изоляции. Замечательным свойством таких резисторов является то, что даже при механическом повреждении защитного слоя из пентаоксида тантала, он будет "зарастать" за счёт самовосстановления.

Естественно, производители всё время ищут новые способы и методы защиты резистивной плёнки. По понятным причинам технологические детали могут не раскрываться.

Например, в технической записке "Major Advancements in the Protection of Thin Film Nichrome-Based Resistors with Specialized Passivation Methods (SPM) " фирмы Vishay рассказывается о специальных методах пассивации (SPM), благодаря которым удаётся изготовить маломощные тонкоплёночные резисторы с нихромовой плёнкой, которые устойчивы к воздействию влаги и не уступают по своей стабильности резисторам с плёнкой на основе нитрида тантала Ta 2 N.

В серии L низкоомных резисторов того же Vishay используется нихромовая плёнка (NiCr) и защитное покрытие из пентаоксида тантала (Ta 2 O 5).

Как видим, технологические приёмы могут комбинироваться. Всё зависит от стоимости производства и требуемых характеристик готового изделия.

Серостойкие резисторы (Sulfur resistant resistors)

В последнее время можно услышать о так называемых серостойких резисторах - Sulfur resistant resistors или Anti-Sulfur resistors . Например, в своих промо-материалах компания Gigabyte заявляет о том, что в их материнских платах применяются такие чип-резисторы.

Долгосрочная надёжность чип-резисторов во многом зависит от той окружающей среды, в которой они эксплуатируются.

Наличие в окружающей среде газов с содержанием серы приводит к тому, что они проникают сквозь микропоры и трещины в защитном эпоксидном или стеклянном покрытии SMD-резистора. Как правило, самым незащищённым участком является граница защитного покрытия и внешних контактов.

На фото поперечного среза толстоплёночного резистора показана область, подвергшаяся воздействию серосодержащих газов и образованию сульфида серебра.

Механизм повреждения чип-резистора такими газами следующий.

Наличие сульфида серебра в структуре чип-резистора с течением времени приводит к росту его номинального сопротивления вплоть до электрического "обрыва".

Чтобы предотвратить образование сульфида серебра производители используют разные методы. Компромиссным вариантом считается легирование серебра драгоценными металлами. В чип-резисторах, от которых требуется долговременная надёжность вместо серебра и вовсе применяется палладий или платина.

Кроме этого участок, наиболее подверженный воздействию газов дополнительно покрывают защитными покрытиями или сплавами.

Anti-Sulfur резисторы применяются в оборудовании, которое задействовано на промышленных производствах, в нефтяной промышленности, телекоммуникационных и IT-системах, автомобильной электронике.

Лазерный тримминг резисторов.

Чтобы привести сопротивление резистивного слоя к заданному номиналу используется лазерная подгонка или на зарубежный манер, тримминг (trimming - "обрезка"). Суть её заключается в удалении части топологического рисунка из плёнки за счёт лазерного излучения.

На фото показан пример обрезки (L-Cut), сделанный с помощью лазерного тримминга (слева резистор на 33 Ома (330), справа на 1 МОм (105)).

Чтобы подобрать требуемую величину сопротивления резистора на поверхности резистивного слоя делают лазерный "надрез". В зависимости от требуемых характеристик форма надреза может быть весьма оригинальной. Вот основные из них:

    Поперечный i-рез ("Plunge Cut"). Самый "быстрый" и наименее точный подгоночный рез.

    L-рез ("L Cut"). Из его достоинств можно отметить малое среднеквадратичное отклонение R s и высокую точность. Более медленный тип реза, по сравнению с поперечным i-резом.

    На фото показан L-рез на поверхности SMD-резистора типоразмера 2512 на 100 кОм (рядом для масштаба положена миллиметровая линейка). Скорее всего, это толстоплёночный резистор. Защитный слой мне удалось снять острым лезвием перочинного ножа.

    Кроме реза типа L, может применяться так называемый Opposing "L", когда делается два L-реза по обоим сторонам плёнки.

