Потенциальную опасность можно оценить с помощью риска. Индивидуальный риск Как рассчитать показатель приемлемого риска

В тех случаях, когда потоки масс, энергий от источника негативного воздействия в среду обитания могут нарастать стремительно и достигать чрезмерно высоких значений (например, при авариях или других чрезвычайных ситуациях), в качестве критерия безопасности принимают допустимую вероятность (риск ) возникновения подобного события.

Риск - вероятность реализации негативного воздействия в зоне пребывания человека.

Риск - это количественная величина возможности определенных событий приносить вред человеку, мера опасности, характеризующая вероятность или частоту проявления опасности и последствий ее реализации за определенный промежуток времени.

Риск как количественная характеристика вероятного действия опасностей соотносится с определенным количеством работников (жителей) за конкретный период времени. При этом подразумевается, что возможности опасности формируются конкретной деятельностью человека, т.е. число смертных случаев, число случаев заболевания, число случаев временной и стойкой нетрудоспособности (инвалидности), вызываются действием на человека конкретной опасности (электрический ток, вредное вещество, двигающийся предмет, криминальные элементы общества и др.).

Понятие риска применяют как к стохастическим, так и к детерминированным (нестохастическим) эффектам.

К стохастическим эффектам относят те, вероятность возникновения которых существует при любом количестве случаев влияния опасного или вредного фактора, и увеличивается при увеличении числа случаев, тогда как относительная тяжесть последствий от количества не зависит. Риск в этом случае определяется по формуле:

$$ r = { \frac {n} {N}}, $$

где r — риск (обобщенная оценка);

n — количество случаев вследствие события;

N — количество людей, на которых воздействовало событие.

К детерминированным эффектам относятся те, что всегда наступают при определенных событиях или превышении определенного уровня фактора, а тяжесть их последствий зависит от величины фактора.

Понятие риска широко используется при установлении гранично допустимых величин, необходимости внедрения и использования коллективных и индивидуальных средств защиты от влияния вредных или опасных факторов, требований безопасности к машинам, механизмам, оборудованию, ограничений, связанных с состоянием здоровья людей, состоянием окружающей среды.

Риск может быть:

  • сознательным и несознательным;
  • добровольным и принудительным;
  • значительным и незначительным;
  • оправданным и неоправданным;
  • контролируемым и бесконтрольным.

В производственных условиях, где рабочая зона и источник опасности — элементы производственной среды, различают индивидуальный и коллективный (социальный) риски.

Индивидуальный риск — это сочетание вероятности и последствий наступления неблагоприятного события для конкретного индивидуума, характеризует реализацию опасности определенного вида деятельности для личности. Выражением индивидуального производственного риска являются показатели производственного травматизма и профессиональной заболеваемости.

Коллективный риск - это вероятность травмирования или гибели двух и более человек от воздействия опасных и вредных производственных факторов. Применяется при оценке возможного воздействия негативных факторов для коллектива людей, человеческого общества в целом

Использование риска в качестве единого индекса вреда при оценке действия различных негативных факторов на человека начинает в настоящее время применяться для обоснованного сравнения безопасности различных отраслей экономики и типов работ, аргументации социальных преимуществ и льгот для определенной категории лиц.

Современная концепция безопасности жизнедеятельности базируется на достижении приемлемого (допустимого) риска .

Приемлемый риск — это минимальная величина риска, которая достижима по техническим, экономическим и технологическим возможностям, т.е. такой низкий уровень смертности, травматизма или инвалидности людей, который не влияет на экономические показатели предприятия, отрасли экономики или государства.

Необходимость формирования концепции приемлемого (допустимого) риска обусловлена невозможностью создания абсолютно безопасной деятельности (технологического процесса). Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты и представляет некоторый компромисс между уровнем безопасности и возможностями ее достижения.

Для того чтобы определить серьезность опасности, степень допустимости риска в той или иной ситуации, существуют различные критерии: категории серьезности опасности; уровни вероятности опасности; матрица оценки риска.

По степени допустимости риск развития опасных ситуаций подразделяется на:

  • отвергнутый риск , который имеет настолько малый уровень вероятности воздействия опасности, что он находится в пределах допустимых отклонений естественного (фонового) уровня;
  • приемлемый , т.е. такой уровень риска, который общество может принять (разрешить), учитывая технико-экономические и социальные возможности на данном этапе своего развития;
  • предельно допустимый риск — это максимальный риск вероятности воздействия опасности, который не должен превышаться несмотря на ожидаемый результат;
  • чрезмерный риск , характеризующийся исключительно высоким уровнем возможной реализации опасности, который в подавляющем большинстве случаев приводит к негативным последствиям.

На практике достичь нулевого уровня риска, т.е. абсолютной безопасности невозможно. Отвергнутый риск в настоящее время также невозможно обеспечить, учитывая отсутствие технических и экономических предпосылок для этого.

В настоящее время сложились представления о величинах приемлемого (допустимого) и неприемлемого рисков . Неприемлемый риск имеет вероятность реализации негативного воздействия более 10 -3 , приемлемый - менее 10 -6 . При значениях риска от 10 -3 -до 10 -6 принято различать переходную область значений риска.

Существуют следующие методические подходы к определению риска :

  1. Инженерный , опирающийся на статистику, расчёт частот, вероятностный анализ безопасности, построение деревьев опасности.
  2. Модельный , основанный на построении моделей воздействия вредных факторов на отдельного человека, социальные, профессиональные группы и т.п.
  3. Экспертный , при котором вероятность событий определяется на основе опроса опытных специалистов, т. е. экспертов.
  4. Социологический , основанный на опросе населения.

Применять эти методики необходимо в комплексе, поскольку они отражают разные аспекты риска, а для первых двух методик не всегда есть достаточные данные.

Мотивированный риск обоснованный мотивами , связанными с предотвращением аварии или спасением людей и материальных ценностей.

Немотивированный риск — риск, превышающий приемлемый и не обоснованный действиями , связанными с предотвращением аварии или спасением людей и материальных ценностей

Антропогенным является риск, представляющий собой сочетание вероятности и последствий наступления неблагоприятного события, обусловленного жизнью и деятельностью человека.

Экологический риск - вероятность реализации воздействия негативных факторов на природную среду.

Техногенный риск сочетает вероятность наступления неблагоприятного события (аварий) и его последствий, обусловленного работой технических объектов.

С техногенным риском напрямую связаны производственный и профессиональный риски.

Производственный риск связан с конкретным производством, производственной деятельностью предприятия.

Профессиональным является индивидуальный риск, связанный с профессиональной деятельностью конкретного человека.

Для определения уровня риска проводится оценка вероятностной меры возникновения техногенных или природных явлений, сопровождающихся формированием и действием вредных факторов, и нанесенного при этом социального, экономического, экологического и других видов ущерба.

Общая формула расчета риска может быть представлена в следующем виде:

$$ R = {R_{1} × R_{2} × R_{3}}, $$

где R — уровень риска, т. е. вероятность нанесения определенного ущерба человеку и окружающей среде;

%%R_1%% — вероятность возникновения события или явления, обусловливающего формирование и действие вредных факторов;

%%R_2%% — вероятность формирования определенных уровней физических полей, ударных нагрузок, полей концентрации вредных веществ в различных средах и их дозовых нагрузок, воздействующих на людей и другие объекты биосферы;

%%R_3%% — вероятность того, что указанные уровни полей и нагрузок приведут к определенному ущербу.

Количественная мера риска может выражаться не только вероятностной величиной. Иногда риск интерпретируют как ущерб, возникающий при авариях, катастрофах и опасных природных явлениях. Однако определение уровня риска как вероятностной категории является более приемлемым при практической оценке уровня безопасности.

Современные представления об уровнях приемлемого индивидуального риска

В соответствии с концепцией приемлемого риска различают:

  • зону приемлемого риска , где допустимое для населения значение индивидуального риска от любой формы деятельности не должно превышать величину 10 -6 смертей на одного человека в год. Эту зону представляют маловероятные события. Эта величина в основном связана со стихийными природными явлениями, избавиться от которых невозможно, вследствие чего их вынуждены принимать как условия своего существования на Земле (согласно данным статистики индивидуальный риск летального исхода при эксплуатации многих технических систем существует на уровне 10 -7 ;
  • переходную зону от недопустимого риска (менее 10 -3) к зоне приемлемого риска (более 10 -6). В эту зону входят многочисленные, весьма распространенные виды деятельности и события.
  • зону неприемлемого риска , где при вероятности более 10 -3 сосредоточены наиболее вероятные причины, по которым погибает подавляющее большинство людей. Существование факторов опасности с вероятностью более 10 -3 существенно увеличивает вероятность смерти людей от внешних причин.

Многие виды производственной деятельности имеют более высокие риски, чем приемлемый. Например, шахтеры, металлурги, строители и т.п. имеют степень индивидуального риска 10 -4 - 10 -3 , а летчики реактивных самолетов – более 10 -2 .

  • Контроль параметров воздушной среды
  • 35. Ориентирующие и технические принципы нормализации воздушной среды и защиты человека от вредных факторов воздушной среды (микроклимат, вредные вещества, пыль).
  • 36. Организационные и управленческие принципы защиты человека от вредных факторов воздушной среды (микроклимат, вредные вещества, пыль).
  • 21. Методы нормализации воздушной среды и защиты человека от вредных факторов воздушной среды (микроклимат, вредные вещества, пыль).
  • 22. Отопление, вентиляция и кондиционирование воздуха. Классификации. Области применения. Достоинства и недостатки.
  • 23.Основные элементы системы искусственной общеобменной вентиляции. Методы расчета необходимого воздухообмена для общеобменной вентиляции. Кратность воздухообмена. Приточная система вентиляции
  • Система вытяжной вентиляции
  • 25.Классификация, нормирование и организация естественного освещения.
  • 28.Методы расчета и контроль искусственного освещения. Медодика расчета искусственного освещения
  • 44.Опасные факторы лазерного излучения. Методы и принципы лазерной безопасности.
  • Вредные воздействия лазерного излучения.
  • Нормирование шума
  • 30.Методы, принципы и средства защиты и борьбы с шумом. Мероприятия по борьбе с шумом
  • Опасность для человека
  • Нормирование ультразвука
  • Методы защиты от ионизирующих излучений
  • 34.Действие электрического тока на организм человека. Факторы, определяющие степень опасности поражения человека электрическим током.
  • 35.Опасность напряжений прикосновения и шага в аварийных режимах работы электроустановок. Методы защиты.
  • Методы и средства защиты: заземление, зануление, отключение и др. Выбор средств защиты зависит от:
  • 36.Ориентирующие, организационные и технические принципы предупреждения поражения человека электрическим током. Классификация помещений по степени опасности поражения человека электрическим током.
  • 37.Защитное заземление электроустановок. Область применения и электрическая схема. Нормирование и контроль защитного заземления.
  • 38.Зануление электроустановок. Область применения и электрическая схема.
  • 39.Опасность разрядов статического электричества. Ориентирующие и технические принципы борьбы с ними.
  • 42. Условия возникновения и виды горения. Основные характеристики пожаробезопасности газообразных, жидких и твердых веществ и материалов.
  • 62,68. Принципы и ср-ва предотвращения и тушения пожаров. Система автоматической пожарной сигнализации и автоматического пожаротушения.
  • 64. Классификация зон по пожаро- и взрывоопасности. Назначение этой классификации.
  • 65. Противопожарные требования к материалам, строительным конструкциям, зданиям и сооружениям.
  • 45. Понятие огнестойкости. Предел огнестойкости строительных конструкций. Степень огнестойкости зданий.
  • 46. Классы пожаров. Огнетушащие вещества и материалы, область их применения. Виды и области применения огнетушителей.
  • Классификация пожаров и рекомендуемые огнегасительные вещества
  • Способы и средства тушения пожаров
  • 1. Предмет “Безопасность жизнедеятельности”. Основные понятия, термины и определения (деятельность, декомпозиция среды, опасность, риск, безопасность и т.д.). Цель и задачи БЖД, как науки

    БЖД - система знаний, направленных на обеспечение безопасности в производственной и непроизводственной среде с учетом влияния человека на среду обитания.

    Цель = БС + ПТ + СЗ + ПР + КТ

    БС - достижение безаварийных ситуаций

    ПТ - предупреждение травматизма

    СЗ - сохранение здоровья

    ПР - повышение работоспособности

    КТ - повышение качества труда

    Деятельность – специфическая форма активного отношения человека к окружающему миру (среде)

    Различают: производственную, сельскохозяйственную, творческую, научную, бытовую, спортивную и другие виды деятельности.

    Производственная деятельность- совокупность действий работников с применением средств труда, необходимых для превращения ресурсов в готовую продукцию, включающих в себя производство и переработку различных видов сырья, строительство, оказание различных видов услуг.

    Декомпозиция деятельности – разложение на составляющие: предмет деятельности, средства, энергия, продукты, технология, информация, организация и т. п.

    Опасность – это явления процессы, объекты, способные при определенных условиях наносить ущерб здоровью, создавать угрозу жизни или затруднять нормальное функционирование органов человека.

    Риск - это вероятность проявления опасностей в результате которых может быть нанесен ущерб в техносфере или окружающей среде.

    Безопасность – это такое состояние системы при котором исключается реализация случайных опасностей.

    Три основных задачи БЖД:

    идентификация опасностей с определением их значения и координат во времени и пространстве.

    Защита от опасности.

    Снижение и ликвидация последствий опасностей.

    2. Понятие опасности. Номенклатура и классификации опасностей. Аксиома о потенциальной опасности деятельности.

    Опасность - это явления, процессы, объекты (элементы среды), способные при определённых условиях наносить ущерб здоровью, создавать угрозу жизни или затруднять нормальное функционирование органов человека.

    Опасности различают:

      по природе происхождения (природные, антропогенные, смешанные).

    Примерами проявленияприродных опасностей могут служить различные стихийные бедствия (наводнения, землетрясения, ураганы и т.д.). Опасностями в этих случаях выступают: скопления больших количеств воды или снега; напряжения в земной коре; аномально высокая скорость ветра.

    Антропогенные опасности связаны с человеческой деятельностью. Часто в этом классе выделяют техногенные опасности , опасности связанные с технической (производственной) деятельностью человека.

    Примером проявления смешанной опасности может служить землетрясение, спровоцированное мощным взрывом.

      По природе воздействия (физические, химические, биологические, психофизические).

    Физические опасности. К ним относят: различные движущиеся части и детали машин и механизмов; электрический ток, аномальные температура, влажность, давление и скорость движения воздуха; шум; ультра - и инфразвук; вибрация; недостаточная освещённость; яркость; физический взрыв и др.

    Химические опасности. К этим опасностям относят вредные вещества в различном состоянии (газообразное, жидкое, твердое, дисперсное). К этому классу следует относить и радиоактивные вещества.

    Биологические опасности. К ним относят: микро- и макроорганизмы (вирусы, микробы, насекомые, животные и т.д.)

    Психофизиологические опасности. В этом классе опасностей, в свою очередь, различают:

    -физические перегрузки , к которым относятся: многократно выполняемые однообразные движения человека, требующие значительных либо малых по величине усилий с его стороны; малоподвижная или не удобная рабочая поза (гипокинезия);

    - нервнопсихические перегрузки , к которым относятся: перенапряжение анализаторов ; нервнопсихический дистресс.

      По локализации (связь с литосферой, с гидросферой, атмосферой, космосом).

      По времени появления отрицательных последствий.

    Импульсивные опасности (взрыв, электрический ток, движущиеся части механизмов и др.);

    Кумулятивные опасности (вредные вещества, аномальная температура воздуха, шум и др.)

      По характеру наносимого ущерба (экономический, социальный, технологический, экологический).

      По последствиям, вызываемых у человека.

      По структуре (простые, сложные).

