Номинал чип резистора с маркировкой 85 х. Корпуса и маркировка SMD резисторов

Устройство, конструкция и технология производства чип-резисторов

SMD-резисторы широко распространены и ими уже никого не удивишь. Но, несмотря на это, немногие интересуются их устройством и конструкцией. А, зря! Тут есть чем утолить голод любопытства, ведь чип-резисторы впитали в себя все самые передовые технологии и методы производства резисторов.

Устройство SMD-резистора

В основе практически любого чип-резистора лежит так называемая плёночная технология (Film Technology), где резистивный слой представляет собой тонкую или толстую плёнку, нанесённую на изоляционную подложку, которая является основанием и заодно служит для отвода тепла.

В общих чертах SMD-резистор устроен так.

Типовой SMD-резистор состоит из керамической подложки, на которую нанесён резистивный слой. Сопротивление этого слоя зависит от его толщины, формы и материала из которого он изготовлен. Для окончательной "подгонки" до номинального сопротивления используется лазерный тримминг. О нём мы ещё поговорим.

Так как от толщины плёнки зависит как сложность изготовления изделия, так и его технические характеристики, то чип-резисторы делят на две большие группы:

    Толстоплёночные (Thick Film Chip Resistors). Толщина плёнки ~0,0027"...0,00039" (70...10 мкм). Считаются самыми дешёвыми резисторами;

    Тонкоплёночные (Thin Film Chip Resistors). Толщина плёнки 0,00025" (6,35 мкм) и вплоть до 50 нм.

Резисторы с толстой и тонкой плёнкой несколько различаются по устройству и технологии производства, хотя внешне их отличить довольно трудно.

Толстоплёночные чип-резисторы. Технология производства.

Толстоплёночные резисторы изготавливают печатным методом. В них резистивный слой, который представляет собой пасту, наносят на поверхность подложки с помощью трафаретов. Затем производят термообработку (вжигание) получившегося отпечатка при температуре 700-900 0 С в конвейерной печи, благодаря чему образуется крепкая монолитная структура.

Паста состоит из смеси нескольких компонентов:

    Функциональная основа - высокодисперсный порошок резистивного материала (нанопорошок с размером частиц 500-100 нм и менее);

    Стеклосвязка . Мелкодисперсный низкоплавкий стекольный порошок (стеклянная фритта) на основе свинцово-боро-алюмо силикатных стекол;

    Органические связующие вещества необходимые для придания пасте вязкости.

В качестве резистивного материала для пасты используются металлы или их оксиды. В основном это оксиды рутения, серебра и палладия. Примером может служить диоксид рутения RuO 2 . Также может использоваться композиция палладий-серебро. Из-за наличия серебра в составе пасты ТКС толстоплёночных резисторов довольно высок (50 ppm/ 0 С и более).

Вжигание отпечатка пасты приводит к размягчению стеклянной фритты, которая обволакивает и связывает проводящие частицы. Финальная подгонка сопротивления до номинала осуществляется с помощью лазерной обрезки.

В следующем анимационном ролике фирмы YAGEO пошагово показан процесс изготовления SMD резисторов с толстой плёнкой.

Толстоплёночные резисторы иногда называют керметными, так как основой их резистивного слоя является смесь порошков металлов и оксидов.

Тонкоплёночный чип-резистор. Устройство и конструкция.

Тонкоплёночный чип-резистор по своему устройству схож с толстоплёночным. Основное и немаловажное отличие заключается в том, что резистивный слой на керамической подложке создаётся методом вакуумного ионного напыления. Это, пожалуй, самое важное отличие от резисторов с толстой плёнкой.

Благодаря этому удаётся сформировать очень тонкий однородный слой толщиной вплоть до 50 нм.

Резисторы с тонкой плёнкой очень термостабильны, имеют очень низкий ТКС (25 ppm/K). ТКС прецизионных резисторов может достигать ±2 ppm/ 0 С (серия PLTU от Vishay).

Материалом резистивной плёнки, как правило, служит нихром (сплав никеля и хрома). Нихромовая плёнка обладает довольно низким ТКС (до 10 ppm/ 0 С) что позволяет изготавливать очень точные резисторы с допуском в ±0,01%.

Резистивный слой.