    "Серпантин" или "Змейка" ("Serpentine"). Можно встретить название "Меандр" ("Meandering"). Это "медленный" рез, но за счёт него обеспечивается самый большой прирост сопротивления.

    Такой рез используется при изготовлении чип-резисторов мегаомных и гигаомных номиналов.

    "Двойной поперечный рез" ("Double Plunge Cut"). Высокая точность и малое среднеквадратичное отклонение R s .

    "Vernier". Очень похожий на предыдущий рез. Судя по всему, назван так из-за сходства со штангенциркулем (vernier caliper).

    "U-рез" ("U-Cut"). Применяется для изготовления высоковольтных резисторов с высокой долговременной стабильностью.

    "П-рез" ("Plunge Cut: Top Hat Resistor"). Продольный "быстрый" рез, используемый для нормировки Top-Hat резисторов.

    "Скан-рез" или Scrub. Также можно встретить название "Shave-рез". Применяется для изготовления высоковольтных резисторов. Самый медленный, но наиболее точный и стабильный рез. Боковая часть плёнки удаляется лазером.

    Также применяется симметричный скраб ("Symetrical Scrub"), когда часть резистивной плёнки удаляется с обеих сторон.

    "Multiplunge". Такой тип реза обеспечивает практически линейное изменение сопротивления. Используя "i-рез" создаются последовательные секции многосекционного резистора (резисторной SMD-сборки).

    Для подгонки многосекционного резистора "лестничного" типа может использоваться перерезка шунтирующих перемычек.

    На следующей картинке показан резистор "лестничного типа" (Ladder resistor), а также пример использования данной топологии в структуре резистивной плёнки.

Если хорошенько присмотреться, то на поверхности толстоплёночных чип-резисторов иногда можно разглядеть разрезы, сделанные лазером. Они слегка проступают под внешним защитным покрытием.

Как видим, несмотря на кажущуюся простоту, для изготовления SMD-резисторов требуется высокоточное оборудование и строгое соблюдение технологии производства.

Прочие резисторы для монтажа на поверхность

Естественно, кроме рядовых SMD-резисторов существуют и другие. Например, чип-резисторы серии UBR (Ultra-Broadband resistors) способны работать в частотном диапазоне вплоть до 20 Гигагерц (20 GHz).

Номинальная мощность их невелика, всего 125 mW и выпускаются они в корпусе типоразмера 0402. Конструкция их также отличается от той, что привычна для рядовых чип-резисторов и называется "Glass wafer sandwich", что можно перевести, как "сэндвич из стеклянных пластин". В качестве подложки и верхней оболочки используется стекло.

Применяются такие резисторы в высокочастотной аппаратуре (спутниковой, оптоволоконной).

Также существуют так называемые Power Metal Strip ® резисторы (Vishay). Их резистивным слоем является монолитный резистивный элемент из сплава никель-хром или марганец-медь.

Подложка в таких резисторах отсутствует, так как резистивный элемент является самонесущей конструкцией. Толщина резистивного элемента составляет 0,0089" (226,06 мкм).

Наличие массивного резистивного элемента позволяет быстро поглощать тепловую энергию. Обычным чип-резисторам на основе плёнок требуется время на отвод тепла в подложку, а затем и в печатную плату.

К резисторам Power Metal Strip ® относятся такие серии, как WSL, WSK, WSLP, WSR. Как правило, это очень низкоомные резисторы (вплоть до миллиОм).

Используются такие резисторы в устройствах, где имеют место высокоэнергетические, кратковременные импульсные переходные процессы, которые сопровождаются быстрым и обильным выделением тепла.

К SMD-резисторам также относятся и MELF-резисторы , так как они также предназначены для монтажа на поверхность. Их подложка выполнена в виде цилиндрического стрежня из керамики, а резистивный слой имеет спиралевидную лазерную нарезку. Резистивным материалом может быть, как плёнка из углерода, так и металла.