      По характеру воздействия, по локализации энергии (активная, пассивная)

    Активные опасности, воздействующие за счет собственной энергии;

    Пассивные опасности, активизирующиеся за счет энергии, носителем которой является сам человек (острые неподвижные предметы, уклоны, подъемы и др.)

    Аксиома: Любая деятельность является потенциально опасной.

    3. Энергоэнтропийная концепция причин несчастных случаев, аварий и катастроф. Три основных направления обеспечения безопасности и их реализация.

    Причины, приводящие к несчастным случаям, авариям, катастрофам:

    Целью БЖД является достижение безопасности. Для достижения данной цели в общем случае необходимо решить следующие задачи (основные задачи БЖД ):

      Идентифицировать опасности с определением их качественных и количественных характеристик, а также их координат во времени и пространстве.

      Разработать меры защиты от опасностей на основе сопоставления затрат и выгод.

    Снизить масштабы и ликвидировать последствия проявления опасностей.

    3 . Понятие о риске. Классификация рисков. Примеры расчета индивидуального риска.

    Риск - это вероятность проявления потенциальных опасностей, в результате которых может быть нанесён ущерб человеку, техническим или экологическим системам (объектам).

    Риск (R) - отношение числа нежелательных проявлений опасностей (n) в единицу времени (год, месяц, сутки, смена, и т.д) к их возможному числу (N) за этот же период времени:

    Классификация рисков

    Индивидуальный риск - это мера возможности наступления негативных последствий для здоровья из-за действия на человека на территории его возможного нахождения в течение определенного времени опасных факторов профессиональной деятельности.

    Коллективный риск - интегральная характеристика опасностей определенного вида в конкретном географическом районе и характеризует масштаб возможной аварии. Коллективный риск оценивается числом смертей в результате действия определенного опасного фактора на рассматриваемую совокупность людей.

    Социальный риск - зависимость частоты возникновения событий (F ), в которых пострадало на определенном уровне не менее N человек, от этого числа N .

    Добровольный риск относится к личной жизни. Примерами добровольного риска являются непрофессиональные занятия альпинизмом, прыжками с парашютом, т.е. виды деятельности, которыми человек занимается ради собственного удовольствия, улучшения комфорта, повышения престижа. Риск таких занятий бывает выше профессионального риска и ограничивается самим рискующим.

    Вынужденный риск связан с необходимостью выполнять профессиональные обязанности в определенных условиях. Выбирая вид профессиональной деятельности, индивидуум вправе знать величину связанного с будущей работой риска и вправе рассчитывать на социально-экономические компенсации за дополнительный риск.

    Примеры расчета индивидуальных рисков

    Пример 1 : Требуется определить риск гибели человека (R ПР) на производстве в России в течение 1 года.

    Известно, что в РФ на производстве регистрируется, в среднем, около 7 тысяч смертельных случаев в год (n = 7 000). Ориентировочно принимая численность занятых на производстве: N =70 млн. человек, по формуле (1.4.1) получим, смертельных исходов/год:

    Пример 2 : Требуется определить риск гибели человека в дорожно-транспортном происшествии за 1 год (R дтп).

    Известно, что в РФ в ДТП ежегодно погибает в среднем около 30 тыс. человек (т.е. n=30·10 3 летальных исходов). Все население России составляет ~145 млн. человек. Если допустить, что все жители РФ могли погибнуть в течение года в ДТП, то тогда N=14,5·10 7 чел. по формуле (1.4.1) получим, смертельных исходов/год:

    Вероятностная величина, равная 2,1·10-4 смертельных исходов на одного человека в год, означает, что если бы граждане РФ имели бы равную вероятность погибнуть в автокатастрофе и, если бы других причин смерти не существовало, то всё население страны погибло бы в автокатастрофах в течение 4833 лет. Смысл сделанному выводу придает только то, что мы имеем дело с данными большого масштаба. Любой отдельно взятый водитель может сказать: "Для меня все это не имеет смысла. Я могу погибнуть в катастрофе завтра". И он будет прав.

    4. Приемлемый риск. Аналитическое и графическое определение приемлемого риска.

    Концепция приемлемого риска – это стремление к такой малой безопасности, которую приемлет общество в данный астрономический период времени.

    Суть концепции приемлемого (допустимого) риска в стремлении общества минимизировать суммарные затраты, связанные с профилактикой (предупреждением) возможных несчастных случаев, аварий и техногенных катастроф и с ликвидацией последствий этих нежелательных событий, т.е.:

    где: Р Б - вероятность проведения технологических процессов без происшествий (аварий), обычно обозначают, как
    , т.к. "вероятность" - понятие временнoе.

    С этим показателем связана вероятность возникновения происшествия (аварии) за время (т.е. это и есть риск):

    В частном случае:

    где R - индивидуальный риск гибели или травмы человека, определяемый по формуле (1.4.1) с использованием статистических данных.

    S (P Б ) - затраты на предупреждение несчастных случаев, аварий и катастроф;

    Y (P Б ) - ущерб в случае происшествия несчастных случаев, аварий и катастроф.

    В качестве единиц измерения затрат на предотвращение S (P Б ) и ущерба от аварий Y (P Б ) целесообразно использовать "человеко-дни", к которым могут быть сведены, как ущерб от несчастных случаев с людьми, так и материальные затраты, связанные с повышением надежности и безопасности технических систем или восстановлением оборудования и природной среды.

    С увеличением безопасности (т.е. при стремящемся к единице, а стремящемся к нулю) затраты на предотвращение аварий [S (P Б ) ] растут по гиперболическому закону, а возможный ущерб от этих аварий [Y (P Б ) ] уменьшается линейно, было получено аналитическое выражение для оптимальной по суммарным затратам вероятности безаварийной работы:

    где - средний ущерб от одной аварии при конкретных работах в данной отрасли, чел.дней;

    С - принятый постоянный параметр затрат [чел.дней], значение которого пропорционально расходам, необходимым для повышения безопасности в конкретной отрасли на 1%, т.е.

    где: - математическое ожидание (среднее значение) затрат на предупреждение аварий и катастроф [чел.дней], (определяют по статистическим данным);

    Вероятность безаварийного проведения процесса;

    -вероятность возникновения аварий

    Вероятность возникновения аварий (определяют по статистическим данным).

    Рис. 1.5.1. Графическое определение приемлемого риска.

    На графике кривой суммарных затрат
    имеется минимум, которому соответствует найденное по формуле (1.5.3) значение оптимальной вероятности безаварийной работы
    . Этому значению, в свою очередь, соответствует значение остаточного (допустимого, приемлемого) риска:

    Из формулы видно, что допустимый риск следует уменьшать по мере роста тяжести ожидаемых последствий (параметр ) и по мере уменьшения затрат, требуемых для предупреждения аварийности (параметр С ).

    Принятие концепции приемлемого риска позволяет окончательно сформулировать понятие безопасности.

    5. Характеристика нервной системы человека. Понятие об анализаторах, рефлексах, иммунитете, боли и их роль в обеспечении безопасности человека.

    Нервная система обеспечивает реакцию человека (организма) на внешние раздражители.

    Раздражители – причина всех процессов в организме человека. Раздражители действуют непосредственно на органы или рецепторы (нервные окончания) – анализаторы.

    Схема деятельности нервной системы человека.

    Рефлексы:

    1 условные (при жизни могут исчезать, если их не подтверждать)

    2 безусловные (заложены при рождении, не исчезают.

    Рефлексы – реакция на раздражители.

    Иммунитет – совокупность внутренних средств защиты организма от микробов и чужеродных тел.

    Анализаторы – чувствительные нервные образования, воспринимающие и преобразующие раздражения из внешней и внутренней среды расположены в органах и тканях организма.

    Анализаторы: проприорецепторное чувство (мышечное), внутренний анализатор (гомеостаз), температурные, тактильные (осязание), вибрационные, зрительный, звуковой, и вестибулярный, запаховый (обоняние), вкусовой.

    Важную роль в обеспечение безопасности также играет боль.

    Изменение условий окружающей среды и состояние внутренней среды человека воспринимается нервной системой, которая регулирует процессы жизнедеятельности. Нервная система включает центральную нервную систему (ЦНС), в которую входят спинной и головной мозг и периферическую нервную систему (ПНС), состоящую из нервных волокон и узлов. Связь человека с окружающей средой осуществляется с помощью сенсорных систем или анализаторов, которые воспринимают и передают информацию в кору больших полушарий. Анализатор состоит из рецептора, проводящих путей и мозгового окончания . Рассматриваются анализаторы: зрительный, слуховой; чувствительности: температурная, тактильная, болевая, органическая.

    Рецептор воспринимает информацию, которая кодируется в нервных импульсах и по проводящим путям (ПП) передаётся через мозговое окончание (МО) на ядро анализатора (Я). Реакция человека и принятие решений носит характер безусловного (БР) или условного (УР) рефлекса.

    Свойства нервной системы человека

    Динамичность - характеризует скорость протекания психических процессов (темп деятельности, скорость обучения, скорость принятия решений).

    Подвижность - скорость переделки, то есть насколько быстро возбуждение сменяется торможением и наоборот.

    Продуктивность в стрессе - стрессовые ситуации требуют быстроты принятия решений.

    Лабильность - скорость возникновения и прекращения нервного процесса.

    Зрительный анализатор

    С помощью зрения человек получает 80% информации, поступающей из окружающей среды. Человеческий глаз преобразует энергию оптических излучений в зрительное ощущение. Воспринимается видимая часть оптического участка спектра электромагнитных колебаний с длиной волны 380 - 780нм. Глаз непосредственно реагирует на яркость и избирательно на спектральный состав падающего потока излучения. Равные по световой мощности лучистые потоки, различающиеся друг от друга длиной волны излучения (цветом), вызывают в глазу неодинаковые по интенсивности излучения, что характеризуется кривой видности света. Относительная спектральная чувствительность глаза Кλ равна отношению чувствительности глаза к однородному излучению с длиной волны λ - qλ к максимальному её значению для излучения с длиной волны 555 нм qmax. при жёлто-зелёном излучении.

    Слуховой анализатор

    Слуховая система человека включает наружное, среднее и внутреннее ухо, слуховой нерв и центральные слуховые пути. Колебания барабанной перепонки передаются во внутреннее ухо, где звук воздействует на чувствительные нервные окончания, реагирующие, каждое на колебания определённой частоты. Механические колебания преобразуются в органе слуха в электрические потенциалы.

    Основными параметрами звуковых волн являются интенсивность и частота колебаний, которые субъективно в слуховых ощущениях воспринимаются как громкость и высота тона. По частоте область слуховых ощущений лежит от 20 до 20000 Гц. Зона слышимости звука ограничена двумя кривыми: порогом слышимости (1) и порогом болевого ощущения (2).

    Зона слышимости звука

    Порог слышимости (1) зависит от частоты, а порог болевого ощущения (2) имеет слабую частотную зависимость. Уровень звука на пороге слышимости равен 0дБ при звуковом давлении 2*10-5 Па, а на пороге болевого ощущения 140дБ при звуковом давлении 2*102 Па. Область, расположенная между порогами, называется зоной слышимости звука.

    Температурная чувствительность

    При восприятии кожей температуры работают два вида рецепторов. Одни реагируют только на холод, другие - только на тепло. Физиологическим нулём называется собственная температура данной области кожи. Она отличается от контрольной температуры тела человека.

    Болевая чувствительность

    В любом анализаторе могут возникать болевые ощущения. Однако в коже есть свободные нервные окончания, которые являются специализированными болевыми рецепторами. Болевые ощущения вызывают оборонительные рефлексы и, в первую очередь, рефлекс удаления от раздражителя. Боль, являясь сигналом опасности, мобилизует организм на борьбу за самосохранение.

    Тактильная чувствительность

    Тактильный анализатор воспринимает ощущения, возникающие при действии на кожу механических стимулов (прикосновение, давление). Порог тактильной чувствительности определяется по минимальному давлению предмета на поверхность кожи, которое производит едва заметное ощущение прикосновения. Для кончиков пальцев эта величина составляет 3 г/мм2. Особенностью тактильного анализатора является быстрое развитие адаптации.

    Органическая чувствительность

    Мозг человека получает информацию не только из окружающей среды, но и от самого организма. Чувствительные нервные аппараты имеются во всех внутренних органах, где под влиянием внешних условий возникают ощущения, называемые органической чувствительностью.

    8. Характеристики двигательного аппарата человека. Время реакции. Антропометрические характеристики.

    Разные движения имеют различные названия, по которому их можно разделить на три группы:

      рабочие или исполнительные движения, посредством которых осуществляется воздействие на орган управления

      гностические движения, направленные на познание объекта и условий труда. К ним относятся осязательные, ощупывающие, измерительные и др.

      Приспособительные движения, к которым относятся установочные, уравновешивающие и др.

    Время реакции может использоваться как один из показателей психофизиологического состояния оператора, используются как индикатор при инженерно-психологических измерениях исследованиях.

    Реакция сенсомоторная – связь восприятия и движения.

    Время реакции – время, затраченное на совершение какого-либо действия, с момента появления сигнала.

    Антропометрические хар-ки включают различные размеры человеческого тела и делятся на динамические и статические

    К динамическим хар-ам относятся амплитуды движения головы, рук и ног. Они используются для определения объема рабочих движений, зон досягаемости и видимости.

    К статическим хар-м относятся размеры головы, рук, туловища. Они используются для установления размеров конструктивных параметров рабочего места

    9. Понятие об эргономике и её связь с безопасностью жизнедеятельности. Пять видов совместимости в системах Ч-М-С.

    Эргономика – наука, изучающая функциональные возможности человека в трудовых процессах с точки зрения анатомии, антропологии, физиологии, психологии и гигиены в целях создания удобных и приемлемых для человека орудий и условий труда и технических процессов.

    Цель эргономики – увеличение производительности труда, обеспечение безопасности и достижение комфорта деятельности человека.

    В системе ЧМС учитывается пять видов совместимости для обеспечения максимального рез-та функционирования:

      энергетическая совм-ть

      информ-ая

      биофизическая

      пространственно-антропометрическая

      технико-эстетическая

      Создание учебно-управляемых машин, расчет приемлемых условий для управления механизмами

      Кол-во каналов инф-ии сколько угодно, а приемников у человека ограниченное число

      Создание среды, обеспечивающей приемлемую работоспособность, т.е. среды соответствующей биофизическим возможностям человека.

      При создании рабочих мест учитывается антропометрическая хар-ка человека. Рассчитывается объем рабочего места, зона досягаемости, видимости, расстояния от пульта.

    Создание машин, обеспечивающих удовольствие человека от работы с ними.

    10. Пороги чувствительности анализаторов человека. Закон Вебера-Фехнера. Запаховый, звуковой и вестибулярный анализаторы и их роль в обеспечении безопасности человека.

    Пороги чувствительности – абсолютный, дифференциальный, оперативный.

    Абсолютные пороги:

      нижний – минимальная величина раздражителя, вызывающая едва заметные ощущения;

      верхний – максимальная величина раздражителя, вызывающая максимально-допустимые ощущения;

    Диапазон между нижним и верхнем порогом называется диапазонам чувствительности.

    Дифференциальный порог – это минимальное различие между двумя сигналами (раздражителями), либо между двумя состояниями одного и того же раздражителя, вызывающего едва заметное ощущение.

    K=dI/I – величина ощущения прямопропорциональна величине раздражения.

    Q=KlnI+C – закон Вебера-Фехнера.

    Интенсивность ощущения прямопропорциональна логарифму силы раздражителя.

    Оперативный порог различий – минимальная величина различия сигнала при которой точность и скорость различия достигают максимального значения.

    Звуковой анализатор – органы слуха человека (ухо: внешнее, среднее, внутреннее).