В качестве основы резистивного слоя чип-резисторов используются различные материалы:

    Никель-хром (он же нихром, Nichrome, NiCr ). Обладает низким TCR (ТКС), который составляет 10 ppm/ 0 С (-55...+125 0 С). Благодаря этому широко используется при производстве тонкоплёночных резисторов;

    Нитрид тантала (Tantalum nitride, TaN ). Используется в тонкоплёночных резисторах, устойчивых к высокой влажности (moisture-resistant);

    Нитрид дитантала (Ta 2 N ). Его TCR составляет 25 ppm/ 0 С (-55...+125 0 С);

    Диоксид рутения (Ruthenium oxide, RuO 2 ) (используется в толстоплёночных резисторах);

    Рутенит свинца Pb 2 Ru 2 O 6 и рутенит висмута (Bi 2 Ru 2 O 7) (применяется в чип-резисторах с толстой плёнкой);

    Диоксиды рутения, легированные ванадием (Ru 0,8 V 0,2 O 2 , Ru 0,9 V 0,1 O 2 , Ru 0,67 V 0,33 O 2);

    Оксид свинца (PbO);

    Висмут иридий (Bi 2 Ir 2 O 7).

    Сплав никеля (Nikel alloy). Низкоомные (0,03...10 Ом) тонкоплёночные резисторы (Vishay, серия L-NS).

Подложка SMD-резистора (Substrate).

Наиболее используемый материал подложки SMD-резисторов - это чистая керамика на основе 94...96% поликристаллического оксида алюминия Al 2 O 3 (Alumina ). Она обладает высокой твёрдостью, хорошей адгезией, огнеупорностью и является изолятором.

Немаловажно и то, что она обладает хорошей теплопроводностью, ведь от резистивного слоя необходимо отводить тепло. Такую керамику часто применяют в качестве подложек для интегральных схем и микросборок.

Высокомощные чип-резисторы могут иметь подложку из нитрида алюминия (Aluminum nitride - AlN ). Это высокочистая керамика, обладающая высокой теплопроводностью.

Такая подложка применяется в чип-резисторах серии PCAN фирмы Vishay.

Слой пентаоксида тантала создают путём распыления, после чего происходит самостоятельный рост оксидной плёнки.

Поверх слоя Ta 2 O 5 уже наносится внешний слой эпоксидной смолы, служащий для механической защиты и изоляции. Замечательным свойством таких резисторов является то, что даже при механическом повреждении защитного слоя из пентаоксида тантала, он будет "зарастать" за счёт самовосстановления.

Естественно, производители всё время ищут новые способы и методы защиты резистивной плёнки. По понятным причинам технологические детали могут не раскрываться.

Например, в технической записке "Major Advancements in the Protection of Thin Film Nichrome-Based Resistors with Specialized Passivation Methods (SPM) " фирмы Vishay рассказывается о специальных методах пассивации (SPM), благодаря которым удаётся изготовить маломощные тонкоплёночные резисторы с нихромовой плёнкой, которые устойчивы к воздействию влаги и не уступают по своей стабильности резисторам с плёнкой на основе нитрида тантала Ta 2 N.

В серии L низкоомных резисторов того же Vishay используется нихромовая плёнка (NiCr) и защитное покрытие из пентаоксида тантала (Ta 2 O 5).

Как видим, технологические приёмы могут комбинироваться. Всё зависит от стоимости производства и требуемых характеристик готового изделия.

Серостойкие резисторы (Sulfur resistant resistors)

В последнее время можно услышать о так называемых серостойких резисторах - Sulfur resistant resistors или Anti-Sulfur resistors . Например, в своих промо-материалах компания Gigabyte заявляет о том, что в их материнских платах применяются такие чип-резисторы.

Долгосрочная надёжность чип-резисторов во многом зависит от той окружающей среды, в которой они эксплуатируются.

Наличие в окружающей среде газов с содержанием серы приводит к тому, что они проникают сквозь микропоры и трещины в защитном эпоксидном или стеклянном покрытии SMD-резистора. Как правило, самым незащищённым участком является граница защитного покрытия и внешних контактов.

На фото поперечного среза толстоплёночного резистора показана область, подвергшаяся воздействию серосодержащих газов и образованию сульфида серебра.

Механизм повреждения чип-резистора такими газами следующий.

