Сила, действующая на проводник с током в магнитном поле. Действие магнитного поля на ток

Знания о том, что такое сила Ампера, как она относится и чем может быть полезна для людей, необходимы для тех, кто работает с током. Как для собственной безопасности, так и для работы с различной радиоэлектроникой (при конструировании рельсетронов, что довольно популярно). Но хватит ходить вокруг, приступим к выяснению того, что такое сила Ампера, особенности этой силы и где она используется. Также можно будет прочитать потенциал использования в будущем и пользу от использования сейчас.

Закон Ампера

Сила Ампера является главной составляющей закона Ампера - закона о взаимодействии электрических токов. В нём говорится, что в параллельных проводниках, в которых электрические токи текут в одном направлении, возникает сила притягивания. А в тех проводниках, в которых электрические токи текут в противоположных направлениях, возникает сила отталкивания.

Также законом Ампера называют закон, который определяет силу действия магнитного поля не небольшую часть проводника, по которой протекает ток. В данном случае она определяется как результат умножения плотности тока, который идёт по проводнику, на индукцию магнитного поля, в котором проводник находится.

Из самого закона Ампера сделаны выводы, что сила Ампера равняется нулю, если величина угла, расположенного между током и линией магнитной индукции, тоже будет равняться нулю. Другими словами, проводник для достижения нулевого значения должен быть расположен вдоль линии магнитной индукции.

А что же такое сила Ампера?

Это сила, с которой магнитное поле влияет на часть проводника, по которому течёт ток. Сам проводник находится в магнитном поле. Сила Ампера прямо зависит от силы тока в проводнике и векторного произведения длины части проводника, множимого на магнитную индукцию.

В формульном виде всё будет выглядеть так: са=ст*дчп*ми . Здесь:

  • са - сила Ампера,
  • ст - сила тока,
  • дчп - длина части проводника,
  • ми - магнитная индукция.

История открытия

Впервые его сформулировал Андре Ампер, который применил закон к постоянному току. Открыт он был в 1820 году. Этот закон в будущем имел далеко идущие последствия, ведь без него представить работу целого ряда электрических приборов просто невозможно.

Правило левой руки

Это правило помогает запомнить направление силы Ампера. Само правило звучит так: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый по углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника. Могут возникнуть некоторые затруднения при использовании этого правила, но только если угол между током и индукцией поля слишком маленький. Для простоты применения этого правила ладонь часто располагают так, чтобы в неё входил не вектор, а модуль магнитной индукции (как изображено на картинке).

Сила Ампера (при использовании двух параллельных проводников)

Представьте два бесконечных проводника, которые расположены на определённом расстоянии. По ним протекают токи. Если токи текут в одном направлении, то проводники притягиваются. В противоположном случае они будут отталкиваться один от одного. Поля, которые создают параллельные проводники, направлены встречно друг другу. И чтобы понять, почему они реагируют именно так, вам достаточно вспомнить о том, что одноименные полюса магнитов или одноименные заряды всегда отталкиваются. Для определения стороны направления поля, созданного проводником, следует использовать правило правого винта.

Применение знаний о силе Ампера

Встретиться с областью применения знания о силе Ампера можно практически на каждом шагу цивилизации. Применение силы Ампера настолько обширно, что среднестатистическому гражданину даже сложно представить себе, что можно делать, зная закон Ампера и особенности применения силы. Так, под действием силы Ампера вращается ротор, на обмотку которого оказывает влияние магнитное поле статора, и ротор приходит в движение. Любое транспортное средство, которое использует электротягу для вращения валов (которые соединяют колеса транспорта), использует силу Ампера (это можно увидеть на трамваях, электровозах, электрических машинах и многих других интересных видах транспорта). Также именно магнитное поле влияет на механизмы, которые являются электрическими приборами, что должны открывать/закрывать что-то (двери лифта, открывающиеся ворота, электрические двери и много других). Другими словами, все устройства, что не могут работать без электричества и имеют движимые узлы, работают благодаря знанию о законе Ампера. Для примера:

  1. Любые узлы в электротехнике. Самый популярный - элементарный электродвигатель.
  2. Различные виды электротехники, которая формирует различные звуковые колебания с использованием постоянного магнита. Механизм действия таков, что на магнит действует электромагнитное поле, что создает расположенный рядом проводник с током, и изменение напряжения приводит к смене звуковой частоты.
  3. На силе Ампера построена работа электромеханических машин, в которых движение обмотки ротора происходит относительно обмотки статора.
  4. С помощью силы Ампера происходит электродинамический процесс сжатия плазмы, что нашло применение в токамаках и потенциально открывает огромные пути развития термоядерной энергии.
  5. Также с помощью электродинамического сжатия применяется электродинамический метод прессования.

