Млт резисторы расшифровка. Маркировка советских и современных резисторов и их обозначение

Слово «резистор » произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах (Ом), килоомах (кОм) или мегаомах (МОм). Номинальные значения сопротивлений указываются на корпусе резисторов , однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы , они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления (ТКС) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С. В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е – 27 Ом
  • 4Е7 – 4,7 Ом
  • К680 – 680 Ом
  • 1К5 – 1,5 кОм
  • 43К – 43 кОм
  • 2М4 – 2,4 МОм
  • 3М – 3 МОм

Различают два основных вида резисторов : нерегулируемые (постоянные ) и регулируемые (переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭВ-Р

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы , лакированные эмалью, теплостойкие:

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R , после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.


Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.


Сопротивление резистора ориентировочное

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка * .

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.


Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.


Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость


Регулируемый резистор с двумя дополнительными отводами


Сдвоенный переменный резистор


Двойной переменный резистор


Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.


Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления (ТКС) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления (ТКС) таких резисторов положительный.


Терморезисторы (термисторы)


Условное графическое обозначение варисторов

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное ) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах , например – СН-1-2-1-100 .

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.


Условное графическое обозначение фоторезисторов

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление ), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1 .

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное ). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1 .

Радиолюбителям часто приходится сталкиваться с резисторами, и если это происходит не в первый раз, то большинство уже знает, как определить по маркировке характеристики элемента схемы. Но не все могут это сделать, да и к тому же нередко даже знатокам приходится поломать голову, столкнувшись, к примеру, с печатной платой на smd компонентах.

Имеет смысл проследить пошагово эволюцию резисторов и их маркировок. Для начала рассмотреть самые простейшие из них, а уже после продвигаться к сложным и высокотехнологичным smd резисторам.

Итак, разделяют три вида подобных элементов. Это советские резисторы, которые используются, однако и сейчас, современные – т.е. те, которые имеют разноцветные полоски, ну и конечно .

Конечно, как ни стараться, но без советской электроники не обойтись, а по тому есть смысл изучить маркировки подобных резисторов.

На первый взгляд, визуально можно попробовать определить предельные мощности рассеивания этих элементов.

На изображении выше видна разница в их размерах. Начиная с самого верхнего их мощность:

  • 0.5Вт;
  • 0.25Вт
  • 0.125Вт.

Первые два резистора, на 1Вт. и 2Вт. промаркированы литерой МЛТ-1 и МЛТ-2 – это наиболее широко известная разновидность. МЛТ – это аббревиатура Металлоплёночного, Лакированного, Теплоустойчивого элемента.

Остальные можно определить только по габаритам, маркировка на них отсутствует. Естественно, что чем крупнее резистор, тем больше и мощность рассеивания – законы физики никем не отменены.

Единица измерения сопротивления у МЛТ как и у других резисторов это Ом – указывается буквами R или Е, КОм – литерой К, ну а МОм – как М. Разобраться тут совершенно не сложно. Стоит маркировка М33, значит это резистор, сопротивление которого составляет 33 Мега Ома. Но в некоторых случаях бывает ещё проще. На элементе можно найти надпись 2КО, и конечно любому становится понятно, что сопротивление будет равным 2 кило Омам.

Так что резисторы советских времён определить по маркировке, узнав их технические характеристики, достаточно просто, чего, конечно же, не скажешь об элементах с нанесёнными на них разноцветными полосками.

Современные резисторы

Обычно при появлении в разговоре темы о современных резисторах у собеседников начинает портиться настроение. А дело всё в том, что на них нет привычной всем буквенной или числовой маркировки. Определить их характеристики можно при наличии таблицы, но тратить при этом придется невероятно огромное количество времени, т.к. все параметры зашифрованы в различных цветах и расположениях полосок на конденсаторе.

Для определения характеристик этого элемента для начала необходимо его развернуть так, чтобы золотистая либо серебристая полоса оказалась по правую руку. При отсутствии таковой нужно посмотреть, к какой стороне ближе находятся несколько полос и развернуть, чтобы они оказались по левую руку.

  • Чёрная – 0;
  • Коричневая -1;
  • Красная – 2;
  • Оранжевая – 3;
  • Жёлтая – 4;
  • Зелёная – 5;
  • Синяя – 6;
  • Фиолетовая – 7;
  • Серая – 8;
  • Белая — 9 .