Наличие сульфида серебра в структуре чип-резистора с течением времени приводит к росту его номинального сопротивления вплоть до электрического "обрыва".

Чтобы предотвратить образование сульфида серебра производители используют разные методы. Компромиссным вариантом считается легирование серебра драгоценными металлами. В чип-резисторах, от которых требуется долговременная надёжность вместо серебра и вовсе применяется палладий или платина.

Кроме этого участок, наиболее подверженный воздействию газов дополнительно покрывают защитными покрытиями или сплавами.

Anti-Sulfur резисторы применяются в оборудовании, которое задействовано на промышленных производствах, в нефтяной промышленности, телекоммуникационных и IT-системах, автомобильной электронике.

Лазерный тримминг резисторов.

Чтобы привести сопротивление резистивного слоя к заданному номиналу используется лазерная подгонка или на зарубежный манер, тримминг (trimming - "обрезка"). Суть её заключается в удалении части топологического рисунка из плёнки за счёт лазерного излучения.

На фото показан пример обрезки (L-Cut), сделанный с помощью лазерного тримминга (слева резистор на 33 Ома (330), справа на 1 МОм (105)).

Чтобы подобрать требуемую величину сопротивления резистора на поверхности резистивного слоя делают лазерный "надрез". В зависимости от требуемых характеристик форма надреза может быть весьма оригинальной. Вот основные из них:

    Поперечный i-рез ("Plunge Cut"). Самый "быстрый" и наименее точный подгоночный рез.

    L-рез ("L Cut"). Из его достоинств можно отметить малое среднеквадратичное отклонение R s и высокую точность. Более медленный тип реза, по сравнению с поперечным i-резом.

    На фото показан L-рез на поверхности SMD-резистора типоразмера 2512 на 100 кОм (рядом для масштаба положена миллиметровая линейка). Скорее всего, это толстоплёночный резистор. Защитный слой мне удалось снять острым лезвием перочинного ножа.

    Кроме реза типа L, может применяться так называемый Opposing "L", когда делается два L-реза по обоим сторонам плёнки.

    "Серпантин" или "Змейка" ("Serpentine"). Можно встретить название "Меандр" ("Meandering"). Это "медленный" рез, но за счёт него обеспечивается самый большой прирост сопротивления.

    Такой рез используется при изготовлении чип-резисторов мегаомных и гигаомных номиналов.

    "Двойной поперечный рез" ("Double Plunge Cut"). Высокая точность и малое среднеквадратичное отклонение R s .

    "Vernier". Очень похожий на предыдущий рез. Судя по всему, назван так из-за сходства со штангенциркулем (vernier caliper).

    "U-рез" ("U-Cut"). Применяется для изготовления высоковольтных резисторов с высокой долговременной стабильностью.

    "П-рез" ("Plunge Cut: Top Hat Resistor"). Продольный "быстрый" рез, используемый для нормировки Top-Hat резисторов.

    "Скан-рез" или Scrub. Также можно встретить название "Shave-рез". Применяется для изготовления высоковольтных резисторов. Самый медленный, но наиболее точный и стабильный рез. Боковая часть плёнки удаляется лазером.

    Также применяется симметричный скраб ("Symetrical Scrub"), когда часть резистивной плёнки удаляется с обеих сторон.

    "Multiplunge". Такой тип реза обеспечивает практически линейное изменение сопротивления. Используя "i-рез" создаются последовательные секции многосекционного резистора (резисторной SMD-сборки).

    Для подгонки многосекционного резистора "лестничного" типа может использоваться перерезка шунтирующих перемычек.

    На следующей картинке показан резистор "лестничного типа" (Ladder resistor), а также пример использования данной топологии в структуре резистивной плёнки.

Если хорошенько присмотреться, то на поверхности толстоплёночных чип-резисторов иногда можно разглядеть разрезы, сделанные лазером. Они слегка проступают под внешним защитным покрытием.

Как видим, несмотря на кажущуюся простоту, для изготовления SMD-резисторов требуется высокоточное оборудование и строгое соблюдение технологии производства.

Прочие резисторы для монтажа на поверхность

Естественно, кроме рядовых SMD-резисторов существуют и другие. Например, чип-резисторы серии UBR (Ultra-Broadband resistors) способны работать в частотном диапазоне вплоть до 20 Гигагерц (20 GHz).