За счёт цилиндрической формы подложки эффективная площадь охлаждения таких резисторов больше, чем SMD-резисторов с аналогичной площадью монтажа. Благодаря этому они более устойчивы к импульсной нагрузке, чем стандартные SMD-резисторы, а также способны выдерживать более высокое рабочее напряжение.

SMT-технология не обошла стороной и фольговые резисторы (Bulk Metal ® Foil, BMF ), которые также адаптировали под этот вид монтажа. Как известно, фольговые резисторы обладают самой высокой температурной стабильностью (имеют самый низкий ТКС).

Например, чип-резисторы серии VSMP (Vishay) имеют ТКС 0,2 ppm/ 0 С (-55 0 С...+125 0 С, относительно +25 0 С). А для температурного диапазона 0 0 С...+60 0 С ТКС составляет вообще 0,05 ppm/ 0 С!

Не составляет особого труда встретить на печатных платах и всевозможные SMD-перемычки (zero ohm jumpers , SMD Jumpers ). Примером может служит серия тонкоплёночных SMD-перемычек PZHT (Vishay).

В зависимости от типоразмера, который начинается с 02016, эти SMD-перемычки способны выдержать ток от 0,28А (PZHT02016 ) до 2А (PZHT2512 ) при рабочей температуре 215 0 С. Проводящим слоем в них является плёнка золота (Au) или сплава олова и серебра (SnAg).

В приведённом материале были затронуты вопросы, в основном, касающиеся конструкции, материалов и технологии изготовления SMD-резисторов. Но, несмотря на это, многие вопросы, например, относящиеся к типоразмеру, маркировке и мощности чип-резисторов затронуты не были. Рассказ и без того получился более чем содержательным для формата интернет-статьи. Если есть что добавить, пишите в комментариях!

Первым делом давайте разберемся с советскими резисторами.

Хоть ты что делай, а от советской электроники не убежишь. Поэтому, немного теории вам не повредит.

Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0.5 Ватт, 0.25 Ватт, 0.125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.

МЛТ – это разновидность самых распространенных советских резисторов, от сокращенных названий М еталлопленочный, Л акированный, Т еплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.

Единицы измерения в МЛТэшках – Омы – обозначают как R или E. Килоомы – буковкой “К”, Мегаомы буковкой “М”. Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1.0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 – 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4.3 Килоом, 1М2 – 1.2 Мегаома.

Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами ” один ка ноль”. Значит, его сопротивление должно быть 1,0 Килоом.


Давайте убедимся, так ли это на самом деле?


Ну да, все сходится с небольшой погрешностью.

Цветовая маркировка резисторов

Чтобы определить значение сопротивления резистора с цветовой маркировкой, сначала надо повернуть его таким образом, чтобы его серебряная или золотая полосы находились справа, а группа других полосок - слева. Если же вы не можете найти серебряную или золотую полоску, то надо повернуть резистор таким образом, чтобы группа полосок находилась с левой стороны.

Цвет полоски – закодированная цифра:
Черный – 0
Коричневый – 1
Красный – 2
Оранжевый – 3
Желтый – 4
Зеленый – 5
Синий – 6
Фиолетовый – 7
Серый – 8
Белый – 9

Третья полоска имеет другое значение: она указывает количество нулей, которое следует добавить к полученному предыдущему цифровому значению.

Цвет полоски – Количество нулей
Черный – Нет нулей -
Коричневый – 1 – 0
Красный – 2 – 00
Оранжевый – 3 – 000
Желтый – 4 – 0000
Зеленый – 5 – 00000
Синий – 6 – 000000
Фиолетовый – 7 – 0000000
Серый – 8 – 00000000
Белый – 9 – 000000000

Следует помнить, что цветовая маркировка является вполне согласующейся и логичной, например, зеленый цвет означает либо величину 5 (для первых двух полосок), либо 5 нулей (для третьей полоски).

Сама последовательность цветов совпадает с последовательностью цветов в радуге (с красного по фиолетовый цвета) (!!!)

Если на резистор нанесена группа из четырех полосок вместо трех, то первые три полоски являются цифрами, а четвертая полоска означает количество нулей. Третья цифровая полоска дает возможность указать сопротивление резистора с более высокой точностью.

