Подбор резисторов. Онлайн — калькулятор цветовой маркировки резисторов

Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств. Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.

Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.

Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом . Наиболее практическое применение получили килоомы , мегаомы и гигаомы .

Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.

Условно резисторы подразделяются на два больших подвида: постоянные и переменные.

Постоянные резисторы

Постоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.

Подстроечные резисторы

Подстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию. Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.

В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций. Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.

В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.

Переменные резисторы

Переменные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат .

Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.

Если переменный либо подстроечный резистор используется в качестве регулятора тока , но его называют реостатом .

Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.

Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции. Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи. Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.

Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.

Условное графическое обозначение (УГО) резисторов

На чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.

В некоторых государствах УГО резистора имеет следующий вид.

Резистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока. Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них. В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.

Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.

Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I

P=I 2 R

Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.

Как правило, чем выше P , тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.

На чертежах электрических схем этот параметр наносится в виде определенных меток.

Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.

Более наглядные примеры расчета P можно посмотреть здесь .

Классы точности и номиналы резисторов

Ни один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования. Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия. Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III. Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.

К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%. Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.
Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.

Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.

В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.

Маркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, и . Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.

На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.

На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв. Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы. Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.

Для большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.

Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.

По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы. Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора. В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.

Характерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.

В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.

Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.

Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.

Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.

Цветными полосками используется в радиоэлектронике для определения сопротивления постоянных резисторов. Большинство электронных компонентов, в частности резисторы, очень малы по размеру, вследствие чего достаточно трудно печатать маркировку прямо на корпус. Поэтому в 1920 году был разработан стандарт для идентификации значений электронных компонентов путем нанесения на них цветового кода.

Как определить сопротивление резистора по цветным полоскам

На рисунке ниже показано расположение полос значения, множитель и допуск для постоянного резистора. При маркировке с помощью 6 цветными полосками, дополнительная полоска указывает на температурный коэффициент.

Разрыв между цветными полосками множителя и допуска определяет левую и правую сторону резистора. Ключевые моменты определения сопротивления резистора по цветным полоскам:

4-х полосный резистор — имеет 3 цветовую полоску на левой стороне и одну цветную полоску на правой стороне. Первые две полосы слева представляют собой значение сопротивления, а третья является множителем. Крайняя справа полоса определяет допустимое отклонение в процентах.

5-и полосный резистор — имеет 4 цветные полосы на левой стороне и одну цветную полосу на правой стороне. Первые 3 цветных полос определяют величину сопротивления резистора, четвертый представляет собой множитель, а пятая полоса допустимое отклонение от номинала в процентах.

6-и полосный резистор — имеет 4 цветовые полосы на левой стороне и 2 цветные полосы на правой стороне. Первые 3 цветные полосы обозначают величину самого сопротивления резистора, 4-ая полоса множитель, 5-ая процент отклонения от номинального значения сопротивления и 6-ая полоса представляет собой обозначение температурного коэффициента сопротивления, который повышает точность сопротивления резистора.

Температурный коэффициент говорит нам о поведении резистора в различных температурных условиях эксплуатации.

Примеры определения маркировки резистора по цветным полоскам

Маркировка резистора 4 цветными полосками

Рассмотрим цветовой код резистор, имеющий 4 цветные полосы: коричневый-черный-красный-золотистый. Коричневый цвет соответствует значению «1» в диаграмме цвета. Черный представляет «0», Красный представляет собой множитель «100». Таким образом, величина сопротивления составит:

10 * 100 = 1000 Ом или 1 кОм с отклонением 5%, поскольку золотая полоска представляет собой допуск +/- 5%. Таким образом, фактическое значение 1 кОм может быть между 950 Ом и 1050 Ом.

Маркировка резистора 5 цветными полосками

Рассмотрим цветовой код для резистора с 5 полосками: желтый-фиолетовый-черный-коричневый-серый. Желтый цвет соответствует значению «4» в диаграмме цвета. Фиолетовый цвет представляет «7» и черный равен «0». Коричневая полоска определяет величину множителя «10». Таким образом, величина сопротивления составит:

470 * 10 = 4700 Ом или 4,7 кОм с отклонением 0,05%, поскольку серый цвет отклонения равен +/- 0,05%.