Потенциал

Несмотря на уже сейчас существующее практическое применение, потенциал использования силы Ампера настолько огромен, что с трудом поддаётся описанию. Она может использоваться в сложных механизмах, которые призваны облегчить существование человека, автоматизировать его деятельность, а также усовершенствовать природные жизненные процессы.

Эксперимент

Для того чтобы иметь возможность своими глазами увидеть действие силы Ампера, можно провести дома небольшой эксперимент. Для начала необходимо взять магнит-подкову, в котором между полюсами поместить проводник. Всё желательно воспроизвести так, как на картинке. Если замкнуть ключ, то можно увидеть, что проводник начнёт двигаться, смещаясь от начальной точки равновесия. Можно поэкспериментировать с направлениями пропускания тока и увидеть, что зависимо от направления движения меняется направление отклонения проводника. Из самого эксперимента можно вынести несколько наблюдений, которые подтверждают вышесказанное:

  • Магнитное поле действует исключительно на проводник с током.
  • На проводник с током в магнитном поле действует сила, которая является следствием их взаимодействия. Именно под воздействием этой силы проводник движется в пространстве в границах магнитного поля.
  • Характер взаимодействия прямо зависит от напряжения электрического тока и силовых линий магнитного поля.
  • Поле не действует на проводник с током, если ток в проводнике течёт параллельно направлению линий поля.

Безопасность при работе с током

При работе с электрическим током необходимо придерживаться нескольких простых правил техники безопасности, которые позволят вам избежать негативных последствий:

  • Работать с источниками питания не больше 12 Вольт.
  • Не работать на воспламеняемых материалах.
  • Не работать с мокрыми руками.
  • Не браться за части прибора, которые находятся под напряжением.

В электрическом поле на поверхность проводника действуют со стороны поля определенные силы. Их легко вычислить следующим образом.

Плотность потока импульса в электрическом поле в пустоте определяется известным максвелловским тензором напряжений:

Сила же, действующая на элемент поверхности тела, есть не что иное, как поток «втекающего» в него извне импульса, т. е. равна (знак изменен в связи с тем, что вектор нормали направлен наружу от тела, а не внутрь него). Величина есть, следовательно, сила отнесенная к 1 см2 площади поверхности. Учитывая, что у поверхности металла напряженность Е имеет только нормальную составляющую, получим

или, вводя поверхностную плотность зарядов ,

Таким образом, на поверхности проводника действуют силы «отрицательного давления», направленного по внешней нормали к поверхности и по величине равного плотности энергии поля.

Полная сила F, действующая на проводник, получается интегрированием силы (5,1) по всей его поверхности:

Обычно, однако, более удобно вычислять эту величину, согласно общим правилам механики, путем дифференцирования энергии . Именно, сила, действующая на проводник вдоль координатной оси q, есть , где под производной надо понимать изменение энергии при параллельном смещении данного тела как целого вдоль оси q. При этом энергия должна быть выражена через заряды проводников (источников поля), и дифференцирование производится при постоянных зарядах. Отмечая это обстоятельство индексом , напишем

Аналогично, проекция на какую-либо ось полного действующего на проводник момента сил равна

где - угол поворота тела как целого вокруг данной оси.

Если же энергия выражена как функция потенциалов, а не зарядов проводников, то вопрос о вычислении с ее помощью сил требует особого рассмотрения. Дело в том, что для поддержания у проводника (при его перемещении) постоянного потенциала необходимо прибегнуть к помощи посторонних тел. Можно, например, поддерживать постоянный потенциал проводника путем соединения его с другим проводником, обладающим очень большой емкостью («резервуар зарядов»). Заряжаясь зарядом проводник отнимает его из резервуара, потенциал которого при этом не меняется ввиду его большой емкости. Меняется, однако, энергия резервуара, уменьшаясь на При заряжении всей системы проводников зарядами энергия соединенных с ними резервуаров изменится в сумме на . В величину же входит только энергия рассматриваемых проводников, но не энергия резервуаров. В этом смысле можно сказать, что относится к энергетически незамкнутой системе. Таким образом, для системы проводников, потенциалы которых поддерживаются постоянными, роль механической энергии играет не , а величина

Подставив сюда (2,2), находим, что отличаются только знаком:

Сила получается дифференцированием по q при постоянных потенциалах, т. е.

Таким образом, действующие на проводник силы можно получить дифференцированием как при постоянных зарядах, так и при постоянных потенциалах, с той лишь разницей, что производную надо брать в первом случае со знаком минус, а во втором - со знаком плюс.

Этот же результат можно было бы получить и более формальным путем, исходя из дифференциального тождества

в котором рассматривается как функция зарядов проводников и координаты этим тождеством выражается тот факт, что производные равны Переходя к переменным вместо получим отсюда

откуда и следует (5,7).