Ещё одна полоса покажет число нулей, необходимое к добавлению к цифрам, получившимся из первых двух. Итак, если полоса:

  • Чёрная – нет нулей;
  • Коричневая – 0 (1);
  • Красная – 00 (2);
  • Оранжевая – 000 (3);
  • Жёлтая – 0000 (4);
  • Зелёная – 00000 (5);
  • Синяя – 000000 (6);
  • Фиолетовая – 0000000 (7);
  • Серая – 00000000 (8);
  • Белая – 000000000 (9).

При условии, что полосок на резисторе не 3, а 4 (не считая серебристой или золотистой), то первые три – цифры, а 4-я – количество нулей.

Обычно на элементе 3 или 4 полосы, но бывает и 5-6. Начинать следует с более широкой, но иногда производитель не отмечает её. Находиться она будет ближе к выводу.

Но вообще, для того, чтобы определить технические характеристики резистора, проще обратиться к онлайн-калькулятору, который всегда можно найти в сети интернет. У многих радиолюбителей такие программы уже установлены в компьютерах. Останется лишь отметить нужные цвета и калькулятор определит все параметры.


SMD – резисторы

Об этих компонентах можно говорить бесконечно. Самое интересное, что непонятно что человек видит перед собой – это несколько транзисторов, резисторов или ещё чего то. Но немного разобравшись в маркировках всё же можно понять и прочитать их характеристики.

Сложность в том, что элементы малого типоразмера (к примеру, 0402) вообще никак не обозначаются, т.к. практически невозможно нанести на них что либо. Smd компоненты, допуск которых составляет 10 % немного крупнее и обозначаются 3-мя числами, 2 начальных – это номинал, а 3-я – степень 10-ти.

К примеру, на резисторе проставлены цифры 332. Значит, сопротивление этого компонента будет равным 33х10 во второй степени Ом = 3300 Ом = 3.3 кОм.

Если допуск резистора от 1%, то маркируется он уже 4-хзначным числом, но при прочтении изменений никаких, так же последняя цифра обозначает степень 10-ти, ну а первые три – номинал.

Иногда можно встретить такую кодировку резисторов, как 000. Такие элементы имеют незначительное, почти нулевое сопротивление и используются в печатных платах в качестве обычных перемычек. Ведь аккуратнее смотрится такой смд компонент, чем кусок проводка.

Дополнительная информация

Конечно, при желании вполне возможно разобраться с маркировками различных резисторов. Остаётся лишь так называемая «проблема бренда». Это определение отражает попытку больших фирм не ремонтировать своё оборудование «чужими» запасными частями. А по тому многие из них вводят свои маркировки смд компонентов, отличные от общепринятых. Но всё же при наличии схемы и омметра (либо мультиметра) с любой печатной платой можно найти общий язык.

Система обозначений резисторов

Сокращенная система обозначений резисторов введена в соответ­ствии с ГОСТ 13453-68 с учетом вышеназванных групп и свойств резисторов и состоит из букв и цифр. Буквами обозначается группа резисторов: С - резисторы постоянные, СП - резисторы переменные. Первая цифра после букв указывает материал, из которого они изготовлены (1 -непроволочные тонкослойные углеродистые и бороуглеродистые; 2 - непроволочные тонкослойные металлопленочные и металлоокисные; 3 - непроволочные композиционные пленочные; 4 - непроволочные композиционные объемные; 5 - проволочные; 6-непроволочные тонкослойные металлизированные). Следующие цифры, написанные через дефис, указывают порядковый номер разработки конструктивной разновидности резисторов данного вида. Например, резистор С2-22 - постоянный непроволочный с порядковым номером разработки 22.
С 1980 г. введена система сокращенных условных обозначений, в которой первый элемент - буква или сочетание букв - обозначает подкласс резистора (Р - постоянные резисторы, РП - переменные резисторы, HP - наборы резисторов); второй элемент - цифра обозначает группу резисторов по материалу резистивного элемента (1 - непроволочные, 2 - проволочные); третий элемент - цифра обозначает регистрационный номер конкретного типа резистора. Между вторым и третьим элементами ставится дефис. Например, резисторы переменные проволочные с номером 18 записываются РП2-18.
Резисторы, которые изготовлялись до введения вышеуказанных систем сокращенных обозначений, имеют старые наименования, в основу которых положены отличительные признаки (вид токопроводящего материала, защиты и др.). К ним относятся резисторы типа ВС (высокостабильные), МЛТ (металлизированные лакированные теплостойкие) и другие.