Маркировка резистора 6 цветными полосками

В данном случае маркировка подобна как и у резистора с 5 полосками, в дополнении лишь шестая цветная полоса температурного коэффициента, для примера это синяя полоса.

Результат — резистор имеет сопротивление 4,7 кОм, с допуском +/- 0,05% и с температурным коэффициентом 10 частей на миллион / K.

Резистор и сопротивление

Резистор - пассивный электрический элемент, создающий электрическое сопротивление в электронных схемах. Резисторы можно найти практически во всех электронных устройствах. Они используются для различных целей, в частности, для ограничения тока в цепях, в качестве делителей напряжения, для обеспечения напряжения смещения для активных элементов электрических цепей, в качестве терминаторов (согласованных нагрузок) линий передачи, в резистивно-емкостных цепях в качестве времязадающего элемента… Список можно продолжать бесконечно.

Электрическое сопротивление резистора или любого проводника является мерой его противодействия протеканию электрического тока. В СИ сопротивление измеряется в омах. Сопротивление имеет практически любой материал кроме сверхпроводников, имеющих нулевое сопротивление. Подробнее о сопротивлении , удельном сопротивлении и проводимости .

Допустимое отклонение от номинального значения

Конечно, можно сделать резистор с очень точным значением сопротивления, однако он будет очень дорогим. К тому же, очень точные и дорогие резисторы бывают нужны достаточно редко, например, в качестве делителей напряжения в мультиметрах. Здесь мы поговорим о недорогих и не очень точных резисторах, используемых в электронных устройствах. В большинстве случаев точность ±20% вполне допустима. Для резистора сопротивлением 1 кОм это означает, что любой резистор с сопротивлением в диапазоне от 800 Ом до 1200 Ом будет считаться резистором 1 кОм. Допуск на некоторые особо критичные компоненты может быть ±1% или даже ±0.05%. В то же время следует отметить, что в наше время сложно найти резисторы с допуском 20%. Обычными являются 5-процентные и 1-процентные резисторы. Такие резисторы были дорогими 60 лет назад, во времена ламповых и первых транзисторных радиоприемников. Но те времена остались в далеком прошлом.

Рассеиваемая мощность

Если через резистор проходит электрический ток, электрическая энергия преобразуется в тепловую и резистор нагревается. Тепло рассеивается в окружающую среду. Причем, тепловая энергия должна быть передана в окружающую среду так, чтобы температура резистора и окружающих его элементов оставалась в пределах нормы. Мощность, выделяемая на резисторе, определяется по формуле:

Здесь V - напряжение в вольтах на резисторе сопротивлением R в омах, I - протекающий через резистор ток в амперах. Мощность, которую резистор может рассеивать без ухудшения параметров в течение длительного периода времени, называется предельной рассеиваемой мощностью . В общем случае, чем больше корпус резистора, тем большую мощность может он рассеивать. Выпускаются резисторы различной мощности и можно встретить резисторы от 0,01 Вт до сотен ватт. Углеродистые резисторы обычно выпускаются мощностью 0,125–2 Вт.