    Ухо улавливает не абсолютное значение, а приращение звука.

    Звуковой диапазон от 16 Гц до 20 кГц человек воспринимает как слышимый звук.

    Звуки частоты ниже 16 Гц называются инфразвуками, а выше 20 кГц –ультразвуками.

    Физически звук характеризуется: интенсивностью, частотой и формой звуковой волны.

    Звуковой анализатор важен в обеспечение безопасности (реакция на сигнал тревоги и т.п.)

    Вестибулярный аппарат – воспринимает силы тяжести, инерции вращения. Также важен для безопасности. Так например, люди с хорошо развитым вестибулярным аппаратом могут легко удерживаться на карнизе высоко этажного здания до прибытия пожарных.

    Запаховый анализатор – представлен в виде большого числа нервных клеток, расположенных в носоглотке. Один из важных источников получения инф-ии и опасности (пожар, утечка газа и др.)

    6. Зрительный, вкусовой и тактильный анализаторы человеческого организма и их роль в обеспечении безопасности человека.

    Зрительный анализатор – воспринимает и преобразует зрительную инф-ию. Раздражители зрительного анализатора явл-ся световая энергия, а рецепторами – глаз. Зрение позволяет воспринимать форму, цвет, яркость и движение предметов.

    Хар-ки зрительного анализатора:

      Энергетическая хар-ка

      Инфор-нная

      Пространственная

      Временная

    Зрительный анализатор один из самых важнейших, т.к. большинство инф-ии об окружающем мире человек получает через него.

    Запаховый анализатор – представлен в виде большого числа нервных клеток, расположенных в носоглотке. Один из важных источников получения инф-ии и опасности (пожар, утечка газа и др.).

    Вкусовой анализатор – представлен четырьмя типами клеток, различающих кислый, сладкий, горький, соленый вкусы. Клетки располагаются в полости рта. Часто именно вкусовой анализатор препятствует попаданию несъедобных, вредных в-в в организм человека через органы пищеварения.

    Тактильный анал-ор (сязание) – рецепторы неравномерно расположены по организму. Они находятся в кожном покрове, реагируют на малейшее прикосновение, механическое давление, уколы. Тактильный анализатор явл-ся очень важным для обеспечения безопасности. Благодаря ему человек различает (увствует) уколы, порезы и др.

    12. Температурные и вибрационный анализаторы, проприорецепторы и внутренние анализаторы и их роль в обеспечении безопасности человека.

    Проприорецепторы – мышечные чувства (человек чувствует в каком состоянии находится его тело)

    Температурные анализаторы имеют 30 тыс. тепловых и около 25 тысяч холодовых рецепторов. Человек чувствует: жарко ему или холодно.

    Внутренние анализаторы расположены во внутренних органах. Обеспечивают постоянство температуры человека, постоянство состава, следят за переохлаждением.

    Вибрационные анализаторы анализируют вибрацию организма человека, имеют чувствительные рецепторы, улавливающие диапазон частот от 1кГц до 10 кГц.

    Анализаторы играют огромную роль в обеспечении безопасности, т.к. в совокупности они предупреждают человека о приближении какой-либо опасности, или заставляют (наводят) сделать правильный шаг в принятии решений, опираясь на создание комфорта, безопасности организма.

    13. Фазы функционального состояния оператора (ФСО) при реализации какого-либо вида деятельности.

    Под состоянием человека-оператора, выполняющего определенную задачу, обычно понимают комплексную хар-ку внутренних возможностей успешного решения этой задачи

    Фазы фун-ого состояния:

      Оптимальная работоспособность (наивысшее проявление всех рабочих ф-ий)

      Состояние готовности к действию (способность реагирования на неожиданный сигнал)

      Степень внимания (способность обнаружения тех или иных отклонений от нормы)

      Состояние утомления (возникновение зрительных иллюзий, ослабление памяти, снижение продуктивности мышления)

    Состояние эмоционального напряжения (дезорганизация поведения, торможение прежних навыков, ошибки восприятия, провала памяти)

    7. Принципы обеспечения безопасности. Их классификация. Ориентирующие принципы и примеры их реализации.

    Значение принципов состоит в том, что с их помощью можно определить уровень знаний об опасностях окружающего мира и, следовательно, сформировать требования по проведению защитных мероприятий. Также, они позволяют находить оптимальные решения защиты от опасностей на основе сравнительного анализа конкурирующих вариантов:

    Причины обеспечения безопасности делятся на:

      ориентирующие

      технические

      управленческие

      организационные

    Ориентирующие принципы представляют собой своего рода идеи, определяющие направление поиска безопасных решений и служащие инф-ой базой. К ним относятся принципы системности, ликвидации и снижения опасности, замены оператора инф-ии, нормирования (заключающегося в регламентации условий, соблюдение которых обеспечивает заданный уровень безопасности). Принцип инф-ии по видам представления делится на: визуальную инф., аудио, аудиовизуальную, запаховую, предупреждающую и указывающую.

    8. Технические принципы обеспечения безопасности и примеры их реализации.

    Принцип блокировки заключается в обеспечении механического, электрического, радиационного и др. принудительного воздействия между частями оборудования. Он делится на:

      запретно – разрешающую блокировку (не допускает нерегламентированного включения оборудования);

      аварийную блокировку (когда нарушается нормальный ход технологического процесса).

    Пример: у башенного крана на рельсах, чтобы он не сошел с них имеются своего рода выключатель.

    Принцип прочности определяется через коэффициент запаса прочности Кз.

    Принцип слабого звена. Его применяют там, где принцип прочности нецелесообразен. В качестве слабого звена – защищающие элементы системы от разрушения или повреждения в экстремальных условиях работы, применяют предохранительные клапаны, взрывные, разрывные мембраны и др.

    Пример: предохранитель в электронной технике, имеющий силу тока меньше допустимой.

    Принцип герметизации используется для устранения утечки опасных и вредных веществ.

    Принцип вакуумирования – для исключения попадания вредных газов и паров в гомосферу и для ведения процессов при недостатке кислорода.

    Пример: аварийная вентиляция.

    Принцип компрессии заключается в введении технологических процессов при повышенном давлении.

    Принцип флегматизации основан на применении флегматизаторов (веществ, успокаивающих химическую реакцию путем разбавления без вступления в реакцию) и ……….

    Принцип резервирования (дублирования) состоит в одновременном применении нескольких устройств.

    Пример: два эвакуационных выхода из помещения, которые должны быть рассредоточены.

    Принцип защиты временем основан на сокращении до безопасных значений время пребывания людей в ноксесфере.

    9. Организационные и управленческие принципы обеспечения безопасности и примеры их реализации.

    К управленческим принципам относятся принципы плановости, контроля, подбора кадров, ответственности, адекватности и однозначности.

    К организационным относятся принципы несовместимости, рациональной организации труда, компенсации.

    Принцип управления заключается в организационном процессе целенаправленного воздействия управляющей системы на управляемую.

    Принцип подбора кадров заключается в привлечении к управлению безопасности специалиста, обладающего определенными знаниями и практическими навыками.

    Принцип плановости. Пример: если для мероприятия по достижению безопасности требуются средства, то без плана не обойтись, т.к где-то надо найти определенное количество средств на приобретение чего-либо.

    Принцип несовместимости заключается в разделении объектов в пространстве и времени. Пример: существует перечень по совместимому хранению веществ; зонирование территорий, зданий. Выделение наиболее опасных участков в пространстве какого-либо помещения.

    Принцип компенсации применяется только когда все меры применены.

    10. Понятие ноксосферы. Методы обеспечения безопасности жизнедеятельности. Средства обеспечения безопасности и их классификация.

    Методы обеспечения безопасности:

    а) метод, состоящий в пространственном или временном разделении гомосферы (пространство, в котором находится человек) и ноксосферы (пространство, в котором создаются опасности). Этот метод реализуется при механизации и автоматизации производственных процессов.

    б) метод, основывающийся на применении принципов безопасности к совершенствованию производственной среды, а также на приведении характеристик ноксосферы в соответствии с характеристиками человека. Этот метод реализуется в создании безопасной техники.

    в) метод, состоящий в повышении защитных свойств человека при помощи соответствующих средств защиты, в адаптации человека к ноксосфере (обучение, инструктирование, применение средств индивидуальной защиты и др.).

    г) метод, включающий в себя комбинирование выше приведенных методов. Он имеет наибольшее распространение.

    Средства защиты подразделяются на:

      средства коллективной защиты (СКЗ);

      средства индивидуальной защиты (СИЗ);

    СКЗ делятся на:

      ограждения;

      блокировочные;

      тормозные;

      предохранительные устройства;

      световая и звуковая сигнализация;

      приборы безопасности;

      знаки безопасности;

      устройства дистанционного управления;

      вентиляция;

      кондиционирование;

      изолируюшие и др.;

      устройства автоматического контроля;

      заземления и зануления;

      отопление;

      освещение;

      герметизирующие средства;

    Классификация СИЗ:

      изолирующие костюмы;

      средства защиты органов дыхания;

      специальная одежда;

      специальная обувь;

      средства защиты головы;

      средства зашиты рук;

      средства защиты лица;

      средства защиты органов слуха;

      средства защиты глаз;

      предохранительные приспособления;

    защитные дерматологические средства;

    11. Основные законодательные акты, нормы и правила по безопасности производственной деятельности. Система стандартов безопасности труда.

    Система стандартов безопасности труда создана с целью повышения научно – технического уровня нормативной документации по безопасности труда. ССБТ представляет собой комплекс взаимосвязанных стандартов, направленных на обеспечение безопасности труда, сохранения здоровья и трудоспособности человека на протяжении его трудовой деятельности. Стандарты ССБТ подразделяются на:

    государственные;

    отраслевые;

    республиканские;

    стандарты предприятий.

    Основные законодательные акты:

      обеспечение охраны труда путем ограничения рабочего времени;

      создание здоровых и безопасных условий труда.

    Основные положения изложены в Конституции (дек. 1994г) в законе по охране труда и охране природы (1992-93) в КЗоТе.

    В качестве подзаконных актов выступают ГОСТы, Нормы и Правила.

    Взаимодействие государственного надзора, ведомственного и общественного контроля.

      Высший надзор по соблюдению законности осуществляет ген. прокурор.

      Государственный надзор в соответствии со 107 ст. КЗоТ за соблюдением норм и правил по охране труда осуществляется:

    1. специально уполномоченными инспекциями, независящие в своей деятельности от деятельности предприятия (Роскомгидромет, Госгортехнадзор, Госатомнадзор и т.д.);

    2. профсоюзами в лице правовой и технической инспекцией труда.

      Ведомственный контроль осуществляется министерствами и ведомствами в соответствии с подчиненностью.

      Общественный контроль - ФНП в лице профсоюзных комитетах, находящихся на каждом предприятии.

    Нормы - перечень требований безопасности по производственной санитарии и гигиене труда.

    СН 245-71 Санитарные нормы проектирования промышленных предприятий.

    Правила - перечень мер по технике безопасности.

    ПУЭ-85 Правила устройств электроустановки.

    СН и ПII-4-79

    Как отмечалось выше, под понятием индивидуального риска (Ш) понимают вероятность поражения отдельного человека в течение определенного периода времени в результате воздействия исследуемых факторов опасности при реализации неблагоприятного случайного события с учетом вероятности ее пребывания в зоне поражения.

    С математической точки зрения индивидуальный риск определяется как произведение вероятности гибели человека, находящегося в данном регионе, от возможных источников опасности и вероятности ее пребывания в зоне поражения.

    Индивидуальный риск рассматривают как основное понятие, во-первых, в связи с приоритетностью человеческой жизни как высшей ценности, во-вторых, в связи с тем, что именно индивидуальный риск может быть оценен с большими выборками с достаточным уровнем достоверности, что дает возможность определить другие важные категории риска во время анализа опасностей и устанавливать приемлемые и неприемлемые уровни риска.

    В общем случае количественно индивидуальный риск выражается отношением числа пострадавших людей из определенной причины к общему числу людей, рискующих за определенный период времени (апостериорное определение).

    Английские ученые предложили при определении индивидуального риска вместо критерия "гибель человека" использовать критерий "получение человеком того или иного степени поражения".

    Например, можно определить такое значение интенсивности того или иного фактора поражения, за действия которого значительное количество людей получит серьезные повреждения, которые потребуют длительного лечения; возможны смертельные случаи для небольшого количества людей с повышенной чувствительностью к воздействиям факторов поражения. Конкретное значение интенсивности того или иного фактора поражения названное "опасной дозой", т.е. дозой, которая может повлечь смерть человека, однако это происходит не обязательно, поскольку люди в зависимости от возраста, пола, состояния здоровья и т.п. имеют разные восприимчивость и сопротивляемость организма. В этом случае под индивидуальным риском понимают частоту воздействия "опасной дозы" на конкретного человека в определенном месте.

    Во время расчета распределения риска по территории вокруг объекта (картирование риска) индивидуальный риск определяется потенциальным территориальным риском и вероятностью нахождения человека в районе возможного действия опасных факторов.

    В общем случае индивидуальный риск от некоторой опасности, рассчитывается для определенной территории исследования, характеризуются вероятностью гибели отдельного лица из населения за период времени 1 год. Так, если имеется достаточно статистических данных, оценку индивидуального риска (Ш) можно получить по формуле

    где п - количество смертей за год по определенной причине; N - численность населения на исследуемой территории в оцениваемом году.

    В практической деятельности этот вид расчета риска является наиболее распространенным. В общем случае в зависимости от задач анализа п можно понимать как общее число пострадавших, так и число смертельно травмированных или другой показатель тяжести последствий.

    Трактовать понятие индивидуальный риск с учетом конкретных видов деятельности и статистических данных о несчастных (смертельных) случаев за определенный период времени, возникшие в результате этой деятельности. Например, если специалисты определили, что индивидуальный риск для пассажиров гражданской авиации составляет 1*10 -5 (1/год), то в статистическом плане это означает, что следует ожидать один смертельный случай в результате несчастного случая, связанного с отказом самолета, на 100 тысяч пассажиров за год.

    В любом районе, где проживает население, независимо от наличия или отсутствия каких-либо техногенных объектов всегда существует некоторая вероятность того, что человек погибнет в результате несчастного случая в быту, преступного нападения или другой неестественной события. Среднегодовое значение риска для конкретного человека зависит от источников опасности и времени их воздействия.

    В большинстве стран мира статистические данные о индивидуальные или коллективные риски от различных несчастных случаев систематически собираются и публикуются.

    Значение индивидуального риска разделены на 3 категории: 1-бытовые риски (риски, которым подвергается каждый житель страны независимо от профессии и образа жизни); 2 - професйні риски (риски, связанные с профессией человека); 3 - добровольные риски (риски, которые касаются личной жизни, в частности непрофессиональные занятия альпинизмом, прыжки с парашютом и т.д.); добровольные риски можно рассматривать как собственные интересы и плату за удовольствие. Заметим, что наибольшие риски в категории 1 связаны с болезнями, за ними следуют несчастные случаи; в категории 2 - работа на морских платформах при разработке месторождений континентального шельфа; в категории 3 - занятия альпинизмом.

    Профессиональные риски реализуются в условиях нарушения технологического режима на ПОО, на которых оборудование достигло предела износа, вследствие ошибок персонала и т.д. Любая технология несет определенный риск как для человека, так и для окружающей среды. Однако человек может выбрать, работать в условиях повышенного риска, или найти себе другую работу.