Маркировка резисторов

Маркировка резисторов (их буквенно-цифровой код) содержит значение номинального сопротивления и допустимые отклонения от него. Кроме того, в обозначении имеется буква, которая указывает единицы сопротивления. Она пишется на том месте, где должна быть запятая, разделяющая целую и дробную части обозначения. Если в значении сопротивления резистора отсутствуют целые числа, то нуль впереди буквы не ставится. В конце обозначения резистора буквой указывается допустимое отклонение от номинального значения сопротивления. Например, сопротивление 0,47 Ом ± 5 % сокращенно обозначается Е47И; сопротивление 4,7 кОм ± 10 % - 4К7С, сопротивление 4,7 МОм ± 20 % - 4M7BJ. Далее рассмотрим более подробно маркировку резисторов.

Резисторы с номинальным значением до 100 Ом маркируются буквами E или R, например:

  • 0,47 Ом – R47 или Е47
  • 1 Ом – 1R0 или 1Е0
  • 4,3 Ом – 4R3 или 4Е3
  • 33 Ом – 33R или 33E
  • 47,5 Ом – 47R5 или 47Е5

Резисторы с номинальным значением от 100 до 999 Ом маркируются в долях килоома и обозначаются буквой К, например:

  • 100 Ом – К10
  • 470 Ом – К47
  • 560 Ом – К56
  • 820 Ом – К82

Резисторы с номинальным значением от 1 до 99 кОм маркируются буквой К, например:

  • 1 кОм – 1К0
  • 4,7 кОм – 4К7
  • 10 кОм – 10К
  • 47,5 кОм – 47К5
  • 75 кОм – 75К

Резисторы с номинальным значением от 100 до 999 кОм маркируются в долях мегаома и обозначаются буквой М, например:

  • 100 кОм – М10
  • 150 кОм – М15
  • 360 кОм – М36
  • 475 кОм – М475
  • 560 кОм – М56

В соответствии с ГОСТ 17598-72 для постоянных резисторов допускается маркировка цветным кодом номинального сопротивле­ния и допустимых отклонений от него. Маркировку наносят знаками в виде кругов или полос. Для маркировки цветным кодом номинальное сопротивление резисторов в омах выражается двумя или тремя цифрами (в случае трех цифр - последняя не равна нулю) и множителем 10 в степени n, где n - любое целое число от -2 до +9.
Для резисторов с номинальным сопротивлением, выраженным двумя цифрами и множителем, цветная маркировка состоит из четырех или трех знаков при допустимом отклонении сопротивления ±20% (допустимое отклонение ± 20 % не маркируется). Маркировочные знаки располагают на резисторе слева направо в следующем порядке:

  1. первая цифра;
  2. вторая цифра
  3. множитель;

Для резисторов с номинальным сопротивлением, выраженным тремя цифрами и множителем, цветная маркировка состоит из пяти знаков и располагается слева направо в следующем порядке:

  1. первая цифра;
  2. вторая цифра;
  3. третья цифра;
  4. множитель;
  5. допустимое отклонение сопротивления.

Маркировочные знаки сдвинуты к одному из торцов резистора. Первый знак расположен у торца. Если размеры резистора не позволяют разместить маркировку ближе к одному из торцов, то площадь первого знака делается приблизительно в два раза больше площади остальных знаков. Пример можно посмотреть здесь.

Это детали, пожалуй, наиболее многочисленны в приемниках и усилителях. В транзисторном приемнике средней сложности, например, их может быть 20-25 штук. Используют же их для ограничения тока в цепях, для создания на отдельных участках цепей падений напряжений, для разделения пульсирующего тока на его составляющие, для регулирования громкости, тембра звука и т.д.

Для резисторов сравнительно небольших сопротивлений, рассчитанных на токи в несколько десятков миллиампер, используют тонкую проволоку из никелина, нихрома и некоторых других металлических сплавов. Это проволочные резисторы. Для резисторов больших сопротивлений, рассчитанных на сравнительно небольшие токи, используют различные сплавы металлов и углерод, которые тонкими слоями наносят на изоляционные материалы. Эти резисторы называют непроволочными резисторами.