Ряды предпочтительных величин электронных компонентов

В начале XX века резисторы использовались главным образом в радиоприемниках и назывались вместе с другими компонентами радиодеталями. Сейчас это название относится ко всем элементам, применяемым в электронных схемах, которые к радио не имеют отношения и поэтому радиодетали стали называть электронными элементами компонентами (это, как всегда, калька с английского). Хотя это как сказать! В телефоне есть как минимум пять радиоприемников (для связи с базовой станцией, GPS/GLONASS, Wi-Fi, NFC, УКВ-приемник), но никто об этом не помнит и не считает телефон радиоприемным устройством. Но мы отвлеклись от темы.
Несмотря на то, что можно изготовить резистор с любым сопротивлением, удобнее выпускать ограниченное число компонентов, особенно если учесть, что каждый резистор имеет определенный допуск на номинал. Более точные резисторы стоят дороже, чем менее точные. Обычная логика показывает, что для стандартных значений удобно выбрать логарифмическую шкалу, с одинаковыми интервалами между стандартными значениями, которые определяются с учетом допустимого отклонение от номинала. Например, для точности ±10% имеет смысл для декады (интервала, в котором сопротивление изменяется от 1 до 10, от 10 до 100 и так далее) взять 12 значений: 1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2, затем 10; 12; 15; 18; 22; 27; 33; 39; 47; 56; 68;82 и так далее. Эти значения называют рядами номиналов. Они стандартизированы в форме рядов E3–E192 и используются не только для резисторов, но также для конденсаторов, катушек индуктивности и стабилитронов. Каждый ряд (E3, E3, E6, E12, E24, E48, E96, и E192) разделяет декаду на 3, 6, 12, 24, 48, 96 и 192 стандартных значения. Отметим, что ряд E3 устарел и используется крайне редко.

Список значений номинальных рядов E6–E192

Значения E6 (допуск 20%):

1,0; 1,5; 2,2; 3,3; 4,7; 6,8.

Значения E12 (допуск 10%):

1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2.

Значения E24 (допуск 5%):

Значения E48 (допуск 2%):

1,00; 1,05; 1,10; 1,15; 1,21; 1,27; 1,33; 1,40; 1,47; 1,54; 1,62; 1,69; 1,78; 1,87; 1,96; 2,05; 2,15; 2,26; 2,37; 2,49; 2,61; 2,74; 2,87; 3,01; 3,16; 3,32; 3,48; 3,65; 3,83; 4,02; 4,22; 4,42; 4,64; 4,87; 5,11; 5,36; 5,62; 5,90; 6,19; 6,49; 6,81; 7,15; 7,50; 7,87; 8,25; 8,66; 9,09; 9,53.

Значения E96 (допуск 1%):

1,00; 1,02; 1,05; 1,07; 1,10; 1,13; 1,15; 1,18; 1,21; 1,24; 1,27; 1,30; 1,33; 1,37; 1,40; 1,43; 1,47; 1,50; 1,54; 1,58; 1,62; 1,65; 1,69; 1,74; 1,78; 1,82; 1,87; 1,91; 1,96; 2,00; 2,05; 2,10; 2,15; 2,21; 2,26; 2,32; 2,37; 2,43; 2,49; 2,55; 2,61; 2,67; 2,74; 2,80; 2,87; 2,94; 3,01; 3,09; 3,16; 3,24; 3,32; 3,40; 3,48; 3,57; 3,65; 3,74; 3,83; 3,92; 4,02; 4,12; 4,22; 4,32; 4,42; 4,53; 4,64; 4,75; 4,87; 4,99; 5,11; 5,23; 5,36; 5,49; 5,62; 5,76; 5,90; 6,04; 6,19; 6,34; 6,49; 6,65; 6,81; 6,98; 7,15; 7,32; 7,50; 7,68; 7,87; 8,06; 8,25; 8,45; 8,66; 8,87; 9,09; 9,31; 9,53; 9,76.

Значения E192 (допуск 0.5% и точнее):