    Аналогично бытовые риски также являются добровольными. Определены индивидуальные риски несчастных случаев, убийств, самоубийств, отравлений, заболеваний, потери трудоспособности в Украине. Так, индивидуальный риск смертности от несчастных случаев, связанных с транспортными средствами, по состоянию на 2005 г. составлял 2,06-10 -4 , а риск смертности группы вследствие различных отравлений, в том числе алкоголем - 2,83 10- 4 , риск самоубийств - 2,25 10 -4 , риск погибнуть от огня и пламени - 5,8 10- 5 . Как видим, риск смертности населения от несчастных случаев в быту очень высокий. Особое беспокойство вызывает риск смертности вследствие различных отравлений и самоубийств, поскольку они имеют наибольшие значения среди других причин несчастных случаев.

    Индивидуальный риск во многом определяется квалификацией и готовностью индивидуума к действиям в опасной ситуации, его защищенностью. Индивидуальный риск, как правило, следует определять не для каждого человека, а для групп людей, которые примерно одинаковое время находятся в различных опасных зонах и имеют одинаковые средства защиты. Рекомендуется оценивать индивидуальный риск для персонала объекта и населения прилегающей территории.

    Если оценивается риск для какой-либо группы людей определенной профессии или специального рода деятельности, которая связана с повышенной опасностью, этот риск целесообразно определить в пересчете на конкретный рабочее время (на один час работы или один технологический цикл).

    Оценим зоны индивидуального риска для потенциально опасного объекта и транспортной магистрали по которой осуществляется перевозка опасных грузов.

    Индивидуальный риск это свойство местности, исследуется, в пределах которой существует вероятность неблагоприятного события (эта вероятность создается потенциально опасным объектом),поэтому индивидуальный риск является удобной характеристикой для пространственного планирования деятельности вокруг потенциально опасного объекта, как правило он показывается контурами одинаковых значений риска вокруг объекта (рис. 5.1).

    Необходимо отметить, что общепризнанных критических значений индивидуального риска для тех или иных производственных объектов нет. Выбор конкретного значения в интервале, рекомендуется различными учеными, - от 10 -8 до 5х 10 -5 зависит от особенностей производственного объекта, уровня аварийности, уровня экономического развития. Как правило, приемлемая величина недобровольного индивидуального риска равна 10 -6 (за год). Неприемлемый риск имеет вероятность реализации негативного события более 10 -3 . При значениях риска от 10 -3 до 10 -6 принято различать переходную область значений риска. Характерные значения индивидуального риска естественной и принудительной смерти людей от воздействия условий жизни и деятельности приведены ниже в табл. 6.2.

    Таблица 5.2

    Характерные значения индивидуального риска

    Для видов деятельности, для которых существенным является количественная оценка риска может быть предложена структура оценки приемлемости риска, что показана на рис. 5.2. Устанавливается значение, выше которого риск считается абсолютно неприемлемым (верхний уровень), и значение, ниже которого риск считается абсолютно приемлемым (нижний уровень).

    По сути, "лимит приемлемости риска" определяется уровнем, выше которого риск не может быть оправдан, кроме экстраординарных обстоятельств.

    Рис. 5.2. Структура оценки приемлемости риска

    Однако, всегда необходимо стараться улучшить этот верхний лимит и, по крайней мере, во многих обстоятельствах мочь его достичь. Ниже этот лимит приемлемости риск может допускаться только в ответ на преимущества, которые связываются с деятельностью, которая рассматривается, но только если выполняется требование ALARA (as low as risk acheivable) - до такой степени, насколько это практически целесообразно достичь. Срок целесообразно практически предполагает, что необходимо выполнить некоторые вычисления в плоскости, что связывает риск с возможными последствиями опасности. С совершенствованием практик управления риском и уменьшением риска может быть достигнута точка, в которой стоимость, связанная с дальнейшим снижением риска, будет достаточно высокой, чтобы оправдать дальнейшие преимущества снижение риска. Соответственно, "цель риска" определяется уровнем, ниже которого риск считается широко приемлемым. Как только продемонстрирована соответствие с этим целевым уровнем риска, нужно ожидать, что законодательные.

    Существует уровень риска, который можно считать настолько малым, что им можно пренебречь. Если риск от какого объекта не превышает такого уровня, нет смысла принимать дальнейших мер по повышению безопасности, поскольку это требует значительных затрат, а люди и окружающая среда через действие других факторов все равно будут подвергаться почти предыдущем риска. С другой стороны, является уровень максимального приемлемого риска, который нельзя превосходить, которые бы не были расходы. Между двумя этими уровнями лежит область, в которой и нужно уменьшать риск, отыскивая компромисс между социальной выгодой и финансовыми убытками, связанными с повышением безопасности.

    Социальный риск определяется количеством потерь (например, погибших среди населения), что, как правило, вычисляется статистически. Он во многих случаях является синонимом коллективного риска. Характеристика социального риска обычно показывается как F N - диаграмма (частота - количество потерь, английском versus Frequency Number of Fatalities): последствия чрезвычайной ситуации (например, в результате аварии) для реципиентов риска (например, для населения) в пределах определенной территории описываются функциональной зависимостью прогнозируемой частоты от величины потерь при ЧС (аварии). F N - диаграмма (еще используется название F N - кривая) является дискретным аналогом этой зависимости, она широко используется при анализе риска и опасностей. F N - диаграмма в случае, если количество данных и диапазон их изменений очень большой, конечно строится в логарифмическом масштабе. На этих диаграммах накопленная (комуля-тивна) частота различных последствий сценария НС (результатов аварий) отображается как функция последствий в виде числа летальных исходов или других видов ущерба от бедствия. Она может быть апрок-симована кривой-графиком непрерывной функции.

    таким образом определяется предельная кривая частоты НС (нежелательных последствий), которая может использоваться, прежде всего, для сравнения опасностей и как исходные данные проектировщиками и специалистами по безопасности. Считается, что кривая отделяет верхнюю область недопустимо большого риска от области приемлемого риска, расположенной ниже и влево от кривой. Кривую, таким образом, можно использовать как критерий безопасности, что определяет верхнюю границу допустимой вероятности. Если это условие выполняется, основная цель достигнута. Для определения данных характеристик необходима реальная статистика НС.

    Поскольку границы оправданного риска, как правило, трудно рационально обосновать, при решении расчетных или эксплуатационных технических задач следует использовать сравнение с риском в аналогичных ситуациях. При этом в анализе следует принимать во внимание благоприятный случай. Установленный таким образом крайне неблагоприятный случай угрозы нужно сравнить по частоте и величине с аналогичными рисками, что уже ранее имели место. При этом необходимо учитывать, что на частоту влияют как пространственная, так и временная протяженность данных явлений. Кроме того, нужно учитывать продолжительность каждого события и степень стабильности начальных параметров.

    Из таблицы 5.3-5.5 видно, что риск летального исхода существует на уровне 10 -7 и выше на человека в год. Таким образом, при проектировании и эксплуатации технических устройств риск на уровне 10 -7 чел/ год может быть принят допустимым при выполнении следующих условий:

    Проблема риска проанализирована глубоко и всесторонне;

    Анализ проведен до принятия решений и подтверждено имеющимися данными в определенном временном интервале;

    После наступления неблагоприятного события анализ и заключение о риске, полученные на основании данных, которые были, не меняются;

    Анализ показывает, и результаты контроля все время подтверждают, что угроза не может быть уменьшена цене оправданных расходов.

    Принятую оценку допустимого риска и указаны условия нужно выполнять строго и рассматривать как первый шаг к количественного сравнения. При необходимости в дальнейшем, когда будет накоплено больше опыта, эта оценка может быть изменена. Установленную оценку допустимого риска можно воспринимать как оправданную границу; она должна служить лишь основой относительной шкалы рисков, которые принимаются.

    Таблица 5.3

    Вероятность летального исхода с внепроизводственных причин

    Таблица 5.4

    Вероятность летального исхода из производственных причин

    Продолжение табл. 5.4

    Сформулированы положения подтверждают также, что нецелесообразно задавать детерминированную предел риска. Наоборот, более приемлемыми параметрами представляются вероятность р, что отделяет оправданный риск от условно оправданного, и вероятность р и, что отделяет условно оправдан риск, то есть соответствующий определенным условиям, от неоправданного. К условиям, при которых летальный риск р э в диапазоне р и <р э <р и может быть допущен, относятся указанные выше четыре требования к анализу риска. Эти требования должна соблюдать ухвалююча решение лицо, всегда сравнивая риск, что меняется, например, с повышением максимально допустимой эффективности, исключением неблагоприятных ситуаций и т.п. Для летального риска принимают значение оправданного р=10 8 и, с большим безопасным промежутком, неоправданного р и =10~ 5 на человека в год.

    Если речь идет исключительно о риск материальных потерь, метод сравнения при оценке риска не вызывает сомнений. В этом случае можно принимать решение, оценивая только экономический эффект.

    Сущность нормирования, регулирования и управления обеспечением безопасности при ее основными компонентами (социально-экономическим, военным, научно-техническим, промышленным, экологическим, демографическим) с использованием рисков сводится к требования не превышения величин рисков Я(ґ), которые формируются и реализуются, по выражениям (1) - (5) величин приемлемых рисков на заданном временном интервале £

    ч < №)]. (6)

    Величина устанавливается и назначается органами высшего государственного управления с учетом возможностей и потенциала страны, уровня научных обгрунтовувань отечественного и мирового опыта.

    Реализация требования (6) будет осуществляться, исходя из того, что определяющими рисками Я(ґ) есть две группы рисков:

    индивидуальные риски (чел./год) потери жизни и здоровья человека от указанных выше возможных неблагоприятных процессов и явлений;

    экономические риски (грн./ч) от неблагоприятных процессов и явлений, учитывающие уязвимость социальной (Л), естественной (5) и техногенной (Т) сфер по выражениям (1) - (4).

    В экономические риски Я(ґ) включаются экономические убытки от потери жизни и здоровья людей, от поражения окружающей природной среды и технической инфраструктуры.

    Для анализа риска необходимо сформулировать шкалу приемлемых граничных Я с (ґ) рисков и тех, которыми пренебрегают, а также методику оценки стоимости и убытков от потери человеческих жизней.

    Научное обоснование приемлемых рисков заключается в разработке методологии определения предельных (недопустимых) рисков Я с (ґ) іпризначення запасов п г для этих рисках в форме:

    ик {и)] = ^ . (7)

    Для количественной оценки величин рисков Я^) могут использоваться все основные выражения (1) - (5), а величины запасов п к должны быть больше единицы п > 1). Учитывая передовой отечественный и зарубежный опыт, диапазон изменения этих запасов на первых стадиях может быть достаточно широким (2< n R <10).

    Идентифицированы количественные критерии риска фатальности приведены ниже в табл. 5.6 (полученные из разных источников). Представленные значения касаются индивидуального риска, однако критерии социального риска также могут быть предложены для использования в некоторых обстоятельствах. Обращает на себя внимание, что стандарты риска, которые предлагаются EPA (Агентство по охране окружающей среды США), является низким в сравнении с рядом других регулятивных нормативов. Принимая во внимание более высокий лимит терпимого риска для работающих в сравнении с тем же для общественности, надлежащим образом ставить ударение, что не берется во внимание то, что стоимость жизни работающего меньше, чем жизнь члена общества. Исторически сложилось так, что для работающих устанавливаются более высокие допустимые риски из-за того, что их сложнее контролировать. Например, работающий с излучениями гораздо ближе к источнику и больше испытывает радиационных опасностей, чем представители общественности, поэтому он неизбежно подвергается более высокому риску последствий воздействия радиации.

    Таблица 5.6

    Критерии индивидуального риска

    Вид риска

    Великобритания

    Максимальный допустимый индивидуальный риск работника

    1 на 1000 человек.

    Допустимый риск для тех кто работает с излучением.

    от 1 на 4000 ідоіна 20000 человек.

    Максимальный допустимый общественный индивидуальный риск

    1 на 10000 человек за год

    Эталон для нового объекта и разработки

    1 на 100000 человек.

    Нидерланды

    Максимальный допустимый общественный индивидуальный риск для существующих ситуаций

    1 на 100000 человек.

    Максимальный допустимый общественный индивидуальный риск для нового развития

    1 на 1000000 человек.

    Продолжение табл. 5.6

    Вид риска

    Величина риска (усредненная за год)

    Максимальный допустимый общественный индивидуальный риск вокруг аэропортов, выше которого требуется переселение.

    1 на 20000 человек.

    Широко прийнеятний общественный индивидуальный риск

    1 на 1000000 человек.

    Австралия

    Приемлемый риск общественности в жилых зонах, далеко от опасного производства

    1 на 1000000 человек.

    Приемлемый полный риск внутри опасных индустриальных зон

    1 на 10000 человек.

    Гонг Конг

    Максимальный риск смерти от несчастного случая на опасных установках

    1 на 100000 человек.

    Основа для лимитов дозы

    Приемлемый риск человека, который работает с излучением

    1 на 10000 человек.

    Приемлемой общественный риск

    от 1 на 1000000 чел. до 1 в 100000 человек

    Предыдущие нормативы регулирования в США

    Декларируемый уровень

    4 на 1000 человек, в течение жизни (117500)

    Минимальный уровень

    1 на миллион человек, в течение жизни (1 на 70000000)

    Эксплуатация гражданских энергетических установок

    Риск мгновенной фатальности от события на реакторе

    1 на 2 млн. лиц.

    Индивидуальный риск скрытой фатальности

    2 на 1 млн. человек.

    Стандарты ЭРА

    Риск развития онкологического заболевания для индивида.

    10 -6 , в течение жизни (1 на 70000000)

    Уровень, при котором повторное воздействие в целом оправдывается.

    10 -4 , в течение жизни (1 на 700000)

    Хотя выявлены количественные критерии риска для жизни (фатальности) находятся в широком диапазоне числовых значений, некоторые важные моменты могут быть выделены, как указано ниже:

    Уровне риска в повседневной жизни является основным эталоном, на который широко ссылаются специалисты регулирования при введении стандартов риска;

    События, в результате которых один несчастный случай со смертельным выходом происходит с частотой 10 -6 (1 на млн. чел.), обычно в обществе не замечается, а события с частотой летального исхода 10 -3 расцениваются как несчастные случаи;

    эффективный декларируемый уровень индивидуального риска, при котором принимается регулятивная действие по уменьшению общественного риска, может быть идентифицирован в диапазоне 10 -4 ... 5>10 -5 год;

    эффективный минимальный уровень индивидуального риска, при котором никогда не принимается регулятивная действие по уменьшению общественного риска, может быть идентифицирован величиной 10 -7 (1 на 10 млн. чел. за год);

    эффективный декларируемый уровень может влиять количество населения, находящегося под экспозицией данной опасности, и ряд других факторов, поэтому в некоторых обстоятельствах регулятивная действие может применяться тогда, когда риск ниже, чем 10 -4 ... 5><10 -5 год;

    Приемлемый уровень риска для работающих конечно немного выше, чем риск для общественности, он иногда возможен при величине до 10 -3 за год;

    Стандарты (нормативы) для новой разработки и эксплуатационной практики обычно устанавливаются несколько выше, чем для существующих ситуаций и вмешательств, принимая во внимание относительную осуществимость снижения риска в этих разных обстоятельствах.

    При разработке проектов создания объектов, потенциально опасных для населения, уровень риска целесообразно сравнивать с минимальным уровнем фонового риска на всех уровнях, поскольку недопустимо создавать какой-либо объект лишь на том основании, что уровень риска в данном случае ниже регионального, тогда как он значительно превышает национальный уровень.

    Для территории стран бывшего СССР уровень риска (смерть от неестественных причин) близок к 10 -3 /год -1 , что на 3-5 порядков выше нормативный уровень, установленный в странах ЕС. Очевидно, что ориентироваться на этот фоновый уровень не следует. Представляется целесообразным выделить несколько уровней, на которых может быть оценен фоновый риск: мировой, национальный (уровень страны), региональный.