Как проволочные, так и непроволочные резисторы могут быть постоянными, т.е. с неизменными сопротивлениями, и переменными, сопротивления которых в процессе работы можно изменять от некоторых минимальных до их максимальных значений.

Основные характеристики резистора: номинальное, т.е. указанное на его корпусе сопротивление, номинальная мощность рассеяния и наибольшее возможное отклонение действительного сопротивления от номинального. Мощностью рассеяния называют ту наибольшую мощность тока, которую резистор может длительное время выдерживать и рассеивать в виде тепла без ущерба для его работы. Если, например, через резистор сопротивлением 100 Ом течет ток 0,1 А, то он рассеивает мощность 1 Вт. Если резистор не рассчитан на такую мощность, то он может быстро сгореть. Номинальная мощность рассеяния - это, по существу, характеристика электрической прочности резистора.

Наша промышленность выпускает постоянные и переменные резисторы разных конструкций и номиналов: от нескольких ом до десятков и сотен мегаом. Из постоянных наиболее распространены металлопленочные резисторы МЛТ (Металлизованные Лакированные Теплостойкие). Конструкция резистора этого типа показана в несколько увеличенном виде на рис. 59, а. Его основой служит керамическая трубка, на поверхность которой нанесен слой специального сплава, образующего токопроводящую пленку толщиной 0,1 мкм. У высокоомных резисторов этот слой может иметь форму спирали. На концы стержня с токопроводящим покрытием напрессованы металлические колпачки, к которым приварены контактные выводы резистора. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Резисторы MЛT изготовляют на мощности рассеяния 2, 1, 0,5, 0,25 и 0,125 Вт. Их обозначают соответственно: МЛТ-2, МЛТ-1, МЛТ-0,5, МЛТ-0,25 и МЛТ-0,125. Внешний вид этих резисторов и условные изображения мощностей рассеяния на принципиальных схемах показаны на рис. 59,б и в. Со временем ты научишься распознавать мощности рассеяния резисторов по их внешнему виду.

Наибольшее возможное отклонение действительного сопротивления резистора от номинального выражают в процентах. Если, например, номинал резистора 100 кОм с допуском ±10%, это значит, что его фактическое сопротивление может быть от 90 до 110 кОм. Номиналы постоянных резисторов, выпускаемых нашей промышленностью, указаны в приложении 3, помещенном в конце книги.

Рис. 59. Постоянные резисторы

Таблица этого приложения будет твоим справочным листком. Она подскажет тебе, резисторы каких номиналов и допусков можно искать в магазинах или у товарищей.

Переменный непроволочный резистор устроен так (на рис. 60 резистор СП-1 показан без защитной крышки): к круглому пластмассовому основанию приклеена дужка из гетинакса, покрытая тонким слоем сажи, перемешанной с лаком. Этот слой, обладающий сопротивлением, и является собственно разистором. От обоих концов слоя сделаны выводы. В центр основания впрессована втулка. В ней вращается ось, а вместе с осью фигурная гетинаксовая пластинка. На внешнем конце пластинки укреплена токосъемная щетка (ползунок) из нескольких пружинящих проволочек, которая соединена со средним выводным лепестком. При вращении оси щетка перемещается по слою сажи на дужке, вследствие чего изменяется сопротивление между средним и крайними выводами. Сверху резистор закрыт металлической крышкой, предохраняющей его от повреждений.

Рис. 60. Конструкции и графическое изображение переменных резисторов на схемах

Так или примерно так устроены почти все переменные резисторы, в том числе типов СП (Сопротивление Переменное), СПО (Сопротивление Переменное Объемное) и ВК. Резисторы ТК отличаются от резисторов ВК только тем, что на их крышках смонтированы выключатели, используемые для включения источников питания. Принципиально так же устроены и малогабаритные дисковые переменные резисторы, например типа СП3-3в.

Переменные непроволочные резисторы изготовляют с номинальными сопротивлениями, начиная с 47 Ом, с допусками отклонения от номинала ± 20, 25 и 30%.

На принципиальных схемах, чтобы не загромождать их, используют систему сокращенных обозначений сопротивлений резисторов, при которой наименования единиц их сопротивлений (Ом, кОм, МОм) при числах не ставят. Такая система обозначения номинальных сопротивлений резисторов применена и в этой книге.