1,00; 1,01; 1,02; 1,04; 1,05; 1,06; 1,07; 1,09; 1,10; 1,11; 1,13; 1,14; 1,15; 1,17; 1,18; 1,20; 1,21; 1,23; 1,24; 1,26; 1,27; 1,29; 1,30; 1,32; 1,33; 1,35; 1,37; 1,38; 1,40; 1,42; 1,43; 1,45; 1,47; 1,49; 1,50; 1,52; 1,54; 1,56; 1,58; 1,60; 1,62; 1,64; 1,65; 1,67; 1,69; 1,72; 1,74; 1,76; 1,78; 1,80; 1,82; 1,84; 1,87; 1,89; 1,91; 1,93; 1,96; 1,98; 2,00; 2,03; 2,05; 2,08; 2,10; 2,13; 2,15; 2,18; 2,21; 2,23; 2,26; 2,29; 2,32; 2,34; 2,37; 2,40; 2,43; 2,46; 2,49; 2,52; 2,55; 2,58; 2,61; 2,64; 2,67; 2,71; 2,74; 2,77; 2,80; 2,84; 2,87; 2,91; 2,94; 2,98; 3,01; 3,05; 3,09; 3,12; 3,16; 3,20; 3,24; 3,28; 3,32; 3,36; 3,40; 3,44; 3,48; 3,52; 3,57; 3,61; 3,65; 3,70; 3,74; 3,79; 3,83; 3,88; 3,92; 3,97; 4,02; 4,07; 4,12; 4,17; 4,22; 4,27; 4,32; 4,37; 4,42; 4,48; 4,53; 4,59; 4,64; 4,70; 4,75; 4,81; 4,87; 4,93; 4,99; 5,05; 5,11; 5,17; 5,23; 5,30; 5,36; 5,42; 5,49; 5,56; 5,62; 5,69; 5,76; 5,83; 5,90; 5,97; 6,04; 6,12; 6,19; 6,26; 6,34; 6,42; 6,49; 6,57; 6,65; 6,73; 6,81; 6,90; 6,98; 7,06; 7,15; 7,23; 7,32; 7,41; 7,50; 7,59; 7,68; 7,77; 7,87; 7,96; 8,06; 8,16; 8,25; 8,35; 8,45; 8,56; 8,66; 8,76; 8,87; 8,98; 9,09; 9,20; 9,31; 9,42; 9,53; 9,65; 9,76; 9,88.

Маркировка резисторов

Большие резисторы, такие как показаны на этом рисунке, обычно маркируются цифрами и буквами и понять такую маркировку несложно. Однако, величину сопротивления непросто напечатать на маленьких резисторах (и других электронных компонентах), особенно цилиндрической формы, даже при использовании современных технологий нанесения маркировки. Поэтому в последние 100 лет для маркировки радиодеталей использовалась цветовая кодировка. Такая кодировка используется не только для резисторов, но также для конденсаторов, диодов, катушек индуктивности и других элементов.

Для маркировки резисторов используется до шести цветных полосок. Чаще используется код из четырех полосок, в котором первая и вторая полоски представляют первую и вторую значащую цифру, третья полоска кодирует множитель, а четвертая - допуск. Между третьей и четвертой полоской обычно имеется плохо различимый увеличенный зазор, который позволяет определить направление чтения кода - компоненты ведь симметричные! 20-процентные резисторы обычно маркируются только тремя полосками - там не указывается допуск. Их полоски обозначают цифру, цифру и множитель.

Для 2-процентных или более точных резисторов используют пять или более полосок, представляющих величину сопротивления. Последняя полоска в маркировке из шести полосок представляет температурный коэффициент сопротивления в частях на миллион на кельвин (ppm/K). На рисунке в верхней части страницы показан принцип цветовой маркировки.

Полоски считываются слева направо. Они обычно группируются ближе к левому концу элемента. Если между последней полоской и остальными полосками имеется зазор, он обычно показывать, что эта сторона элемента - правая. Также если имеется золотая или серебряная полоска, они всегда находятся на правой стороне. Когда значение по полоскам определено, сравните его с таблицей предпочтительных величин. Если значения там нет - попробуйте прочитать маркировку с другого конца. Обратите внимание: в этом калькуляторе цветовая кодировка соответствует международному стандарту IEC 60062:2016 ..

Нажмите на приведенные ниже примеры, чтобы посмотреть цветовую кодировку резисторов:

Цифровая маркировка

На поверхности относительно больших резисторов, предназначенных для поверхностного монтажа (англ. SMT - surface-mount technology или SMD - surface-mount device), а также на относительно больших резисторах с выводами для монтажа в отверстия для маркировки печатают цифры. В связи с ограниченным местом, эти цифры часто бывает трудно прочитать. Маркировка используется, в основном, при ремонте, так как в процессе производства резисторы и другие электронные элементы подаются в автоматы для монтажа на лентах, которые хорошо промаркированы. Многие резисторы вообще не имеют маркировки и после того, как автомат установил их на плату, единственным способом узнать их сопротивление является его измерение.