В конце § 2 была рассмотрена энергия проводника во внешнем однородном электрическом поле. Полная сила, действующая на незаряженный проводник в однородном поле, равна, разумеется, нулю. Но выражением энергии (2,14) можно воспользоваться для определения силы, действующей на проводник в квазиоднородном поле т. е. в поле, мало меняющемся на протяжении размеров тела. В таком поле в первом приближении все еще можно вычислить энергию по формуле (2,14), а сила F определится как градиент этой энергии:

Что же касается полного момента сил К, то он, вообще говоря, отличен от нуля уже и в однородном внешнем поле. По общим правилам механики К можно определить, рассматривая бесконечно малый виртуальный поворот тела; изменение энергии при таком повороте связано с К посредством , где - угол поворота. Поворот тела на угол в однородном поле эквивалентен повороту поля относительно тела на угол . Изменение поля при этом есть , а изменение энергии

Но , как это видно из сравнения формул (2,13) и (2,14). Поэтому откуда

в соответствии с обычным выражением, известным из теории поля в пустоте.

Если полные сила и момент, действующие на проводник, равны нулю, то проводник в поле остается неподвижным и на первый план выдвигаются эффекты, связанные с деформированием тела (так называемая электрострикция). Силы (5,1), действующие на поверхность проводника, приводят к изменению его формы и объема. При этом, ввиду растягивающего характера сил, объем тела увеличивается. Полное определение деформации требует решения уравнений теории упругости с заданным распределением сил (5,1) на поверхности тела. Если, однако, интересоваться только изменением объема, то задача может быть решена весьма просто.

Для этого надо учесть, что если деформация слаба (как это фактически имеет место при электрострикции), то влияние изменения формы на изменение объема является эффектом второго порядка малости. Поэтому в первом приближении изменение объема можно рассматривать как результат деформирования без изменения формы, т. е. как всестороннее растяжение под влиянием некоторого эффективного избыточного давления , равномерно распределенного по поверхности тела и заменяющего собой точное распределение согласно (5,1). Относительное изменение объема получается умножением АР на коэффициент всестороннего растяжения вещества. Давление

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

  • Сила Ампера - это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F :

Пропорционален длине проводника l , находящегося в магнитном поле; пропорционален модулю индукции магнитного поля B ; пропорционален силу тока в проводнике I ; зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля \(~\vec B\).

модуль силы Ампера равен произведению модуля индукции магнитного поля B , в котором находится проводник с током, длины этого проводника l , силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля

\(~F_A = I \cdot B \cdot l \cdot \sin \alpha\) ,

  • Этой формулой можно пользоваться: если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой; если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки : если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направление тока (I ), тогда отогнутый на 90° большой палец укажет направление силы Ампера (\(~\vec F_A\)) (рис. 1, а, б).

Рис. 1

Поскольку величина B ∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной проводнику с током, \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой - перпендикулярная составляющая к поверхности проводника должна входить в открытую ладонь левой руки.

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Силы, действующие на проводник с током в магнитном поле, широко используются в технике. Электродвигатели и генераторы, устройства для записи звука в магнитофонах, телефоны и микрофоны - во всех этих и во множестве других приборов и устройств используется взаимодействие токов, токов и магнитов и т.д.

Сила Лоренца

Выражение для силы, с которой магнитное поле действует на движущийся заряд, впервые получил голландский физик Хендрик Антон Лоренц (1895 г.). В его честь эта сила называется силой Лоренца.

  • Сила Лоренца - это сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу.

Модуль силы Лоренца равен произведению модуля индукции магнитного поля \(~\vec B\), в котором находится заряженная частица, модуля заряда q этой частицы, ее скорости υ и синуса угла между направлениями скорости и вектора индукции магнитного поля

\(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\).

Для определения направления силы Лоренца применяют правило левой руки : если левую руку расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направления скорости движения положительно заряженной частицы (\(~\vec \upsilon\)), тогда отогнутый на 90° большой палец укажет направление силы Лоренца (\(~\vec F_L\)) (рис. 3, а). Для отрицательной частицы четыре вытянутых пальца направляют против скорости движения частицы (рис. 3, б).

Рис. 3

Поскольку величина B ∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной скорости заряженной частицы, \(~\vec B_{\perp}\), то ориентацию ладони можно определять именно этой компонентой - перпендикулярная составляющая к скорости заряженной частицы должна входить в открытую ладонь левой руки.

Так как сила Лоренца перпендикулярна вектору скорости частицы, то она не может изменить значение скорости, а изменяет только ее направление и, следовательно, не совершает работы.

Движение заряженной частицы в магнитном поле

1. Если скорость υ заряженной частицы массой m направлена вдоль вектора индукции магнитного поля, то частица будет двигаться по прямой с постоянной скоростью (сила Лоренца F L = 0, т.к. α = 0°) (рис. 4, а).