Сопротивления резисторов от 1 до 999 Ом обозначают на принципиальных схемах целыми числами, соответствующими омам, а сопротивления резисторов от 1 до 999 кОм - цифрами, указывающими число килоом, с буквой «к». Большие сопротивления резисторов указывают в мегаомах с буквой «М». Вот несколько примеров обозначения сопротивлений резисторов на схемах: R1 270 соответствует 270 Ом; R2 6.8к - 6800 Ом: R3 56 к - 56 кОм (56 000 Ом); R4 220 к - 220 кОм (0,22 МОм); R5 1.5 М - 1,5 МОм.

Сразу же сделаю оговорку: для подавляющего большинства радиолюбительских конструкций без ущерба для их работы допустимо отклонение от указанных на схемах номиналов резисторов в пределах до ± 10-15%. Это значит, что резистор сопротивлением, например, 5,1 кОм может быть заменен резистором ближайшего к нему номинала, т. е. резистором с номиналом 4,7 или 5.6 кОм.

Представь себе такой случай. Тебе нужен резистор определенного сопротивления. А у тебя нет такого, но есть резисторы других номиналов. Можно ли из них составить резистор нужного сопротивления? Можно, конечно, если знать элементарный расчет последовательного и параллельного соединений сопротивлений электрических цепей и резисторов. При последовательном соединении резисторов (рис. 61, а) их общее сопротивление равно сумме сопротивлений всех соединенных в эту цепочку резисторов, т. е.

Рис. 61. Последовательное (а) и параллельное (б) соединения резисторов

Так, например, если R1 = 15 кОм и R2 = 33 кОм, то их общее сопротивление R = 15 + 33 = 48 кОм (ближайшие номиналы 47 и 51 кОм).

При параллельном соединении резисторов (рис. 61,б),их общее сопротивление R уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора. Результирующее сопротивление цепи из параллельно соединенных резисторов рассчитывают по такой формуле:

Допустим, что R1 = 20 кОм, a R2 = 30 кОм. Общее сопротивление участка цепи, состоящей из этих двух резисторов, равно: R = R1 R2/(R1+R2) = 20 30/(20+30) = 12 кОм. Когда параллельно соединяют два резистора с одинаковыми номиналами, их общее сопротивление равно половине сопротивления каждого из них.

Резистор

Резистор - это элемент электрическиой цепи с постоянным или переменным номиналом, предназначенный для поглощения электрической энергии. Получил своё название из английского языка - resistor. В среде российских радиолюбителей часто именуется "Сопротивлением" . Существует модификация с возможностью изменения значения номинала, она называется - "потенциометр" или в простонародье - "Переменное сопротивление" . Применение резистора в электрических цепях обосновано целым рядом очень полезных технических функций, таких как линейное преобразование тока в напряжение и напряжения в ток, деление напряжения и/или тока в заданных пределах.

Главное при выборе резисторов для ламповой схемотехники

При подборе резисторов для ламповых схем усиления радиолюбитель, привыкший работать с транзисторами и микросхемами, столкнется с двумя новыми для него проблемами. Во-первых, в отличие от большинства транзисторных схем для лампового усилителя, где все лампы работают в классе А и, следовательно, потребляют заметную, порой значительную мощность, существенной становится номинальная мощность резисторов, поэтому дальше в схемах вы сплошь и рядом будете встречаться с обозначением мощности 0,5 Вт; 1,0 Вт; 2,0 Вт и даже 5,0 Вт и 10,0 Вт. Лучше всего использовать в работе резисторы типов МЛТ (ОМЛТ) с допусками 2% и 5%, С2-ЗЗН с допусками 1%, 2% и 5%, Р14 с допусками 1%, 2% и 5%, С1-4 мощностью 0,5 Вт и допусками 2% и 5 %.
Идеально было бы использовать прецизионные резисторы типов С2-14 или С2-29В с допусками 0,25% ... 1,0%, охватывающие всю шкалу сопротивлений от 10 Ом до 5,1 МОм и мощностей от 0,125 до 2 Вт, однако это может быть накладно.
В качестве резисторов мощностью свыше 5 Вт лучше всего применять типы С5-35В (старое обозначение ПЭВ), С5-37 с допусками 5% или прецизионные резисторы типов С5-5 и С5-16 с допусками 0,5% ... 2,0%.
Второй, более существенный момент - это допустимый разброс абсолютных значений. Впрочем, не следует заранее пугаться: в схеме обычно встречается всего несколько резисторов, сопротивление которых столь критично к высокой точности. В большинстве случаев для всех ламповых схем вполне допустим разброс 5%, а в некоторых цепях и до 10%.