Для маркировки используется несколько систем: три или четыре цифры, две цифры и буква, три цифры и буква, код стандарта RKM, в котором буква, обозначающая единицу измерения, ставится на место десятичного разделителя. Если на элементе есть только три цифры, они представляют две значащие цифры номинала и множитель. Например, 103 на резисторе для поверхностного монтажа означает 10 × 10³ = 10 кОм.

Система из четырех цифр используется для маркировки резисторов высокой точности, например, для резисторов рядов E96 и E192. Пример кодировки: 2743 = 274 × 10³ = 274 кОм.

Для резисторов меньшего размера используется другая система. Например, для серии E96 используются две цифры и буква. Такая система позволяет сэкономить один знак по сравнению с системой из четырех цифр. Это связано с тем, что ряд E96 содержит менее 100 значений, которые могут быть представлены двумя цифрами, если их последовательно пронумеровать. То есть 01 - 100, 02 - 102, 03 - 105 и так далее. Буквой кодируют множитель. Отметим, что изготовители часто используют собственные, нестандартные системы маркировки. Поэтому лучшим способом определения сопротивления всегда является его измерение мультиметром.

В кодировке RKM буква, означающая единицу измерения сопротивления, помещается на место десятичного разделителя, так как запятая или точка могут не пропечататься или просто исчезнуть на элементах или на копиях документов. Кроме того, данный метод позволяет использовать меньше символов. Например, R22 или E22 означает 0,22 Ом, 2К7 означает 2,7 кОм и 1М5 означает 1,5 МОм.

Измерение сопротивления

Сопротивление можно измерить с помощью аналогового (со стрелкой) или цифрового омметра или мультиметра с функцией измерения сопротивления. Для измерения сопротивления присоедините резистор к щупам и считайте значение. Иногда можно приблизительно измерить сопротивление, не извлекая резистор из схемы. Однако перед таким измерением необходимо отключить питание и разрядить все конденсаторы.

Мультиметр используется не только для измерения сопротивления резисторов, но и для измерения контактного сопротивления различных переключающих элементов, например реле и выключателей. С помощью мультиметра можно, например, определить, что пора заменить кнопку компьютерной мышки. Для этого нужно аналоговым или цифровым мультиметром с аналоговой шкалой измерить контактное сопротивление. Аналоговая шкала полезна для диагностики или настройки, так как она выполняет роль стрелки и показывает мгновенные изменения сопротивления, которые на цифровом дисплее с мигающими сегментами сложно понять. Таким мультиметром можно легко обнаружить плохие контакты, например, повышенный дребезг контактов реле, подвергающегося вибрационным нагрузкам и требующего замены.

Расчет номинала резистора по цветовому коду:
укажите количество цветных полос и выберите цвет каждой из них (меню выбора цвета находится под каждой полоской). Результат будет выведен в поле "РЕЗУЛЬТАТ"

Расчет цветового кода для заданного значения сопротивления:
Введите значение в поле "РЕЗУЛЬТАТ" и укажите требуемую точность резистора. Полоски маркировки на изображении резистора будут окрашены соответствующим образом. Количество полос декодер подбирает по следующему принципу: приоритет у 4-полосной маркировки резисторов общего назначения, и только если резисторов общего назначения с таким номиналом не существует, выводится 5-ти полосная маркировка 1% или 0.5% резисторов.

Назначение кнопки "РЕВЕРС":
При нажатии на эту кнопку цветовой код резистора будет перестроен зеркальным образом от исходного. Таким образом можно узнать, возможно ли чтение цветового кода в обратном направлении (справа - налево). Эта функция калькулятора нужна в том случае, когда сложно понять, какая полоска в цветовой маркировке резистора является первой. Обычно первая полоска или толще остальных, или расположена ближе к краю резистора. Но в случаях 5-ти и 6-ти полосной цветовой маркировки прецизионных резисторов может не хватить места, чтобы сместить полоски маркировки к одному краю. А толщина полосок может отличаться весьма незначительно... С 4-полосной маркировкой 5% и 10% резисторов общего назначения все проще: последняя полоска, обозначающая точность - золотистого или серебристого цвета, а эти цвета никак не могут быть у первой полоски.