    Согласно современным представлениям, мероприятия по обеспечению безопасности людей планируются исходя из предположения о том, что в случае смерти человека экономический ущерб составит сумму, равную экономическом эквивалента человеческой жизни. Фундаментальные исследования этой проблемы следует осуществлять для основного критерия управления риском с использованием показателя стоимости продления жизни. Если на предыдущих стадиях анализа определено, что уровень риска для ряда районов региона превышает допустимые значения, то могут быть проведены оценки социальной значимости риска для населения в терминах суммарного экономического ущерба от гибели, травматизма людей и материальных потерь в результате чрезвычайной ситуации. Экономический эквивалент социального ущерба нелинейно связан со степенью риска. В связи с отмеченным выше положением, для расчета экономического ущерба как реально существующий уровень фонового риска рекомендуется принимать значение 10 -5 /год.

    Стандарты (нормативы) для новой разработки и эксплуатационной практики необходимо устанавливать немного выше, чем для существующих ситуаций и вмешательств, принимая во внимание относительную осуществимость снижения риска в этих разных обстоятельствах.

    Индентификация опасностей и оценка риска

    Риск (R) - количественная характеристика опасности, определяемая частотой реализацуии опасностей. Количественно он выражается формулой:

    N
    R=-
    N

    где n - число случаев проявления опасностей;
    N - возможное число случаев проявления опасностей.


    Риск обычно определяют на конкретный период времени.
    Различают риск индивидуальный и коллективный.
    Индивидуальный риск характеризует опасность для отдельного человека.
    Коллективный риск (групповой, социальный) - это риск проявления опасности того или иного вида для коллектива, группы людей, для определенной социальной или профессиональной группы людей.
    Приемлемый (допустимый) риск - это такая минимальная величина риска, которая достижима по техническим, экономическим и технологическим возможностям. Можно сказать, что приемлемый риск представляет собой некий компромисс между уровнем безопасности и возможностями его достижения.
    Повышение безопасности технических систем и снижение тем самым величины приемлемого риска экономическим методами ограничены. Большие финансовые средства, затрачиваемые на повышение безопасности технических систем, уменьшают количество средств, выделяемые на приобретение средств индивидуальной защиты, медицинское обслуживание, заработную плату и т.д. В этом случае социальной сфере производства может быть нанесен значительный ущерб.
    Величина приемлемого риска определяется в результате учета всех сфер - технической, технологической, социальной, и рассчитывается как результат оптимизации затрат на инвестиции в эти области.
    Величина приемлемого риска различна для отраслей производства, профессий, вида негативных факторов, которым он определяется.

    В Постановлении Правительства РФ от 31 августа 1999 г. N 975 "Об утверждении правил отнесения отраслей (подотраслей) экономики к классу профессионального риска (в ред. Постановления Правительства РФ от 27.05.2000 N 415) установлены 14 классов профессионального риска. Наиболее опасными являются сланцевая промышленность, строительство шахт и добыча угля подземным способом. Здесь величина приемлемого риска гораздо выше, чем для других отраслей и профессий, где количество опасностей меньше и уровень вредных факторов ниже.
    Сейчас принято считать, что в условиях техногенных опасностей (технический риск) индивидуальный риск считается приемлемым, если его величина не превышает 10-6. Эта величина используется для оценки пожарной и радиационной безопасности.
    В нашей стране средняя величина реального риска на производстве составляет 10-4, что значительно ниже величины приемлемого риска. Это говорит о том, что необходимо повышать безопасность на производстве.
    Различают также мотивированный (обоснованный) и немотивированный (необоснованный) риск. В случае производственных аварий, пожаров для спасения людей и материальных ценностей человеку приходится идти на риск, превышающий приемлемый. Это риск обоснованный, или мотивированный. В ряде случаев, например, при радиационной аварии, установлены величины мотивированного риска, превышающие приемлемый риск.
    Немотивированный (необоснованный) риск - это риск, превышающий приемлемый. Он возникает на производстве при нежелании работников соблюдать требования безопасности использовать средства защиты и т.д.
    Как показывает практика, именно по причине немотивированного риска происходит более 20% всех травм на производстве.
    Одна из главных задач системы управления охраной труда на предприятии - обеспечение уровня состояния техники безопасности в соответствии с требованиями нормативных документов.
    Техника безопасности - это система организационных и технических мероприятий и средств, предотвращающих воздействие опасных производственных факторов на работающих. Осуществление этих мероприятий составляет содержание практической деятельности предприятия (организации) в области техники безопасности.
    Совершенная техника безопасности, основанная на системе стандартов безопасности труда (ССБТ), Правилах, достижениях науки, техники, передового опыта, призвана при любых обстоятельствах, ошибках или нарушениях предупреждать аварии и несчастные случаи, сделать их невозможными. Она должна не только исключить необходимость пребывания человека в опасной зоне - пространстве, в котором постоянно действуют или могут возникнуть условия, представляющие прямую или потенциальную опасность, но и само наличие таких мест и условий.
    Первым шагом к обеспечению безопасности труда является идентификация опасностей.
    Идентификация опасностей - это выявление опасных и вредных факторов, установление причин их возникновения, пространственных и временных характеристик опасностей, вероятности, величины и последствий их проявления. Идентификация опасностей может включать оценку их воздействия на человека и определение допустимых уровней опасных и вредных производственных факторов.
    Охрана труда решает четыре основные задачи:
    - идентификация опасных и вредных производственных факторов;
    - разработка соответствующих технических мероприятий и средств защиты от опасных и вредных производственных факторов;
    - разработка организационных мероприятий по обеспечению безопасности труда и управление охраной труда на предприятии;
    - подготовка к действиям в условиях проявления опасностей.

    Условия безопасной работы.

    Основные условия безопасной работы:

    Первое условие безопасной работы - правильный подбор рабочих и инженерно-технических работников, обязанных обеспечить отвечающую требованиям Правил безопасную эксплуатацию объектов повышенной опасности.
    Установлен порядок предварительных, до приема на работу, и периодических медицинских осмотров работников (в том числе связанных с обслуживанием объектов повышенной опасности). Кроме прочих положительных показаний состояния здоровья, у них не должно быть болезней и увечий, мешающих нормальной и безопасной работе. Особое значение имеют острота зрения, слуха, отсутствие нарушений функций вестибулярной системы, отличная ориентация в обстановке, быстрая реакция и другие подобные качества, так как от этих работников зависит не только выполнение задания и производительность других звеньев технологического процесса, но и, самое главное, безопасность людей. Определен конкретный список противопоказаний, препятствующих приему на ту или иную работу, установлен порядок периодических медосмотров персонала.

    Второе условие - хорошая теоретическая и практическая подготовка, высокое профессиональное мастерство, достаточные знания производства, обслуживаемой техники, технологических процессов и требований Правил техники безопасности, обеспечивающих высокопроизводительный и безопасный труд. Выполнение этого условия должно обеспечиваться системой, порядком инструктажа, обучения и назначения кадров, предусмотренных соответствующими положениями и Правилами.
    Инструктаж персонала по охране труда и правилам техники безопасности проводится обязательно со всеми работающими, независимо от их квалификации, стажа работы, опыта, знаний.
    Общее руководство и ответственность за проведение инструктажа и обучение работающих возлагается на главного инженера предприятия, за своевременное и качественное проведение этой работы - на начальников цехов, отделов, служб, лабораторий, других руководителей. Проведение инструктажа на рабочих местах возложено на мастеров, начальников участков и других непосредственных руководителей производства.
    Инструктаж проводится вводный и на рабочем месте. Инструктаж на рабочем месте, в свою очередь, разделяется на первичный, периодический и внеочередной.
    Учет инструктажа, аттестации и переаттестации ведется в журналах или личных карточках по технике безопасности.
    Работающие в условиях повышенной опасности (на работах, к которым предъявляются повышенные требования техники безопасности) или совмещающие эти работы с основной профессией, кроме инструктажа, проходят специальное обучение, сдают экзамен квалификационной комиссии и при достаточных знаниях получают удостоверение на право самостоятельного ведения работ. Обучение по профессии и по охране труда организуется непосредственно на предприятиях или в учебных заведениях с привлечением для преподавания наиболее опытных, высококвалифицированных инженерно-технических работников и ведется по утвержденной программе, предусматривающей теоретическую и практическую подготовку рабочих.
    Теоретическая подготовка должна быть максимально приближенной к условиям производства. В ходе практического обучения на объектах с повышенной опасностью необходимо соблюдать требования Правил и инструкций о мерах безопасности, сроках обучения, стажировки и т. д. На предприятиях должен стать законом порядок, при котором к выполнению обязанностей, связанных с обслуживанием сложных агрегатов, установок и механизмов или выполнением других ответственных и опасных работ, а также обязанностей инженерно-технических работников, руководителей производства, независимо от важности участка, допускаются только лица, прошедшие специальное обучение по профессии и технике безопасности, сдавшие экзамен квалификационной комиссии и получившие удостоверение на право самостоятельной работы (или руководства работами) и назначенные соответствующим приказом, распоряжением.
    Рабочие или инженерно-технические работники, совмещающие свою основную профессию с использованием грузоподъемных кранов, других сложных машин, механизмов, аппаратуры, должны быть обучены и аттестованы с оформлением соответствующих протоколов и отметкой в личной карточке по технике безопасности. Переаттестацию рабочие проходят ежегодно, инженерно-технические работники - один раз в 3 года.

    Третьим условием безопасной работы следует считать определение специальными положениями, утвержденными в отрасли и на предприятиях (с учетом местных условий), конкретного перечня основных обязанностей в области охраны труда: руководителя и главного инженера предприятия, их заместителей, главных специалистов, начальников цехов и отделов, всех других инженерно-технических работников.

    Четвертое условие - полное соответствие зданий, сооружений, рабочих мест, оборудования, машин, оснастки, инструмента, всех других средств производства и технологических процессов требованиям соответствующих Правил техники безопасности, государственных стандартов и технических условий. Важнейшая мера в решении этого вопроса - плановая, настойчивая работа по постоянному развитию технического прогресса на основе достижений науки и техники, передового опыта, совершенствованию культуры и эстетики, имеющих решающее значение для создания комфортных и безопасных условий труда, предупреждения аварий и несчастных случаев.

    Пятое условие - одно из основных, определяющих - высокий уровень состояния техники безопасности.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Размещено на http://www.allbest.ru/

    Министерство образования Российской Федерации

    Уральский государственный экономический университет

    Центр дистанционного образования

    Курс лекций

    Безопасность жизнедеятельности

    Рецензенты:

    кафедра безопасности горного производства Уральской государственной горно-геологической академии (заведующий кафедрой доцент, канд. техн. наук Токмаков В.В.) и канд. техн. наук Новиков Л.М. (Уральский научно-исследовательский химический институт)

    Ответственные за выпуск:

    заведующий кафедрой машин и аппаратов пищевых производств, декан факультета техники и технологии пищевых производств докт. техн. наук, профессор Минухин Л.А., директор ЦДО Иванов В.М.

    Николаев А.Ф. Безопасность жизнедеятельности: Учеб. пособие. Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2010. - 88с.

    Учебное пособие для экономических специальностей разработано на основе государственных образовательных стандартов.

    В пособии излагаются основные сведения по дисциплине, которые студент обязан изучить при подготовке к испытаниям, установленным учебным планом, а также вопросы для самоконтроля при освоении учебного материала в соответствии с утвержденной программой. Пособие используется совместно с рекомендованной литературой, а также, по желанию студентов, совместно с базовым учебным материалом на дискете или лазерном диске, которые не входят в перечень учебно-методического материала, подлежащего обязательной выдаче студентам.

    безопасность жизнедеятельность чрезвычайный пожарный

    Введение

    Глава 1. Теоретические основы безопасности жизнедеятельности

    1.1 Основные понятия и определения

    1.2 Основы теории риска

    1.3 Управление безопасностью жизнедеятельности

    Вопросы для самопроверки

    Контрольные вопросы

    Глава 2. Безопасность при чрезвычайных ситуациях

    2.1 Чрезвычайные ситуации: общая характеристика

    2.2 Радиационная безопасность

    2.3 Чрезвычайные ситуации с выбросом аварийных химически опасных веществ

    2.4 Защита населения при чрезвычайных ситуациях

    Вопросы для самопроверки

    Контрольные вопросы

    Глава 3. Безопасность в условиях производства (охрана труда)

    3.1 Законодательная и нормативная основа охраны труда

    3.2 Система управления охраной труда

    3.3 Производственный травматизм и профзаболевания

    3.4 Основные требования к предприятиям

    3.5 Воздух рабочей зоны

    3.6 Защита от производственных вредностей

    3.7 Производственное освещение и техническая эстетика

    3.8 Оценка условий труда и аттестация рабочих мест

    Вопросы для самопроверки

    Контрольные вопросы

    Глава 4. Техника безопасности

    4.1 Общие требования безопасности к оборудованию

    4.2 Электробезопасность

    4.3 Безопасность при погрузочно-разгрузочных работах

    Вопросы для самопроверки

    Контрольные вопросы

    Глава 5. Пожарная безопасность

    5.1 Горение и пожарная опасность горючих веществ

    5.2 Пожарная профилактика при эксплуатации зданий

    5.3 Средства пожаротушения

    Вопросы для самопроверки

    Контрольные вопросы

    Контрольная работа

    Ответы на вопросы для самопроверки

    Приложение. Список сокращений

    Введение

    Человек живет в мире, полном опасностей. В условиях производства безопасность обеспечивается охраной труда (ОТ), в чрезвычайных ситуациях? гражданской обороной (ГО), в любых условиях обитания -- безопасностью жизнедеятельности (БЖД). По данным Международной организации труда (МОТ), ежегодно в мире на производстве погибает свыше 200 тыс. чел., 15 млн. чел. травмируются, сотни тысяч становятся инвалидами.

    В 1992 г. при несчастных случаях (НС) на производстве из 1000 чел. работающих погибло в России 0,130 чел.; в 1993 г. -- 0,140; в США -- 0,054; в Японии -- 0,020; в Великобритании -- 0,016. В 1997 г. в России от НС на производстве пострадало 240 тыс. чел., погибло?6 тыс. чел.

    Основу знаний в учебном пособии по БЖД для подготовки по экономическим специальностям в Центре дистанционного образования УрГЭУ составляют знания, ранее излагавшиеся в курсах "Охрана труда" и "Гражданская оборона".

    В конце глав имеются вопросы для самопроверки (промежуточный тест) и контрольные вопросы -- окончательный тест, по результатам которого, а также с учетом выполнения контрольной работы студент получает зачет по БЖД.

    Порядок изучения: изучается теоретический материал главы, затем -- самопроверка полученных знаний путем ответа на вопросы; после изучения всех глав выполняется контрольная работа.

    Глава 1. Теоретические основы безопасности жизнедеятельности

    1.1 Основные понятия и определения

    В центре внимания курса "Безопасность жизнедеятельности" (БЖД) находится человек. Все виды человеческой активности (работа, отдых, быт, занятия спортом и т.д.) образуют понятие деятельности. Модель процесса деятельности состоит из двух элементов: человека и среды, имеющих прямые связи -- воздействие человека на среду, и обратные, обусловленные всеобщим законом реактивности материального мира. Кроме того, система "человек-среда" двухцелевая: достижение определенного эффекта и исключение нежелательных последствий (ущерба здоровью и жизни человека, пожаров, аварий, катастроф и т.п.).

    Любая деятельность потенциально опасна -- это аксиома. Но уровнем опасности (риском) можно управлять, доводя его до приемлемого значения, так как абсолютная безопасность недостижима.

    Безопасность -- это состояние деятельности, при котором с определенной вероятностью исключено проявление опасностей. Таким образом, безопасность -- это цель, а наука БЖД -- это средства, пути, методы ее достижения. БЖД базируется на достижениях психологии, физиологии человека, охраны труда, экологии, эргономики (науки, изучающей деятельность человека с целью оптимизации орудий, условий и процесса труда и обеспечения удобств для развития способностей человека), экономики и др.