Номинальная мощность их невелика, всего 125 mW и выпускаются они в корпусе типоразмера 0402. Конструкция их также отличается от той, что привычна для рядовых чип-резисторов и называется "Glass wafer sandwich", что можно перевести, как "сэндвич из стеклянных пластин". В качестве подложки и верхней оболочки используется стекло.

Применяются такие резисторы в высокочастотной аппаратуре (спутниковой, оптоволоконной).

Также существуют так называемые Power Metal Strip ® резисторы (Vishay). Их резистивным слоем является монолитный резистивный элемент из сплава никель-хром или марганец-медь.

Подложка в таких резисторах отсутствует, так как резистивный элемент является самонесущей конструкцией. Толщина резистивного элемента составляет 0,0089" (226,06 мкм).

Наличие массивного резистивного элемента позволяет быстро поглощать тепловую энергию. Обычным чип-резисторам на основе плёнок требуется время на отвод тепла в подложку, а затем и в печатную плату.

К резисторам Power Metal Strip ® относятся такие серии, как WSL, WSK, WSLP, WSR. Как правило, это очень низкоомные резисторы (вплоть до миллиОм).

Используются такие резисторы в устройствах, где имеют место высокоэнергетические, кратковременные импульсные переходные процессы, которые сопровождаются быстрым и обильным выделением тепла.

К SMD-резисторам также относятся и MELF-резисторы , так как они также предназначены для монтажа на поверхность. Их подложка выполнена в виде цилиндрического стрежня из керамики, а резистивный слой имеет спиралевидную лазерную нарезку. Резистивным материалом может быть, как плёнка из углерода, так и металла.

За счёт цилиндрической формы подложки эффективная площадь охлаждения таких резисторов больше, чем SMD-резисторов с аналогичной площадью монтажа. Благодаря этому они более устойчивы к импульсной нагрузке, чем стандартные SMD-резисторы, а также способны выдерживать более высокое рабочее напряжение.

SMT-технология не обошла стороной и фольговые резисторы (Bulk Metal ® Foil, BMF ), которые также адаптировали под этот вид монтажа. Как известно, фольговые резисторы обладают самой высокой температурной стабильностью (имеют самый низкий ТКС).

Например, чип-резисторы серии VSMP (Vishay) имеют ТКС 0,2 ppm/ 0 С (-55 0 С...+125 0 С, относительно +25 0 С). А для температурного диапазона 0 0 С...+60 0 С ТКС составляет вообще 0,05 ppm/ 0 С!

Не составляет особого труда встретить на печатных платах и всевозможные SMD-перемычки (zero ohm jumpers , SMD Jumpers ). Примером может служит серия тонкоплёночных SMD-перемычек PZHT (Vishay).

В зависимости от типоразмера, который начинается с 02016, эти SMD-перемычки способны выдержать ток от 0,28А (PZHT02016 ) до 2А (PZHT2512 ) при рабочей температуре 215 0 С. Проводящим слоем в них является плёнка золота (Au) или сплава олова и серебра (SnAg).

В приведённом материале были затронуты вопросы, в основном, касающиеся конструкции, материалов и технологии изготовления SMD-резисторов. Но, несмотря на это, многие вопросы, например, относящиеся к типоразмеру, маркировке и мощности чип-резисторов затронуты не были. Рассказ и без того получился более чем содержательным для формата интернет-статьи. Если есть что добавить, пишите в комментариях!

Резисторы и конденсаторы в SMD исполнении маркируются трех буквенным кодом, редко - четырех буквенным.
В коде первая и вторая цифры указывают на первое и второе число, а третья цифра - множитель. Цифра в множителе соответствует степени множителя.

SMD резисторы маркируются в Ом-ах.

К примеру.

Резистор с маркировкой 560 - первая цифра - 5, вторая - 6, множитель - 0 (т.е. без множителя). Получаем 56 Ом.

Резистор с обозначением 101 - первая цифра - 1, вторая - 0, множитель - х10 1 . Получаем 100 Ом.

Резистор с обозначением 473 - первая цифра - 4, вторая - 7, множитель - х10 3 . Получаем 47000 Ом или 47 кОм.