Назначение кнопки "М+":
Эта кнопка позволит сохранить в памяти текущую цветовую маркировку. Сохраняется до 9 цветовых маркировок резисторов. Кроме того, автоматически сохраняются в память калькулятора все значения, выбранные из колонок примеров цветовой маркировки, из таблицы значений в стандартных рядах, любые значения (правильные и неправильные), введенные в поле "Результат", и только правильные значения, введенные с помощью меню выбора цвета полосок либо кнопок "+" и "-". Функция удобна, когда требуется определить цветовую маркировку нескольких резисторов - всегда можно быстро вернуться к маркировке любого из уже проверенных. Красным цветом в списке обозначаются значения с ошибочной и нестандартной цветовой маркировкой (значение не принадлежит к стандартным рядам, кодированный цветом допуск на резисторе не соответствует допуску стандартного ряда, к которому относится значение и т.д.).

Кнопка "MC": - очистка всей памяти. Для удаления из списка только одной записи покройте оную двойным кликом.

Назначение кнопки "Исправить":
При нажатии на эту кнопку (если в цветовом коде резистора допущена ошибка) будет предложен один из возможных правильных вариантов.

Назначение кнопок "+" и "-" :
При нажатии на них значение в соответствующей полоске изменится на один шаг в большую или меньшую сторону.

Назначение информационное поля (под полем "РЕЗУЛЬТАТ"):
В нем выводятся сообщения, к каким стандартным рядам принадлежит введенное значение (с какими допусками резисторы этого номинала выпускаются промышленностью), а так же сообщения об ошибках. Если значение не является стандартным, то либо вы допустили ошибку, либо производитель резистора не придерживается общепринятого стандарта (что случается).

Примеры цветовой кодировки резисторов:
Слева приведены примеры цветовой маркировки 1%, а справа - 5% резисторов. Кликните по значению в списке, и полоски на изображении резистора будут перекрашены в соответствующие цвета.

Резисторами называются элементы электрической цепи, обладающие собственным сопротивлением. На практике редкая схема может обойтись без их использования. Резисторы классифицируются по классу точности, по мощности, по номинальному сопротивлению и другим параметрам.

Описание

Резисторы имеют очень маленький размер, в несколько миллиметров, что значительно осложняет расположение читаемой маркировочной надписи. По этой причине была принята международная система цветовой маркировки электротехнических элементов. Согласно общепринятым требованиям маркировка должна располагаться на корпусе постоянных резисторов в виде разноцветных полосок или колец. Такой способ обозначения обеспечивает удобство чтения в любом направлении. Стартовая полоса маркировки расположена ближе остальных к краю элемента. В ситуациях, когда особенности корпуса или другие причины осложняют нанесение маркировки таким путем, первое кольцо обозначается линией двукратной ширины.

Читать маркировку следует от крайней левой полосы направо. Если она не может быть найдена, за истину берется сопротивление, соответствующее стандартному номинальному ряду (то есть читаем наоброт, если не получается).

Таблица номинальных значений

В основе цветовой разметки и чтения резисторов лежит универсальная таблица величин номинального ряда и соответствующих им цветов.

Универсальной она названа из-за того, что может одинаково эффективно использования для считывания не только номинала, но и множителя (десятичного показателя). Цифровые значения -2 и -1 назначены для удобства работы с десятичными степенями.

Стандартная маркировка

На любые типы постоянных резисторов наносится цветовая маркировка с наличием от 3 до 6 цветных полос. Ниже рассмотрим все возможные варианты колец.

С 3-мя кольцами

Данную систему применяют относительно постоянных резисторов, характеризующихся величиной допустимого отклонения в пределах ±20% (номинальный ряд E6, то есть для каждого множителя существует всего шесть разных значений величины сопротивления). Цвета имеют значения соответствующие основной таблице. Две первые полосы маркируют сопротивление, а последняя – десятичный показатель.