Давайте же рассмотрим неизвестный нам резистор.


В основном на резисторе бывают три, четыре, пять и даже шесть полосок. Первая полоска находится ближе всего к выводу резистора и ее делают шире, чем все другие полоски, но иногда это правило не соблюдается. Для того, чтобы не перелопачивать справочники по цветовой маркировке резисторов, в интернете можно скачать множество различных программ для определения номинала резистора.

Очень неплохой онлайн калькулятор вы также можете найти .

Калькулятор маркировки резисторов

Мне очень понравилась программа . С этой программой разберется даже дошкольник. Давайте же с помощью нее определим номинал нашего резистора. Вбиваем полоски интересующего нас резистора и программа выдаст нам его номинал.


И вот снизу слева в рамке мы видим значение номинала резистора: 1кОм -+5%. Удобно не правда ли?

Теперь давайте замеряем сопротивление с помощью мультиметра: 971 Ом. 5% от 1000 Ом – это 50 Ом. Значит номинал резистор должен быть в диапазоне от 950 Ом и до 1050 Ом, иначе его можно признать не годным. Как мы видим, значение 971 Ом прекрасно вписывается в диапазон от 950 до 1050 Ом. Следовательно, мы правильно определили номинал резистора, и его спокойно можно использовать в наших целях.


Давайте потренируемся и определим номинал еще одного резистора.




Все ОК;-).

Маркировка SMD резисторов

Цифровая маркировка резисторов

Рассмотрим маркировку резисторов. Резисторы типоразмера 0402 (значения типоразмеров ) не маркируются. Остальные же маркируются тремя или четырьмя цифрами, так как они чуток больше и на них все-таки можно нанести цифры или какую-нибудь маркировку. Резисторы с допуском до 10% маркируются тремя цифрами, где две первые цифры обозначают номинал этого резистора, а последняя третья цифра – это 10 в степени этой последней цифры. Давайте рассмотрим вот такой резистор:


Сопротивление резистора, показанного на фото равняется 22х10 2 =2200 Ом или 2,2 К.

Проверяем так ли это? Берем между щупами этот крохотный SMD компонент и замеряем сопротивление.


Сопротивление 2,18 кОм. Небольшая погрешность не в счет.

SMD резистор с допуском 1% и типоразмера от 0805 и больше маркируются четырьмя цифрами. Например, резистор с номером 4422. Считается это как 442х10 2 =44200 Ом=44.2 кОм.

Существуют также SMD резисторы почти с нулевым сопротивлением (очень-очень малое сопротивление все-таки имеется) или просто-напросто так называемые перемычки. Они смотрятся более эстетичнее, чем какие-либо провода.

Кодовая маркировка резисторов - это самая распространенная практика в наши дни. Иногда попадаются резисторы, у которых маркировка выглядит очень странно. Не пугайтесь, это простая кодовая маркировка, которую используют некоторые производители радиоэлектронных компонентов. Это может выглядеть как-то так:

или даже так:

Как определить значение сопротивления таких резисторов? Для этого существует таблица, с помощью которой вы легко сможете определить номинал любого резистора с кодовой маркировкой. Итак, в первых двух цифрах засекречен номинал сопротивления резистора, а буква - это множитель.

Вот собственно и таблица:

Буквы: S=10 -2 ; R=10 -1 ; А=1; В= 10; С=10 2 ; D=10 3 ; Е=10 4 ; F=10 5

Значит, сопротивление этого резистора

у нас будет 140х10 4 =1,4 МегаОма.

А сопротивление этого резистора

у нас будет 102х10 2 =10,2 КилоОма.

В программе Резистор 2.2 можно также без проблем найти кодовую и цифровую маркировку резисторов.

Выбираем маркировку фирмы BOURNS


Ставим маркер на «3 символа». И набираем нашу кодовую маркировку. Например, тот же самый резистор с маркировкой 15Е. Внизу, слева в рамке, мы видим значение сопротивления этого резистора: 1,4 Мегаом.



Просмотров