Резистор с обозначением 225 - первая цифра - 2, вторая - 2, множитель - х10 5 . Получаем 2200000 Ом или 2.2 мОм.

При 4х буквенном коде, маркировка будет такой же, но впереди три цифры номинала, а последняя множитель.

Резистор с маркировкой 1233 - первая цифра - 1, вторая - 2, третья - 3, множитель - х10 3 . Получаем 123000 Ом или 123 кОм.

Некоторые производители используют буквы K и M для обозначения множителя.

При такой маркировке резисторы могут маркироваться более привычным способом, к примеру.

Маркировка резистора - 47K, указывает на сопротивление в 47 кОм

Маркировка 3K3 - указывает на сопротивление 3,3 кОм

Маркировка М27 - Указывает на сопротивление 0,27 мОм или 270 кОм.

Сопротивления резисторов менее 100 Ом маркируются при помощи буквы R или E. К примеру.

Резистор сопротивлением 27 Ом будет маркироваться как 27R или R27, редко E27.

Так же есть резисторы с нулевым сопротивлением или перемычки, они маркируются цифрой - 0

Типоразмер SMD резисторов и конденсаторов обозначается 4-мя цифрами (см. таблицу). Первая пара цифр обозначает длинну элемента, а вторая пара - ширину. В маркировке принято обозначать элементы в дюймах.

Расшифровка маркировки конденсаторов не отличается от резисторов, за исключением того, что результат мы получаем в пФ.

На практике SMD конденсаторы часто встречаются вообще без маркировки, за исключением электролитических SMD конденсаторов.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

Первым делом давайте разберемся с советскими резисторами.

Хоть ты что делай, а от советской электроники не убежишь. Поэтому, немного теории вам не повредит.

Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0.5 Ватт, 0.25 Ватт, 0.125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.

МЛТ – это разновидность самых распространенных советских резисторов, от сокращенных названий М еталлопленочный, Л акированный, Т еплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.

Единицы измерения в МЛТэшках – Омы – обозначают как R или E. Килоомы – буковкой “К”, Мегаомы буковкой “М”. Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1.0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 – 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4.3 Килоом, 1М2 – 1.2 Мегаома.

Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами ” один ка ноль”. Значит, его сопротивление должно быть 1,0 Килоом.


Давайте убедимся, так ли это на самом деле?


Ну да, все сходится с небольшой погрешностью.

Цветовая маркировка резисторов

Чтобы определить значение сопротивления резистора с цветовой маркировкой, сначала надо повернуть его таким образом, чтобы его серебряная или золотая полосы находились справа, а группа других полосок - слева. Если же вы не можете найти серебряную или золотую полоску, то надо повернуть резистор таким образом, чтобы группа полосок находилась с левой стороны.

Цвет полоски – закодированная цифра:
Черный – 0
Коричневый – 1
Красный – 2
Оранжевый – 3
Желтый – 4
Зеленый – 5
Синий – 6
Фиолетовый – 7
Серый – 8
Белый – 9

Третья полоска имеет другое значение: она указывает количество нулей, которое следует добавить к полученному предыдущему цифровому значению.

Цвет полоски – Количество нулей
Черный – Нет нулей -
Коричневый – 1 – 0
Красный – 2 – 00
Оранжевый – 3 – 000
Желтый – 4 – 0000
Зеленый – 5 – 00000
Синий – 6 – 000000
Фиолетовый – 7 – 0000000
Серый – 8 – 00000000
Белый – 9 – 000000000

Следует помнить, что цветовая маркировка является вполне согласующейся и логичной, например, зеленый цвет означает либо величину 5 (для первых двух полосок), либо 5 нулей (для третьей полоски).

Сама последовательность цветов совпадает с последовательностью цветов в радуге (с красного по фиолетовый цвета) (!!!)

Если на резистор нанесена группа из четырех полосок вместо трех, то первые три полоски являются цифрами, а четвертая полоска означает количество нулей. Третья цифровая полоска дает возможность указать сопротивление резистора с более высокой точностью.

Давайте же рассмотрим неизвестный нам резистор.


В основном на резисторе бывают три, четыре, пять и даже шесть полосок. Первая полоска находится ближе всего к выводу резистора и ее делают шире, чем все другие полоски, но иногда это правило не соблюдается. Для того, чтобы не перелопачивать справочники по цветовой маркировке резисторов, в интернете можно скачать множество различных программ для определения номинала резистора.