Согласно схеме вычисления сопротивления резистора используется формула: R = (10D1 + D2)*10^E . Глядя на таблицу, видим, что величина сопротивления резистора с рисунка (Красный, Красный, Зелёный) составляет R = (20+2)*10^5 = 2200000 = 2,2MOm ±20%.

С 4-мя кольцами

Эта цветовая маркировка резисторов предназначена для элементов из номинальных рядов E24 (5%)и E12 (10%). В этой системе две первые полосы обозначают сопротивление, а следующая – десятичный множитель. Четвертая полоска показывает допуск по сопротивлению: золотистые – ±5% , серебристые — ±10%.

Формула для вычисления сопротивления: R = (10D1 + D2)*10^E ± S . Таким образом, для изображенного на рисунке резистора (Зелёный, Коричневый, Красный, Золотистый) R = (10*5 + 1)*10^2 = 5100 будет равно 5,1KOm ±5%.

С 5-ю кольцами

Эта система маркировки предназначен для обозначения резисторов с допусками до 5%. Принцип чтения тот же: первые три линии обозначают номинал, а четвертая и пятая – десятичный множитель и допуск.

Формула, соответствующая этой системы. Формула: R=(100D1+10D2+D3)*10^E ± S .

Для резисторов из номинальных рядов E48, E96 и E192 используется дополнительная таблица прецизионных резисторов.

Таким образом, величина сопротивления изображенного на рисунке резистора (Красныйй, Синий, Синий, Коричневый, Зелёный) составляет R = (200+60+6)*10 = 2660 = 2,66 KOm ±0,5%.

С 6-ю кольцами

Помимо перечисленных показателей, цветными полосками также можно обозначать температурный коэффициент сопротивления. Этот показатель показывает наибольшее изменение сопротивления резистора при нагревании или охлаждении на 1˚C. Его величина в маркировке измеряется в миллионных долях номинала на градус – ppm/OC. Соответствие температурного коэффициента и цветов представлено в таблице:

На рисунке ниже изображен резистор с 6-полосной цветовой маркировкой. В данном случае каждое кольцо имеет то же самое назначение, что и в примере с 5-полосной маркировкой. Последняя полоса используется для обозначения величины ТКС.


R = (100D1 + 10D2 + D3)*10^E ± S (Appm/˚C)

После расшифровки по имеющимся таблицам получаем следующую величину сопротивления резистора:

R = (500+7+2)*10 = 5,72 KOm ± 1% (10 ppm/˚C)

Иногда шестое кольцо применяется для обозначения надежности резистора, когда его ширина как минимум в 1,5 раза больше всех остальных. Этот показатель измеряется в процентах и означает количество отказов элемента за 1000 рабочих часов. Нормы надежности также обозначаются цветовыми кольцами, согласно следующей таблице:

Общая таблица

При необходимости постоянного использования перечисленных таблиц, гораздо удобнее иметь сводную таблицу соответствия цветов и показателей номинала, десятичного множителя, допусков и температурного коэффициента. (Величина допуска изменяется почему-то непоследовательно - 1, 2, 0.5, 0.25,0.1, 0.05)

Цвет кольца 1 кольцо 2. кольцо 3 кольцо 4 кольцо 5 кольцо 6 колько
Цифры номинального ряда Допуск ТКС, ppm/˚C Процент отказов
1 2 3
Черный 0 0 0 0 (1)
Коричневый 1 1 1 1 (10) ±1% 100 1%
Красный 2 2 2 2 (100) ±2% 50 0,01%
Оранжевый 3 3 3 3 (1000) 15 0,01%
Желтый 4 4 4 4 (10^4 ) 25 0 ,001%
Зеленый 5 5 5 5 (10^5) ±0,5%
Синий 6 6 6 6 (10^6) ±0,25% 10
Фиолетовый 7 7 7 7 (10^7) ±0,1% 5
Серый 8 8 8 8 (10^8) ±0,05%
Белый 9 9 9 9 (10^9) 1
Серебряный -2 (0,01) ±10%
Золотой -1 (0,1) ±5%

Указанные здесь правила разметки соответствуют практически всем непроволочным резисторам с гибкими выводами.