    Опасность -- это явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека. Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики, не соответствующие условиям жизнедеятельности человека. Опасности бывают потенциальные (скрытые) и реальные. Для реализации потенциальной опасности нужны условия, называемые причинами.

    Таксономия -- наука о классификации и систематизации сложных явлений, понятий, объектов. По воздействию опасности делятся на физические, химические, биологические, психофизиологические. По времени проявления опасности делятся на импульсные (вызываемые импульсом -- толчком), лавинообразные (стремительно движущиеся, растущие), кумулятивные (с концентрацией энергии в одном направлении), взрывные, долговременные.

    По характеру воздействия на человека опасности делятся на активные, пассивные, локальные, временные, физиологические, генетические. Пассивные -- это опасности, активизирующиеся за счет энергии человека: острые неподвижные элементы, неровности поверхности, по которой перемещается человек, уклоны, подъемы, малое трение на опорной поверхности и др.

    Различают априорные признаки опасности -- так называемые предвестники, т. е. получаемые заранее, и апостериорные -- возникающие в результате реализации опасности.

    Номенклатура -- это перечень названий, терминов, систематизированных по определенному признаку. Квантификация -- это количественные характеристики сложных, качественно определяемых понятий; применяются численные, балльные и другие приемы квантификации; наиболее распространенная оценка опасности -- риск. Идентификация опасности -- это процесс обнаружения и установления количественных, временных, пространственных и иных ее характеристик. При этом выявляются номенклатура опасностей, вероятность их проявления (т. е. осуществляется их квантификация), пространственная локализация (т. е. координаты), возможный ущерб и другие параметры.

    Опасность, причины, последствия являются основными характеристиками НС, чрезвычайной ситуации (ЧС), пожара и т.д. Триада "опасность - причины - нежелательные последствия" -- это логический процесс развития потенциальной опасности впоследствии. Как правило, этот процесс является многопричинным, т. е. опасность может реализовываться по многим причинам.

    1.2 Основы теории риска

    Первая стадия оценки опасности -- это качественный анализ, т. е. ее идентификация во временно-пространственных координатах: а) установление типа опасности по их номенклатуре; б) установление связей с другими опасностями методами таксономии; в) выявление характера ущерба по таксономии и номенклатуре ущербов.

    Вторая стадия оценки -- это количественный анализ, т. е. выбор метода квантификации и оценка пределов изменения опасности: а) суммирование опасностей; б) определение взаимодействия опасностей; при этом возможны эффекты синергический (совместное действие опасностей, превышающее действие их в отдельности) и ингибирующий (совместное действие опасностей, уменьшающее действие их в отдельности); в) оценка ущерба; г) выявление причин опасности и ущерба.

    Численной мерой опасности или возможности нанесения ущерба человеку принят риск. Смысл риска может быть различным:

    1) для каждой опасной связи в эргатической системе, т. е. системе, одним из элементов которой является человек, индивидуальный риск для i - го человека от j - й опасности есть годовая частота доли реализации опасности:

    Год -1 , (1.1)

    где n j -- количество пострадавших от j-го вида опасности, чел.;

    Nj -- количество подвергшихся j -му виду опасности, чел.;

    Ф -- время, за которое произошли события, год;

    2) для нескольких видов опасности индивидуальный риск человека в ноксосфере -- пространстве, в котором постоянно существуют или периодически возникают опасности:

    ri.m = k У rij , (1.2)

    где m -- количество опасностей в ноксосфере;

    к -- коэффициент взаимодействия опасностей;

    3) для группы людей -- коллективный риск от j-й опасности:

    rn.j = У rij , (1.3)

    где n-- количество людей в группе;

    4) коллективный риск в ноксосфере:

    Rn.m = k УУ rij (1.4)

    Ущерб для человека может быть разнообразным: риск гибели, риск травмы, риск болезни и т.д. Для сравнения любых видов опасности определяют риск летального исхода от них r ij лет. Тогда ущерб от реализации опасности будет:

    x r i.j = rij лет?xo, (1.5)

    где Хo -- стоимость человеческой жизни.

    При ri.j лет = 1 имеем Хrij = Хo. Т. е. ущерб, связанный с гибелью человека, есть стоимость человеческой жизни, и значит, риск -- категория экономическая.

    Приемлемый (или допустимый) риск -- это условно безопасная величина риска, устанавливаемая государством и определяемая уровнем его развития. Она может быть договорная, нормируемая или узаконенная. По международной договоренности принято считать, что технический риск должен быть пределах 10 -7 …10 -6 год -1 , приемлемый 10 -6 год -1 и менее, неприемлемый 10 -3 год -1 и более.

    Фоновый риск -- это риск в ноксосфере на большой относительно безопасной территории. Изолинии риска (изориски) -- это линии одинаковых рисков на местности (см. рис. 1.1).

    1 -- очаг повышенного риска;

    2-- линия риска r = 10 r доп;

    3 -- линия допустимого риска r доп;

    4-- линия фонового риска r фон.

    Рис. 1.1. Изолинии риска на местности

    Риск может возрастать при увеличении объема и локальной концентрации производства, увеличении удельной мощности оборудования, плотности материальных ресурсов или финансовых вложений, общей перегрузке био-- и ноосферы (эволюционного состояния биосферы, при котором деятельность человека становится решающим фактором ее развития).

    Пути уменьшения риска: устранение причин возрастания риска (по предыдущему перечню); совершенствование технических систем; профессионализм обслуживающего персонала.

    1.3 Управление безопасностью жизнедеятельности

    Существуют классификации принципов обеспечения безопасности по нескольким признакам. Ориентирующими принципами являются: 1) активность оператора; 2) гуманизация деятельности (утверждение ценности человека независимо от его общественного положения); 3) деструкция, т. е. разделение целого на части; 4) категорирование, т. е. деление объектов по признакам опасностей (например, категории помещений по пожароопасности -- А, Б, В, Г.Д); 5) ликвидация опасности (не бросать в панике управление процессом, а ликвидировать опасность); 6)системность при предотвращении опасности; 7) перевод опасности на меньший ущерб.

    Технические принципы: 1) предохранительная блокировка оборудования; 2) вакуумирование оборудования, т. е. создание в нем вакуума, чтобы вредности не выходили в рабочую зону; 3) герметизация оборудования -- с той же целью; 4) защита расстоянием (удаление от опасной зоны); 5) компрессия (создание избыточного давления в помещении, чтобы вредности не входили в него); 6) обеспечение прочности оборудования, сооружений; 7) введение в систему слабого звена, воспринимающего изменение параметра и предотвращающего опасность (плавкие вставки, предохранительные клапаны, разрывные мембраны и др.); 8) флегматизация -- добавление к взрывоопасному веществу флегматизатора, уменьшающего чувствительность к внешним импульсам (ударным, электрическим и др.); 9) экранирование.

    Организационные принципы: 1) защита временем (выждать время, пока опасность самоликвидируется или уменьшится); 2) информированность персонала (обучение, инструктаж, предупредительные надписи); 3) резервирование; 4) нормирование, обеспечивающее защиту от опасности; это предельно допустимые уровни (ПДУ), концентрации (ПДК), нормы переноса тяжести, продолжительности труда и др.; 5) подбор кадров; ?6) эргономичность.

    Методы обеспечения безопасности гомосферы и ноксосферы (гомосфера -- это нижние слои атмосферы до 100 км; в БЖД гомосфера -- рабочая зона, где трудится человек): 1) пространственное или временное разделение гомосферы и ноксосферы дистанционным управлением, автоматизацией и др.; 2) нормализация ноксосферы средствами коллективной защиты (СКЗ) от шума, газа, пыли и др.; 3) адаптация человека к ноксосфере, повышение его защищенности профотбором, обучением, психологическим воздействием, средствами индивидуальной защиты (СИЗ).

    Перманентный (т. е. постоянный) риск и возможность воздействия на уровень опасности позволяют управлять безопасностью. Управление БЖД -- это воздействие на систему "человек-среда" для достижения заданных результатов, перевод объекта из опасного состояния в менее опасное при соблюдении экономической и технической целесообразности.

    Функции управления БЖД: 1) анализ состояния объекта; 2) прогнозирование ситуации и планирование мероприятий для достижения целей управления; 3) организация управляемой и управляющей систем с обратной связью от управляемых объектов к управляющему органу; 4) контроль за выполнением управленческих решений; 5) определение эффективности мероприятий; ?6) стимулирование участников управления творчески решать проблемы.

    Средства управления БЖД: 1) образование, воспитание культуры безопасного поведения населения; 2) профессиональное обучение и отбор; 3) психологическое воздействие на субъекты управления; 4) рационализация режимов труда и отдыха; 5) технические и организационные СКЗ и СИЗ; ?6) система льгот, компенсаций и др.

    Вопросы для самопроверки

    1.1. Каковы основные цели человека в системе «человек - среда»?

    1.2. Что такое опасность?

    1.3. Что такое приемлемый (или допустимый) риск?

    1.4. Что означает защита временем?

    Контрольные вопросы

    1.5. Как называется наука о классификации сложных явлений?

    1.6. Какая опасность может реализоваться в будущем?

    1.7. Укажите опасности, происходящие по вине человека.

    1.8. Какие опасности связаны с отношениями в обществе?

    1.9. Назовите опасности, являющиеся нарастающими.

    1.10. Какие опасности характеризуются концентрацией энергии?

    1.11. Какие опасности активизируются за счет энергии человека?

    1.12. Какие признаки опасности известны заранее?

    1.13 . Какие признаки опасности выявляются после ее реализации?

    1.14. Какой эффект совместного действия опасностей выше их действия в отдельности?

    1.15. Какой эффект совместного действия опасностей меньше их действия в отдельности?

    1.16. Какое понятие риска считается наиболее признанным?

    1.17. Как обозначается наиболее признанное понятие риска?

    1.18. Какова размерность риска?

    1.19. Как называется система, один из элементов которой -- человек?

    1.20. Как называется пространство с опасностями?

    1.21. Какой риск имеется на почти безопасной территории?

    1.22. Как называются линии одинаковых рисков на местности?

    1.23. Как называется новое, эволюционное состояние биосферы?

    1.24. Как называется наука об удобствах труда человека?

    1.25. Укажите распределение объектов по признакам опасности?

    1.26. Как называется создание избыточного давления в помещении?

    1.27. Как называется установление величин параметров для защиты от опасности?

    1.28. Как называется зона, где трудится человек?

    1.29. Укажите метод обеспечения безопасности с помощью СКЗ от шума, газа, пыли и др.

    Глава 2. Безопасность при чрезвычайных ситуациях

    2.1 Чрезвычайные ситуации: общая характеристика

    Чрезвычайное событие -- это техногенное, антропогенное или природное происшествие с резким отклонением от норм процессов или явлений, оказывающее значительное отрицательное воздействие на жизнедеятельность человека, экономику, социальную и природную среду. Чрезвычайные условия -- это черты обстановки, сложившейся на объекте, в регионе в результате чрезвычайного события и других факторов. Чрезвычайная ситуация (ЧС) -- это совокупность обстоятельств, сложившихся под влиянием чрезвычайных условий в результате чрезвычайного события. Авария -- это чрезвычайное событие по техногенным причинам и из-за внешних воздействий, состоящее в повреждении или разрушении технических устройств или сооружений. Катастрофа -- это авария с человеческими жертвами, значительным материальным ущербом и другими тяжелыми последствиями.

    Признаки или результаты ЧС: опасность для жизни и здоровья многих людей; нарушение экологического равновесия; выход из строя систем жизнеобеспечения и управления; полное или частичное прекращение хозяйственной деятельности; значительный материальный ущерб; привлечение больших сил и средств для спасения людей и ликвидации последствий; психологический дискомфорт для многих людей.

    Количественные меры ЧС: количество людей в зоне ЧС, количество пострадавших, количество смертельных исходов, финансовый ущерб и др.

    Стадии ЧС независимы от ее типа: 1) зарождение -- активизация неблагоприятных природных процессов, накопление проектно-производственных дефектов и технических неисправностей, сбои в работе инженерно-технического персонала и т. п.; 2) инициирование -- начало реализации ЧС из-за инициирующего события; 3) кульминационная -- высвобождение неблагоприятно воздействующих энергии или вещества, т. е. происходит собственно чрезвычайное событие; ЧС достигает апогея или под воздействием людей переходит в четвертую стадию; 4) затухание -- действие остаточных факторов поражения; это период от перекрытия источника опасности, т. е. локализации ЧС, до полной ликвидации ее прямых и косвенных последствий (вторичных, третичных и т.д.); продолжительность стадии может быть годы и десятилетия.

    Типы задач при защите человека в ЧС: 1) эвакуация людей из района действия опасных факторов; 2) помощь подвергшимся воздействию ЧС, но лишенным возможности спасаться самостоятельно (дети, старики, больные); 3) самоспасение, если внешняя помощь не оказана вовремя; 4) обеспечение безопасности самих спасателей.

    По характеру генезиса (происхождения) ЧС могут быть: 1) стихийные бедствия или природные ЧС -- это землетрясения, наводнения, эпидемии (распространение инфекционных болезней человека, превышающее обычное для данной местности), эпизоотии (аналогичное распространение инфекционных болезней животных), эпифитотии (аналогичное распространение инфекционных болезней растений) и т.п.; 2) техногенные -- это выход их строя машин (преобразующих энергию, материалы, информацию), механизмов (преобразующих виды движения твердых тел), трубопроводов при их эксплуатации, сопровождающийся нарушениями производственного процесса со взрывами, пожарами, радиоактивным, химическим заражением больших территорий, групповым поражением или гибелью людей; 3) антропогенные -- следствие ошибочных действий персонала; 4) экологические -- изменения состояния суши, атмосферы, гидросферы и биосферы с резко отрицательным влиянием на здоровье людей, среду обитания, экономику, генофонд (совокупность генов, которые имеются у особей данной популяции); 5) социальные -- это события в социуме (человеческой общности -- племени, нации) -- грабежи, насилия, межнациональные конфликты с применением силы, межгосударственные -- с применением оружия.

    Границы между типами ЧС условные.

    2.2 Радиационная безопасность

    Один из видов техногенных ЧС -- взрыв на атомной электростанции (АЭС) или другом объекте с выбросом радиоактивных веществ (РВ), в общем случае подобный взрыву ядерного оружия. Мощность ядерного взрыва характеризуется тротиловым эквивалентом -- количеством взрывчатого вещества тротила, при взрыве которого выделяется столько же энергии, сколько и при данном ядерном взрыве. Поражающими факторами ядерного взрыва или взрыва с выбросом РВ могут быть: ударная волна, световое (или тепловое) излучение, проникающая радиация (или первичное ядерное излучение), радиоактивное заражение атмосферы и местности (или вторичное ядерное излучение) и электромагнитный импульс.

    Ударная волна -- это сферический слой резко сжатой среды, распространяющийся от места взрыва; несет ~50% энергии ядерного взрыва, 8 ? 10% -- нейтронного. Воздушная ударная волна -- это высокое давление газообразных продуктов ядерного взрыва; в центре ядерного взрыва 20 кт оно достигает 10 11 кПа, на расстоянии 0,7 км -- около 100 кПа, на расстоянии 3 км -- около 10кПа. Передняя граница сжатого воздуха с резким увеличением давления называется фронтом ударной волны . Вблизи от центра взрыва скорость ударной волны в несколько раз превышает скорость звука в воздухе, равную 331 м/с. Длительность фазы сжатия, т. е. действия избыточного давления? несколько секунд. За сжатием следует фаза разрежения, когда давление ниже атмосферного. Взрыв называется воздушным, если происходит на высоте до 10 км; наземным -- на поверхности земли; подземным -- ниже поверхности земли.