Рис. 4

2. Если скорость υ заряженной частицы массой m перпендикулярна вектору индукции магнитного поля, то частица будет двигаться по окружности радиуса R , плоскость которой перпендикулярна линиям индукции (рис. 4, б). Тогда 2-ой закон Ньютона можно записать в следующем виде:

\(~m \cdot a_c = F_L\) ,

где \(~a_c = \dfrac{\upsilon^2}{R}\) , \(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\) , α = 90°, т.к. скорость частицы перпендикулярна вектору магнитной индукции.

\(~\dfrac{m \cdot \upsilon^2}{R} = q \cdot B \cdot \upsilon\) .

3. Если скорость υ заряженной частицы массой m направлена под углом α (0 < α < 90°) к вектору индукции магнитного поля, то частица будет двигаться по спирали радиуса R и шагом h (рис. 4, в).

Действие силы Лоренца широко используют в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и мониторов;
  2. ускорителях заряженных частиц;
  3. экспериментальных установках для осуществления управляемой термоядерной;
  4. МГД-генераторах

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 321-322, 324-327.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. - 2-е изд., исправленное. - Минск: Нар. асвета, 2008. - С. 157-164.

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Данное видео рассказывает о том, как постоянное магнитное поле, созданное подковообразным магнитом, воздействует на проводник с током. Роль проводника с током в данном случае выполняет алюминиевый цилиндр. Этот цилиндр лежит на медных шинах, по которым к нему подводится электрический ток. Сила, воздействующая на проводник с током, находящемся в магнитном поле, называется силой Ампера. Направление действия силы Ампера определяется с помощью правила левой руки.

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера .

Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником .

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Направление силы Ампера определяется по правилу левой руки.

Правило левой руки : если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90 °большой палец, укажет направление силы Ампера.

МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле . В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой

(1)

где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Рис.1

Модуль вектора магнитной индукции (1) находится по формуле

(2)

где α — угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv

Действие МП на движущийся заряд.

Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В — индукция магнитного поля, в котором заряд движется.

Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.


Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:

где к - коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока - либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:

Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае

Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm - изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt.

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

Электромагнитные колебания. Колебательной контур.

Электромагнитные колебания — это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.

Колебательный контур — это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:

Электромагнитные волны и их свойства.

В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.

Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.

Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц. По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение. В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.

Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;

Объемная плотность энергии электромагнитного поля. Практическое исполь-зование электромагнитных явлений весьма широкое. Это - системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назна-чения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.

Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.

Геометрическая оптика. Законы ГО.

Геометрическая (лучевая) оптика использует идеализированное представление о световом луче - бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ - длина световой волны, - характерный размер

предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:

h/D << 1 т. е. геометрическая оптика, строго говоря, применима лишь к бесконечно коротким волнам.

В основе геометрической оптики лежит так же принцип независимости световых лучей: лучи при перемещении не возмущают друг друга. Поэтому перемещения лучей не мешают каждому из них распространяться независимо друг от друга.

Для многих практических задач оптики можно не учитывать волновые свойства света и считать распространение света прямолинейным. При этом картина сводится к рассмотрению геометрии хода световых лучей.

Основные законы геометрической оптики.

Перечислим основные законы оптики, следующие из опытных данных:

1) Прямолинейное распространение.

2) Закон независимости световых лучей, то есть два луча, пересекаясь, никак не мешают друг другу. Этот закон лучше согласуется с волновой теорией, так как частицы в принципе могли бы сталкиваться друг с другом.

3) Закон отражения. луч падающий, луч отраженный и перпендикуляр к поверхности раздела, восстановленный в точке падения луча, лежат в одной плоскости, называемой плоскостью падения; угол падения равен углу

Отражения.

4) Закон преломления света.

Закон преломления : луч падающий, луч преломленный и перпендикуляр к поверхности раздела, восстановленный из точки падения луча, лежат в одной плоскости - плоскости падения. Отношение синуса угла падения к синусу угла отражения равно отношению скоростей света в обеих средах.

Sin i1/ sin i2 = n2/n1 = n21

где - относительный показатель преломления второй среды относительно первой среды. n21

Если вещество 1 - пустота, вакуум, то n12 → n2 - абсолютный показатель преломления вещества 2. Можно легко показать, что n12 = n2 /n1 , в этом равенстве слева относительный показатель преломления двух веществ (например, 1 - воздух, 2 - стекло), а справа - отношение их абсолютных показателей преломления.

5) Закон обратимости света (его можно вывести из закона 4). Если направить свет в обратном направлении, он пройдёт по тому же пути.

Из закона 4) следует, что если n2 > n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.

Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin



Просмотров