Проволочные резисторы

Требования к цветовой маркировке проволочных резисторов мало чем отличаются от указанных выше требований, предъявляемых к их аналогам другого типа. Однако есть несколько отличий:

  • белая полоса большой ширины, расположенная в начале, обозначает не номинал, а указывает на проволочный тип резистора;
  • для маркировки проволочных деталей не используются десятичные множители выше 4-ой степени;
  • цветная полоска в конце маркировки иногда обозначает свойства (например, термостойкость или огнеупорность) резистора, а не значение ТКС.

Помимо этого, проволочные резисторы немного отличаются по допустимым отклонениям. Следующая обобщённая таблица показывает значения допусков и номиналов цветовых обозначений для проволочных резисторов.

Цвет кольца Цифры номинала ряда Десятичный показатель

(множитель)

Допуск
1 2
Черный 0 0 0 (1)
Коричневый 1 1 1 (10) ±1%
Красный 2 2 2 (100) ±2%
Оранжевый 3 3 3 (1000) ±3%
Желтый 4 4 4 (10000) ±4%
Зеленый 5 5
Синий 6 6
Фиолетовый 7 7
Серый 8 8
Белый 9 9
Серебряный -2 (0,01) ±10%
Золотой -1 (0,1) ±5%

Стоит отметить, что некоторые производители импортных резисторов придерживаются собственной системы цветовой маркировки. Так, например, у Phillips кроме цвета полос имеет значение окраска корпуса, а также расположение полос относительно друг друга. Эти особенности могут говорить о свойствах и технологии изготовления элемента. Компании Panasonic и CGW помимо цветных используют ведущие и замыкающие кольца для маркировки отличительных свойств элемента и технологии.

Другие системы маркировки

На старых советских резисторах использовалась другая, более простая маркировка – на них просто был написан показатель сопротивления. Для обозначения десятичной степени цифр использовались буквы латинского алфавита. R – первая степень, K – третья (тысячи), M – четвертая (миллионы). Так, например, цифровая маркировка 2M5 означает, что номинал резистора равен 2500 KOm, а 1К7 – 1700 Om. Данный метод очень прост и позволяет моментально вычислить сопротивление без использования дополнительных таблиц. Единственным недостатком могло быть закрепление резистора на плате в таком положении, когда надпись оказывалась внизу, и её становилось невозможно прочитать. Это превращалось в существенную проблему при необходимости экономии места на плате, как, например, в японской технике тех годов. Поэтому такая система маркировки не прижилась в других странах мира.

С развитием электронных технологий стало невозможным припаивать резисторы к платам через специальные отверстия. Это занимало слишком много места, а всеобщая тенденция миниатюризации техники диктовала свои условия. Так появился новый способ монтажа микроплат – SMD (технология поверхностного монтажа), где элементы схемы припаиваются к самой дорожке без ножек и отверстий. Для маркировки резисторов, диодов, конденсаторов, других компонентов микроплат и чипов потребовалось определение новой системы.

Маркировка SMD резисторов отчасти похожа на советский способ – здесь тоже используются символьно-буквенные обозначения, но, конечно же, со своими правилами расстановки. Здесь, например, не всегда требуется ставить букву, а R в некоторых ситуациях используется как разделительная запятая. SMD кодировку разделяют на три типа:

  • Коды с 3 цифрами. 2 первые обозначают номинал в Омах, а последняя десятичную степень числа («182» будет означать 18*100 = 1800 Om).
  • Коды с 4 цифрами. Здесь сопротивление обозначается так же, как и в 3-цифровой маркировке, но с 3 цифрами указания номинала («4502» означает 450*100=45 KOm).
  • Коды из 3 символов. В этих кодах первые две цифры указывают номинал, а следующая за ними буква – количество нулей (десятичная степень). Используются следующие символьные обозначения: F = 10^5, E = 10^4, D = 10^3, C = 10^2, B = 10, R=10^-1, S=10^-2. Так, например, SMD резистор с маркировкой 14D имеет номинал в 14 KOm.


Просмотров