Очень неплохой онлайн калькулятор вы также можете найти .

Калькулятор маркировки резисторов

Мне очень понравилась программа . С этой программой разберется даже дошкольник. Давайте же с помощью нее определим номинал нашего резистора. Вбиваем полоски интересующего нас резистора и программа выдаст нам его номинал.


И вот снизу слева в рамке мы видим значение номинала резистора: 1кОм -+5%. Удобно не правда ли?

Теперь давайте замеряем сопротивление с помощью мультиметра: 971 Ом. 5% от 1000 Ом – это 50 Ом. Значит номинал резистор должен быть в диапазоне от 950 Ом и до 1050 Ом, иначе его можно признать не годным. Как мы видим, значение 971 Ом прекрасно вписывается в диапазон от 950 до 1050 Ом. Следовательно, мы правильно определили номинал резистора, и его спокойно можно использовать в наших целях.


Давайте потренируемся и определим номинал еще одного резистора.




Все ОК;-).

Маркировка SMD резисторов

Цифровая маркировка резисторов

Рассмотрим маркировку резисторов. Резисторы типоразмера 0402 (значения типоразмеров ) не маркируются. Остальные же маркируются тремя или четырьмя цифрами, так как они чуток больше и на них все-таки можно нанести цифры или какую-нибудь маркировку. Резисторы с допуском до 10% маркируются тремя цифрами, где две первые цифры обозначают номинал этого резистора, а последняя третья цифра – это 10 в степени этой последней цифры. Давайте рассмотрим вот такой резистор:


Сопротивление резистора, показанного на фото равняется 22х10 2 =2200 Ом или 2,2 К.

Проверяем так ли это? Берем между щупами этот крохотный SMD компонент и замеряем сопротивление.


Сопротивление 2,18 кОм. Небольшая погрешность не в счет.

SMD резистор с допуском 1% и типоразмера от 0805 и больше маркируются четырьмя цифрами. Например, резистор с номером 4422. Считается это как 442х10 2 =44200 Ом=44.2 кОм.

Существуют также SMD резисторы почти с нулевым сопротивлением (очень-очень малое сопротивление все-таки имеется) или просто-напросто так называемые перемычки. Они смотрятся более эстетичнее, чем какие-либо провода.

Кодовая маркировка резисторов - это самая распространенная практика в наши дни. Иногда попадаются резисторы, у которых маркировка выглядит очень странно. Не пугайтесь, это простая кодовая маркировка, которую используют некоторые производители радиоэлектронных компонентов. Это может выглядеть как-то так:

или даже так:

Как определить значение сопротивления таких резисторов? Для этого существует таблица, с помощью которой вы легко сможете определить номинал любого резистора с кодовой маркировкой. Итак, в первых двух цифрах засекречен номинал сопротивления резистора, а буква - это множитель.

Вот собственно и таблица:

Буквы: S=10 -2 ; R=10 -1 ; А=1; В= 10; С=10 2 ; D=10 3 ; Е=10 4 ; F=10 5

Значит, сопротивление этого резистора

у нас будет 140х10 4 =1,4 МегаОма.

А сопротивление этого резистора

у нас будет 102х10 2 =10,2 КилоОма.

В программе Резистор 2.2 можно также без проблем найти кодовую и цифровую маркировку резисторов.

Выбираем маркировку фирмы BOURNS


Ставим маркер на «3 символа». И набираем нашу кодовую маркировку. Например, тот же самый резистор с маркировкой 15Е. Внизу, слева в рамке, мы видим значение сопротивления этого резистора: 1,4 Мегаом.

Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.

Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT - Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ
На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные.
Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).

МАРКИРОВКА ЧИП-РЕЗИСТОРОВ
Для маркировки чип-резисторов применяется несколько способов.
Способ маркировки зависит от типоразмера резистора и допуска.

Резисторы типоразмера 0402 не маркируются.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя - показатель степени по основанию 10 для определения множителя.

При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.

Обозначение 220 означает, что номинал резистора равен 22 Ома.

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя - показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.

Цифры задают код, по которому из таблицы определяют мантиссу, а буква - показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм.



Просмотров