    От воздушной ударной волны из-за высокого избыточного давления люди, находящиеся на открытой местности, могут получить поражения от легких до смертельных. Здания могут получить разрушения от легких (повреждаются второстепенные элементы, например кровля, остекление) до полных (при которых разрушаются все несущие конструкции).

    Световое или тепловое излучение несет 30 ? 40% энергии ядерного взрыва; это поток лучистой энергии, включающий в себя: 1) видимые лучи; 2) ультрафиолетовые лучи -- невидимое электромагнитное излучение; в спектре -- выше фиолетового; обладает сильным химическим и биологическим действием; 3) инфракрасные лучи -- невидимое электромагнитное излучение; в спектре -- под красным участком.

    Источник светового излучения - светлая область взрыва из нагретых? до 8000 ? 10000 0 С веществ ядерного боеприпаса или того, что взорвалось, а также воздуха и грунта (при наземном взрыве). Продолжительность излучения (до десятков секунд) зависит от мощности взрыва. Поражающее действие - световой импульс (Дж/м 2) зависит от мощности и вида взрыва, ослабления излучения в атмосфере и обратно пропорционален квадрату расстояния от места взрыва. Радиус действия светового излучения больше, чем для ударной волны.

    Световое излучение поражает глаза, воспламеняет одежду, обжигает открытые участки тела от покраснения кожи до обугливания. В зависимости от свойств материалов они оплавляются, обугливаются или воспламеняются, что ведет к пожарам.

    Проникающая радиация или первичное ядерное излучение -- это поток?-лучей и нейтронов в воздухе из разрушенной ядерной установки или факела выброса над ней; несет ~5% энергии ядерного взрыва или 85% -- нейтронного. Источник радиации -- ядерная реакция с самопроизвольным превращением ядер атомов одних элементов в другие.

    Лучи -- это электромагнитное излучение в виде сгустков энергии -- квантов, по длине волны и частоте колебаний близкое к рентгеновским лучам, лежащим в спектре выше ультрафиолетовых. Нейтроны -- это ядерные частицы, не имеющие заряда. Нейтроны и?-лучи обладают высокой проникающей способностью и опасны даже при внешнем облучении (?-лучи проходят в воздухе несколько сот метров).

    Радиоактивное заражение атмосферы и местности иливторичное ядерное излучение (~15% энергии ядерного взрыва) возникает при выпадении РВ из облака, образовавшегося над ядерным взрывом или разрушенным ядерным реактором. Распадаясь в воздухе, осев на землю, РВ испускают? и?-частицы и?-лучи. ? - частицы -- это поток ядер гелия, возникающих при ядерных превращениях; проникающая способность -- несколько сантиметров в воздухе, но высокая ионизирующая способность, поэтому они наиболее опасны при внутреннем облучении, попадая в организм с воздухом, пищей и водой. ?-частицы -- это поток электронов; проникающая способность в воздухе -- несколько метров; от облучения?-частицами эффективно защищает обычная одежда; на открытых участках тела могут быть радиационные ожоги.

    И?-частицы, ?-лучи, нейтроны ионизируют среду, т. е. разбивают атомы и молекулы веществ на разнополярные ионы, поэтому их называют ионизирующим излучением (ИИ). На человека оно воздействует тремя путями: 1) внешнее облучение от радиоактивного облака и РВ, осевших на землю, т. е. воздействие через кожу; 2) внутреннее облучение при вдыхании РВ, выпадающих из облака, и нуклидов, вторично попавших в воздух с загрязненной поверхности. Нуклид -- это атом с различным числом протонов и нейтронов в ядре, способный к радиоактивному распаду; 3) внутреннее облучение от загрязненных пищи и воды, т. е. через желудочно-кишечный тракт.

    Взаимодействие ИИ с живым организмом приводит к образованию ионов, разрыву молекулярных связей и образованию в нем новых, несвойственных ему химических соединений. Излучения различаются по степени ионизации среды и лучевого поражения при одинаковой поглощенной тканями энергии; если эту способность? - и рентгеновских лучей принять за 1, то для нейтронов будет 10, для?-частиц -- 20. Эти величины названы коэффициентами качества (или взвешивающими коэффициентами) излучения Q .

    Различают следующие виды радиационных доз:

    1) экспозиционная -- это способность?-лучей ионизировать воздух. В системе интернациональной (СИ) единица измерения кулон/кг (Кл/кг). В радиобиологии -- внесистемная единица рентген (Р) -- это количество?-излучения, которое при температуре 0°С и давлении 760 мм рт. ст создает в 1 смі сухого воздуха 2?10 9 пар ионов. 1Р = 2,58?10 -4 Кл/кг. По этой дозе судят о болезнетворности?-излучения. На свойстве?-лучей ионизировать воздух основаны конструкции дозиметров -- измерителей мощности дозы;

    2) поглощенная -- это количество энергии всех видов излучения, поглощенной единицей массы тела. В СИ единица измерения грей (Гр). 1 Гр равен энергии в 1 джоуль (Дж) любого излучения, переданной массе вещества в 1 кг. 1 Гр = 1Дж/кг = 100 Р. Внесистемная единица - рад (радиационная адсорбированная, т. е. поглощенная доза); 1Гр=100 рад;

    3) эквивалентная -- это поглощенная доза D погл, умноженная на коэффициент качества (или взвешивающий коэффициент) Q данного ИИ:

    Н = D погл? Q. (2.1)

    В СИ единица измерения зиверт (Зв). 1 Зв = 1 Дж/кг=100Р. Внесистемная единица -- бэр (биологический эквивалент рентгена) -- это количество излучения, биологический эффект которого равен воздействию 1Р;

    4) разные части тела по-разному чувствительны к излучению, поэтому используется коэффициент радиационного риска (или взвешивающий коэффициент) Кр.р для данного органа или ткани: щитовидной железы -- 0,05; красного кровяного мозга и легких -- 0,12; молочной железы -- 0,15; гонадов -- яичников (женских) и семенников (мужских) -- 0, 25 и т.д. Умножив эквивалентные дозы на Кр.р и просуммировав по всему организму, получают эффективную дозу -- это суммарный эффект облучения; измеряется в зивертах (Зв);

    5) предельно допустимая доза (ПДД) -- это наибольшая эквивалентная доза за год, при равномерном воздействии в течение 50 лет не вызывающая в здоровье человека неблагоприятных изменений.

    Степень опасности РВ на местности (т. е. степень ее загрязненности РВ) оценивается внесистемной единицей кюри (Кu) -- это количество РВ, в котором за одну секунду происходит 37?10 9 ядерных распадов или беккерелей. С загрязненной РВ территории временно отселяют население, если радиоактивность по цезию-137 больше или равна 15 Кu/кмІ, по стронцию-90 больше или равна 3 Кu/кмІ. Заражение местности РВ характеризуют также мощностью дозы -- количеством излучения в единицу времени (Р/ч). 1 Кu/мІ ?10 Р/ч. Мощность дозы на высоте 1 м от поверхности земли называется уровнем радиации (с течением времени снижается), а в 1 ? 2 см от поверхности предметов, одежды, продовольствия, воды, кожных покровов людей и животных -- степенью заражения.

    При разрушении ядерных реакторов радиоактивные частицы мелкие, образуются также газообразные радиоактивные облака; обычные СИЗ органов дыхания не могут полностью задержать такие частицы. При ядерном взрыве (боевом) частицы более крупные, поэтому воздух хорошо фильтруется СИЗ и даже носоглоткой человека, а с поверхности одежды и техники пыль легко удаляется. Поэтому при авариях на АЭС опасны внутреннее и внешнее облучение, а при ядерном взрыве -- в основном, внешнее.

    В процессе исторического развития человек постоянно подвергался воздействию природных источников ИИ: космической радиации, наземных естественных источников, пищи и выделяющегося всюду из земли невидимого, без запаха, тяжелого газа радона -- наиболее весомого источника ИИ (~37% суммарного излучения природных и искусственных источников). А в целом природные источники излучения дают ~ 0,2 бэр/год, искусственные ~0,2 бэр/год: медицинские приборы, полеты в самолете, телевизор, испытания ядерного оружия, РВ на производстве (атомная энергетика, радиоизотопные контрольно-измерительные приборы).

    "Нормами радиационной безопасности" (НРБ-96) предусмотрены принципы радиационной безопасности: 1) нормирования -- непревышение дозового предела; 2) обоснования -- исключение необоснованного облучения, если польза не превышает риск возможного вреда; 3) оптимизации -- снижение облучения до возможно низкого уровня.

    По возможности облучения всего тела население делится на категории:

    А -- персонал, работающий с источниками ИИ; ПДД = 5 бэр/ год.

    Б -- это персонал и население, которые не работают с ИИ, но при проживании или работе могут подвергаться их воздействию; установлен предел дозы (ПД) -- предельная эквивалентная доза за жизнь; он определяется по усредненной дозе внешнего облучения, уровням радиоактивных выбросов и загрязнения среды. (ПД = 0,5 бэр/год);

    В -- остальное население; дозовые пределы устанавливаются Минздравом РФ по обстановке; на территории, загрязненной РВ, ПД = 35 бэр за жизнь; он не включает дозу от медицинских исследований и увеличения естественного фона.

    В особых случаях (спасение людей, предотвращение аварий и переоблучения многочисленного контингента) с письменного разрешения администрации и согласия исполнителя допускается планируемое повышение ПДД в 2 раза в каждом случае или в 5 раз на протяжении всей работы. Норма 25 бэр была для ликвидаторов аварии на Чернобыльской АЭС (ЧАЭС) Планируемое повышение ПДД не разрешается, если работник ранее получил дозу выше годовой в 5 раз.

    НРБ-96 вводят основные дозовые пределы (табл. 2.1).

    Таблица 2.1. Основные дозовые пределы облучения

    Примечания: * Для персонала категории Б -- не более 1/4 значений для катег о рии А. ** В слое толщиной 5 мг/см 2 , на ладонях 40 мг/см 2 .

    При передозировке воздействия ИИ возникает лучевая болезнь -- детерминированные, нестохастические пороговые эффекты (стохастические - случайные, вероятностные): 1) острая лучевая болезнь (ОЛБ) -- при однократных больших дозах облучения в короткие сроки (поглощенная доза выше 0,25 Гр); 2) хроническая -- при многократных небольших дозах, но выше ПДД.

    При малых дозах могут развиться стохастические беспороговые эффекты: опухоли; лейкозы (лейкемия, белокровие) -- заболевания кроветворной системы; генетические дефекты.

    Этапы развития ОЛБ: 1)поглощение излучения тканями; 2) физико-химические процессы в тканях: ионизация среды и радиолиз воды (распад под действием ИИ). Образовавшиеся ионы и оторванные от атомов электроны образуют перекисные соединения -- перекись водорода и более сильные окислители; 3) биологический эффект: перекисные соединения губят часть клеток; изменяются биохимические, иммунные и другие реакции, что дает полиморфизм клинической картины, а в тяжелых случаях - смерть (морфизм-- форма, вид; поли… -- много…). Этапы 1-й, 2-й и часть 3-го скоротечны -- наносекунды (нано -- 10 -9).

    Клинические формы и тяжесть ОЛБ: 1) при поглощенной дозе 1 ? 10 Гр клиническая форма костномозговая, основное -- поражение кроветворной ткани; при дозе 1 ? 2 Гр степень тяжести I (легкая), прогноз абсолютно благоприятный; при дозе 6 ? 10 Гр степень тяжести IV (крайне тяжелая), прогноз неблагоприятный; 2) при дозах 10 ? 20 Гр клиническая форма кишечная -- также поражается кишечный эпителий (ткань, покрывающая кожу, роговицу глаз, все полости организма), вызывая смерть еще до нарушений в кроветворении; степень тяжести IV, прогноз абсолютно неблагоприятный; 3) при дозах более 20 Гр в основном поражаются сосуды и центральная нервная система (ЦНС), клинические формы токсемическая (сосудистая) и церебральная (относящаяся к головному мозгу), степень тяжести IV , прогноз абсолютно неблагоприятный.

    Фазность ОЛБ для III степени тяжести (тяжелой): 1) первичная реакция -- до 3 ? 4 суток; 2) скрытый, т. е. латентный период -- 1 ? 2 недели; 3) разгар заболевания -- 3 ? 4 недели; 4) восстановление -- ???6 ? 12 месяцев, возможны рецидивы (возврат).

    Для I и II степеней первые две фазы увеличиваются, а для IV -- резко сокращаются. Первичная реакция -- сразу или через несколько часов после облучения; чем она раньше, тем тяжелее ОЛБ; симптомы: тошнота и рвота, слабость, головная боль, головокружение, возбуждение психики, сменяемое угнетением, жажда; температура тела нормальная; в тяжелых случаях -- одышка, потеря сознания. В скрытый период -- мобилизация защитных и компенсаторных механизмов; первичные симптомы исчезают, но изменения в кроветворных органах и биохимических процессах прогрессируют. В разгар заболевания -- ухудшение самочувствия и полиморфизм клинической картины из-за поражения всех органов и систем. Выздоровление медленное, долго сохраняются нарушения в функциях органов. Отдаленные последствия ОЛБ (через многие годы) -- катаракта (помутнение хрусталика глаза), опухоли, лейкозы, генетические нарушения.

    В первую очередь при радиационном поражении необходима эвакуация из зоны заражения, как можно раньше санитарная обработка: сначала помыться холодной водой с моющими средствами, чтобы поры кожи закрылись, а пыль смылась, потом горячей, чтобы поры открылись и смыть остатки пыли, затем опять холодной, чтобы поры закрылись. При рвоте показаны этаперазин по одной таблетке (успокаивающее средство), экстракт валерианы и др. При сердечно-сосудистой слабости -- по 20 ? 30 капель кордиамина. Профилактика радиационных поражений -- это соблюдение правил охраны труда и дозиметрический контроль за работающими с ИИ, систематическое медицинское наблюдение. При угрозе заражения радионуклидами или внешнего облучения -- прием радиопротекторов, снижающих воздействие излучения: йодистого калия и цистамина. Эффективны для защиты от РВ, попавших в организм, комплексоны (органические соединения, связывающие ионы металлов в комплексы), адсорбенты, поглощающие другие вещества из раствора или газа; они способствуют выведению радионуклидов из организма.

    ЧС с выбросом РВ возможны при авариях на АЭС, предприятиях ядерно-топливного цикла атомной энергетики, на транспорте с ядерными энергетическими установками или при перевозке РВ, при промышленных или испытательных ядерных взрывах.

    Международной комиссией по радиационной защите (МКРЗ) и Всемирной организацией здравоохранения (ВОЗ) установлены этапы аварии на радиационно-опасном объекте (РОО): 1) начальный -- угроза выброса РВ и первые часы после выброса; 2) первичной ликвидации последствий аварии -- от нескольких суток до месяца, когда радионуклиды осели на землю; 3) проведения и завершения работ по ликвидации аварии.

    Масштабы выбросов РВ при аварии на АЭС можно представить по катастрофе на ЧАЭС (о причинах катастрофы существуют различные версии). Выбросы продолжались с 26 апреля по 7 мая 1986г; рассеялось 2 ??? 6% от имевшихся в 4-м блоке ~ 200 т радиоактивного топлива, т. е. 4 ? 12 т. Произошло радиоактивное загрязнение с уровнем радиации по цезию-137 (Cs-137) более 5 Кu/км 2 около 28 тыс. км 2 , а всего 56 тыс. км 2 -- это области Белоруссии, Украины, России. Загрязнения обнаруживались от Сухуми до Прибалтики, в Финляндии и Швеции, Франции (о?в Корсика). Облучено 3 млн. чел., в том числе в Белоруссии -- 2, 2 млн. чел. или каждый пятый житель, из них 800 тыс. -- дети. В ликвидации аварии участвовало 280 тыс. чел. ("ликвидаторы"), из них к апрелю 2001 г. умерло 15 тыс. чел., 50 тыс. чел. стали инвалидами. Чернобыльская катастрофа, крупнейшая в атомной энергетике, привела к неблагоприятным экологическим последствиям, потере человеческих жизней, экономическому ущербу, вызвала тревогу в мире. Германия решила закрыть свои АЭС к 2018 г. (Австрия закрыла в 1978 г.).