В отношении переменных резисторов наибольшие трудности возникают при применении сдвоенных и спаренных регуляторов громкости и тембра в стереоусилителях. Главный их недостаток состоит в том, что в положении минимального значения (ось - до конца влево) переход движка с графитового покрытия на металлическое основание у двух потенциометров происходит не одновременно: у одного - чуть раньше, у другого - чуть позже, вследствие чего, например, громкость в одном из каналов пропадает полностью, а в другом - нет. Для современного лампового усилителя это считается абсолютно недопустимым.
Если Вы решили строить качественный Hi - End усилитель, не пожалейте денег и купите настоящие импортные реостаты, но только не китайского производства.
Можно конечно попытаться провести собственными силами доработку, которая сведется к тому, что в одном из двух сдвоенных резисторов (а скорее всего в обоих) придется исправить этот дефект чисто механически, подгибанием дужки токосъемника, если это допускает конструкция, или взаимным, навстречу друг другу, смещением платформ, несущих токосъемники. Но результат такой доработки крайне сомнителен.
Кроме того, для обеспечения большего срока службы и предотвращения шорохов и тресков все без исключения оперативные регуляторы (громкость, тембр, стереобаланс) необходимо еще до установки в усилитель вскрыть, протереть рабочую (токонесущую) часть спиртом или чистым бензином Б70 (но не автомобильным и уж тем более не растворителем или ацетоном), затем равномерно смазать чистым техническим вазелином, снова аккуратно и плотно закрыть крышками, а в зазор между осью и втулкой капнуть одну каплю машинного или трансформаторного масла.
В качестве установочных и регулировочных переменных резисторов, которыми придется пользоваться крайне редко, в основном при первичной регулировке и настройке усилителя, лучше всего выбирать пылезащищенные и влагозащищенные, с надежным контактом между токосъемником и рабочей поверхностью дужки, - например, типов СПЗ-9, СПЗ-16, СПЗ-456, СП4-2М-6 или проволочные подстроечные, - типов СП5-16В, СП5-2В.

Схемы соединения сопротивлений

Величина тока на любом участке последовательной цепи, состоящей из нескольких сопротивлений неизменна и представляет собой величину, зависящуюот общего сопротивления цепи и приложенного к ее концам напряжения.

I = I1 = I2 = I3

Общее (эквивалентное) сопротивление равно сумме всех, последовательно соединенных сопротивлений.

R = R1 + R2 + R3

Общее падение напряжения на последовательной цепи сопротивлений равно сумме падений напряжений на каждом сопротивлении.

U = U1 + U2 + U3

Напряжения на участках цепи прямо пропорционально сопротивлениям этих участков.

U1 = I*R1 ; U2 = I*R2 ; U3 = I*R3 ;

Следовательно справедливы следующие формулы:

I = U1/R1 = U2/R2 = U3/R3 = U/R

Припараллельном соединении нескольких сопротивлений ток в неразветвленных частях цепи равен сумме токов в параллельных ветвях.

I = I1 + I2 + I3

Падение напряжения на параллельном соединении равно падению напряжения на каждом его элементе.

U = U1 = U2 = U3

Проводимость цепи является величиной обратной сопротивлению.

Общая проводимость параллельного соединения равна сумме проводимостей отдельных ветвей.

g = g1 + g2 + g3

Общее сопротивление равно обратной величине общей проводимости и меньше наименьшего сопротивления.

Общее сопротивление определяется из формулы:

1/R = 1/R1 + 1/R2 + 1/R3

Ток в каждой параллельной ветви определяется согласно закону Ома:

I1 = U/R1 = U*g1 ; I2 = U/R2 = U*g2 ; I3 = U/R3 = U*g3 ;

Токи в параллельных ветвях прямо пропорциональны проводимостям или обратно пропорциональны сопротивлениям ветвей.