    Разрушенный ядерный реактор ЧАЭС замурован в бетонный саркофаг, но все равно представляет угрозу. 15 декабря 2000 г. Украина закрыла Чернобыльскую АЭС.

    Длительность поражающего действия радионуклидов определяется их периодом полураспада, то есть временем, за которое распадается половина имеющегося их количества. У йода-131 этот период 8,1 суток, у стронция-90 около 28? лет, у цезия-137 равен 30 годам, у плутония-239 около 24400 лет.

    Особенности очага поражения при аварии на АЭС: большая площадь заражения местности РВ -- десятки тысяч квадратных километров; длительное поражающее действие.

    В Уральском регионе наиболее потенциально опасны в радиационном отношении Белоярская атомная электростанция (БАЭС; 45 км от Екатеринбурга) и производственное объединение "Маяк" в Челябинской области (г.Кыштым). БАЭС построена в1964 г. В 1976 г. из-за неисправности приборов и ошибочных действий персонала произошел массовый пережег технологических каналов; пожар ликвидирован, выброса РВ не произошло. ПО"Маяк" действует с 1949 г. В 1957 г. из-за отсутствия контроля за жидкими радиоактивными отходами произошел тепловой взрыв в их хранилище (Кыштымский взрыв); выброс РВ составил 20 млн кюри (при аварии на ЧАЭС выброшено 50 млн кюри). При Кыштымском взрыве 2 млн кюри рассеялось по Челябинской и Свердловской областям в виде Восточно-Уральского радиоактивного следа (ВУРС). На этих площадях проживало 270 тыс. чел. Всего на ПО«Маяк» при трех авариях было выброшено около 150 млн кюри РВ, заражено 26700 км 2 территории, облучено 437 тыс. чел.

    Таким образом, опасность радиоактивного заражения на Урале сохраняется.

    2. 3 Чрезвычайные ситуации с выбросом аварийных химически опасных веществ

    Предельно допустимой концентрацией (ПДК) вредных веществ в воздухе считается такая, которая при ежедневном воздействии в течение смены на протяжении всего трудового стажа и в отдаленные сроки жизни настоящего и последующих поколений не вызывает отклонений здоровья. Вредные для здоровья людей химические вещества, оказывающиеся в воздухе преимущественно в результате аварий, называются аварийными химически опасными веществами (АХОВ).

    АХОВ хранят в емкостях под давлением. При разрушении емкости давление падает, АХОВ вскипает и выделяется в виде газа или жидкости. Образовавшееся облако газа (пара) АХОВ -- первичное облако зараженн о го воздуха , распространяется на большие расстояния. Оставшаяся жидкость растекается и испаряется, создавая вторичное облако зараженного воздуха , распространяющееся меньше. Образуются зона химического з а ражения (ЗХЗ) и очаги химического поражения (ОХП) -- территории в ЗХЗ с находящимися на них людьми. При ветре ЗХЗ на местности имеет вид равнобедренного треугольника с вершиной в точке разлива АХОВ. Высота треугольника называется глубиной ЗХЗ, а длина основания -- шириной ЗХЗ.

    Площадь разлива АХОВ из хранилища с обваловкой (т. е. окруженного валом, насыпью для ограничения растекания АХОВ) равна обвалованной площади. При отсутствии обваловки считают, что жидкость разливается слоем толщиной не более 0,05 м.

    Стойкость заражения -- это время самодегазации (обезвреживания) АХОВ и существования ОХП и ЗХЗ. На стойкость заражения и размеры ЗХЗ влияют физико-химические свойства АХОВ, их концентрация, скорость приземного ветра, температура почвы и воздуха, вертикальная устойчивость приземных слоев атмосферы и рельеф местности.

    Повышение концентрации АХОВ увеличивает глубину ЗХЗ. Скорость ветра?6…7 м/с и более ускоряет рассеивание облака. Повышение температуры почвы и воздуха ускоряет испарение АХОВ с поверхности жидкости и увеличивает его концентрацию над территорией, но на короткое время.

    Виды вертикальной устойчивости приземных слоев атмосферы: 1) инверсия (переворачивание, перестановка) -- температура почвы ниже температуры воздуха, которая возрастает с высотой вместо обычного убывания; нет восходящих потоков воздуха, сохраняется высокая концентрация АХОВ (ночью и в предутренние часы при ясной погоде и слабом ветре); 2) изотермия (постоянство температуры) -- температуры почвы и приземного слоя воздуха равны, восходящие потоки слабые, застой паров АХОВ (при пасмурной погоде); 3) конвекция (перенос теплоты, массы, зарядов движущейся средой) -- температура почвы выше температуры воздуха, развиты восходящие потоки, что благоприятно для распространения АХОВ (летом при ясной погоде и слабом ветре).

    Влияние рельефа местности: в низине, городе, лесу, т. е. на закрытой местности облако зараженного воздуха сохраняется дольше, чем на открытой, но размеры ЗХЗ - до трех раз меньше.

    Приведем характеристики некоторых АХОВ.

    Аммиак (NН 3 ) -- бесцветный газ с запахом нашатыря, легче воздуха, хорошо растворяется в воде; образуется при разложении органических веществ. Пределы взрываемости, низший (НПВ) и высший (ВПВ), 16 и 25 %. Мировое производство -- 100 млн т в год. Жидкий аммиак -- хладагент в холодильных машинах. Перевозится жидким под давлением. При выходе в атмосферу дымит. Отравиться можно при эксплуатации холодильной техники, при производстве искусственного льда, при гальванических процессах, производстве его и ряда других химических продуктов. Поражающая концентрация аммиака 500 мг/м 3 , смертельная 7000 мг/м 3 . ПДК = 20 мг/м 3 вызывает раздражение верхних дыхательных путей. При высоких концентрациях возбуждает ЦНС, вызывает судороги; смерть наступает через несколько часов или суток.

    Первая помощь при поражении аммиаком:

    а) при отеке гортани и легких: противогаз, желательно промышленный -- коробка Д, черная; вынос из ЗХЗ, ингаляция парами теплой воды, лучше с уксусом или лимонной кислотой и 10% -ным раствором ментола в хлороформе; при остановке или прерывистом дыхании -- искусственное дыхание; теплое питье -- молоко; при попадании в желудок -- вызвать рвоту; покой, согревание;

    б) при асфиксии, т. е. отсутствии пульса из-за нарушения дыхания, недостатка кислорода и избытка двуокиси углерода в крови и тканях -- вдыхать кислород до тех пор, пока одышка или цианоз (синюха, синюшный цвет кожи и слизистых оболочек от серого до черно-синего) не уменьшатся, с последующей подкожной инъекцией 1 смі 1%-ного раствора атропина;

    в) при попадании аммиачной воды в глаза возможна перфорация (прободение) роговицы и гибель глаза. Необходимо немедленное промывание глаз большим количеством воды или 0,5…1,0%-ным раствором квасцов и консультация офтальмолога, даже если нет боли. Пораженную кожу промыть водой и сделать примочку 5%-ным раствором уксусной, лимонной, винной или салициловой кислоты. Сердечные препараты и транквилизаторы (психотропные успокаивающие средства) принимать по назначению врача.

    Хлор (Cl 2 ) -- газ желто-зеленого цвета с резким запахом чеснока, тяжелее воздуха в 2,5 раза, скапливается в подвалах, на нижних этажах зданий, в оврагах. Применяется в бумажной, текстильной промышленности и в производстве искусственного волокна для отбеливания, в химической промышленности, а также для хлорирования воды и дезинфекции отходов. Раздражает и повреждает слизистые оболочки и дыхательные пути, с влагой тела образует кислоты, вызывает отек легких со жгучей болью, кашлем до рвоты с кровью, головной болью и за грудиной, недомоганием, беспокойством, чувством удушья. При высоких концентрациях (300 мг/м 3 и более) действует удушающе, вызывая спазмы мускулов гортани и опухание слизистых оболочек, падает кровяное давление и через несколько минут останавливается сердце; смерть может наступить от 1 ? 2 вдохов; при несколько меньших концентрациях дыхание останавливается через 5 ? 25 минут. При длительном воздействии небольших концентраций возможно заболевание бронхов и предрасположенность к туберкулезу, "хлорная угреватость", повреждение эмали зубов. Хлор образует горючие и взрывчатые смеси с водородом, а реакции с углеводородами и спиртами могут иметь взрывной экзотермический характер. Хлор в атмосфере можно определить по запаху и своевременно покинуть зараженное место.

    Первая помощь при поражении хлором: 1) гражданский противогаз (ГП-5, ГП-7); 2) эвакуация из зараженной зоны, вызов врача; 3) ни в коем случае не нейтрализовать хлор другими веществами; 4) брызги жидкого хлора или хлорной воды разъедают одежду, а в случае прилегания ее к телу вызывают раздражение и ожоги. Запачканную одежду снять, а кожу и слизистые оболочки обильно промыть водой с мылом или 2% ? ным содовым раствором; 5) при ингаляционном поражении (через дыхательные пути), если пострадавший в сознании, перенести его в безопасное место и уложить, приподняв верхнюю часть тела. Расстегнуть воротник, пояс и укрыть; давать обильное питье; 6) если пострадавший потерял сознание, но дышит, также давать вдыхать кислород до прихода врача; 7) если пострадавший не дышит, быстро уложить его на землю, по возможности на мягкую подстилку, расстегнуть воротник, пояс и немедленно делать искусственное дыхание с использованием кислорода до прихода врача.

    2.4 Защита населения при чрезвычайных ситуациях

    Социальные меры по защите персонала и населения на случай аварии на РОО: 1) автоматизация контроля радиационной обстановки и создание системы оповещения в радиусе 30 км; 2) строительство защитных сооружений (ЗС) в 30 километровой зоне от АЭС и постоянная их готовность; готовность других ЗС -- через 12 часов; 3) определение численности населения, подлежащего защите на месте или эвакуации; 4) создание запасов медикаментов, СИЗ, продовольствия, одежды; 5) создание на РОО формирований ГО и обучение их аварийно-спасательным и другим неотложным работам (АСДНР); 6) периодические учения по защите персонала РОО и населения.

    На РОО заранее разрабатывается план мероприятий по радиационной безопасности на случай аварии. Население должно знать о нем и иметь простые инструкции о мерах по защите при выбросе РВ в атмосферу. В начале аварии население информируется о срочных мероприятиях по защите.

    На начальном этапе аварии переоблучение может быть от ядерной установки и факела, выпадений РВ на одежду, кожу, почву, растения и т.п. Необходимы противогазы или простейшие СИЗ органов дыхания (эффективность повышается смачиванием). Кожу и волосяной покров защищают головными уборами, куртками, плащами, перчатками, сапогами и т.п. Работники и население укрываются в ЗСГО или домах на время формирования следа РВ. В домах щели дверей и окон должны быть заткнуты мокрой бумагой или тканью. Как можно раньше проводится 7 ? суточная профилактика стабильным йодом -- йодистым калием в таблетках по 0,125 г 1 раз в день или 5%-ным спиртовым раствором йода по 3 ? 5 капель на стакан молока или воды после еды 3 раза в день. Это предупреждает накопление радионуклидов йода в щитовидной железе и способствует их выведению из организма. Детям до двух лет доза уменьшается в два раза. Беременные женщины принимают йодистый калий одновременно с перхлоратом калия, ослабляющим влияние йодистого калия на плод. Проводится санитарная обработка кожи и одежды (вытрясти или заменить), после этого -- контроль на полноту дезактивации (удаления).

    На этапе первичной ликвидации последствий аварии основным источником поступления РВ в организм становятся пища и вода. Если мощность дозы излучения высока, то население эвакуируется в 2 этапа: на первом -- до границы зоны загрязнения, а на втором -- пересаживается на незагрязненный РВ транспорт. При въезде на незагрязненную территорию контролируются люди и транспорт. Лица с загрязнением свыше 1000 мкР/ч направляются на полную санитарную обработку, затем на дозиметрию щитовидной железы для решения вопроса о госпитализации. При необходимости проводится дезактивация транспорта. Оставшиеся персонал и население должны питаться продуктами с незараженной территории и продолжать йодную профилактику под медконтролем, так как применение стабильного йода после накопления его изотопов в щитовидной железе может привести к нежелательным последствиям. Защитные мероприятия для критической группы населения (дети, беременные и кормящие женщины) требуют особого внимания. С населением должна проводиться работа для снятия стресса, доведения до каждого цели и значимости проводимых мероприятий.

    ...

    Подобные документы

      Химические вещества и опасные объекты. Общий порядок действия при авариях на химически опасных объектах и с выбросом сильнодействующих ядовитых веществ. Крупнейшие потребители аварийно химически опасных веществ. Первая неотложная помощь при поражениях.

      презентация , добавлен 26.10.2014

      Предмет и методы инженерной охраны труда. Правовые, нормативно-технические и организационные основы обеспечения безопасности жизнедеятельности. Требования производственной санитарии, электро-, пожаробезопасности, защиты от излучений и вредных веществ.

      курс лекций , добавлен 05.06.2014

      Способы и средства ликвидации химически опасных аварий. Укрытие и защита населения при химическом загрязнении, обеспечение средствами индивидуальной защиты. Характеристика средств защиты органов дыхания (фильтрующие противогазы и респираторы) и кожи.

      реферат , добавлен 04.05.2011

      Понятие чрезвычайной ситуации техногенного характера. Классификация производственных аварий по их тяжести и масштабности. Пожары, взрывы, угрозы взрывов. Аварии с выбросом радиоактивных веществ, химически опасных веществ. Гидродинамические аварии.

      презентация , добавлен 09.02.2012

      Правовые основы законодательства в области обеспечения безопасности жизнедеятельности. Экологическая безопасность, формирование и укрепление экологического правопорядка. Основы законодательства Российской Федерации об охране труда. Чрезвычайные ситуации.

      реферат , добавлен 24.03.2009

      Влияние среды обитания и окружающей природной среды на жизнедеятельность человека. Основы физиологии труда. Воздействие на человека опасных и вредных факторов среды. Основы техники безопасности. Правовое обеспечение безопасности жизнедеятельности.

      методичка , добавлен 17.05.2012

      Основные понятия, термины и задачи предмета "Безопасность жизнедеятельности". Классификация опасных и чрезвычайных ситуаций (ЧС). Правовое регулирование национальной безопасности и единая государственная система предупреждения и ликвидации ЧС.

      реферат , добавлен 10.03.2009

      Факторы и ситуации, оказывающие отрицательное влияние на человека. Системно-структурная модель основ безопасности жизнедеятельности (ОБЖ) как науки, её цели. Классификация и характеристика опасностей. Определение приемлемого риска и системы безопасности.

      презентация , добавлен 17.12.2014

      Три основные задачи Безопасности жизнедеятельности. Воздействие среды жизнедеятельности на здоровье человека. Причины производственного травматизма и профессиональных заболеваний. Нормативная и техническая документация, регламентирующая условия труда.

      контрольная работа , добавлен 02.05.2013

      Химически опасные объекты и аварии на них. Очаг и зона химического заражения. Безопасность на ХОО и предупреждение аварий. Организация ликвидаций химически опасных аварий. Токсичность химически опасных веществ и их воздействие на организм человека.



    Просмотров