I1 : I2: I3 = g1 : g2 : g3

I1 : I2: I3 = 1/R1 : 1/R2 : 1/R3

Расчет параллельных соединений сопротивлений

Формула для расчета результирующего сопротивления при соединении двух сопротивлений в параллельную схему.

R = R1*R2/(R1 + R2)

Формула для расчета результирующего сопротивления при соединении трех сопротивлений в параллельную схему.

R = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3)

Типы применяемых резисторов

Очень старые резисторы

Резисторы этого типа применялись в старой ламповой радиоаппаратуре 40х - 50х годов.

Резисторы МЛТ (ОМЛТ)

Самый распространенный класс резисторов.

Сфера применения этих резисторов поистине гигантская. Они применяются во всех типах электронной техники где нет жестких требований по климатике и воздействиям окружающей среды.

Проволочные резисторы повышенной точности

Резисторы типа ПТМН - 1 являются высокоточными прецизионными резисторами с отклонением номинала 0.25%. Как правило использовались в точной измерительной аппаратуре.

Резисторы широкого применения

Глубокий спектр номиналов и мощностей резисторов МЛТ, а также значительная дешевизна использования этих компонентов, позволяет отдавать им предпочтение во многих классах радиоаппаратуры и ламповой усилительной технике там где не нужна высокая точность соответствия схемным решениям. Разброс параметров номинальных значений в пределах 10% - 20%.

Современные резисторы с цветовой маркировкой

Новые резисторы с цветовой маркировкой как правило выпускаются на автоматических производственных линиях и продаются в ленточной упаковке.

Эти резисторы предназначены для выполнения навесного и печатного монтажа слаботочных электронных схем, так как их мощность рассеяния составляет 0.25 Вт. Их с успехом можно использовать при монтаже самых первых входных ламповых каскадов усиления как элементы цепей сеточного смещения.

Цветовая маркировка резисторов

Очень часто буквенно - цифровые обозначения номиналов резисторов заменяют на соответствующий цветовой код.

Другим видом маркировки является нанесение на корпус резистора цветных колец. Маркировочные кольца сдвинуты к одному из выводов резистора и располагаются слева направо. Если размеры резистора не обеспечивают отступа, то ширина первого кольца примерно в два раза шире остальных. Число колец может быть от четырех до шести.

Система обозначения характеристик постоянных резисторов цветовым кодом

Пояснительная схема значения цветовых полос в цветовой маркировке резисторов.

Суть цветовой маркировки соостоит в том, что на поверхность резистора наносятса группы цветных полос, обозначающих двухзначный или трехзначный номинал (две или три полосы), полоса множителя, полоса допуска и полоса ТКЕ.

В зависимости от цвета полос, характеристики ими обозначенные, принимают то или иное значение. Таким образом формируется номинал резистора и его точностные характеристики.

Маркировка резисторов зарубежного производства.

Буквенно-цифровая маркировка
На корпус резистора наносится маркировка, состоящая из двух или трех цифр и буквы.
Буква играет роль запятой и обозначает, в каких единицах измеряется номинал резистора:
R — в омах;
К — в килоомах;
М — в мегаомах.
Примеры обозначения приведены в табл. 1

Таблица 1 Примеры обозначения номиналов резисторов

Сопротивление

0,1 Ом

0,33 Ом

6,8 Ом

150 Ом

1 кОм

5,6 кОм

47 кОм

150 кОм

1 МОм

2,2 МОм

Обозначение

R10

R33

22R

150R

Например: 330RG означает 330 Ом ±2%. R22M означает 0,22 Ом ±20%.

Цветовая маркировка зарубежных резисторов

Цветовая маркировка резисторов зарубежного производства аналогична цветовой маркировке резисторов отечественного производства.

Для обычных резисторов

Для проволочных резисторов

Переменные резисторы

Особенности применения переменных резисторов

Переменные резисторы (потенциометры) применяются в качестве внешних устройств настройки и регулировки сигналов: в качестве регуляторов громкости, тембра, уровней, на-стройки на частоту в радиоприемниках с перестройкой частоты при помощи варикапов.

Подстроечные резисторы применяются в схемах радиоэлектронных устройств для того, чтобы обеспечить их настройку во избежание многократных замен, связанных с необходимостью подбора постоянного резистора.
Переменные резисторы выпускаются в различном исполнении. По типам они делятся на резисторы с угольной дорожкой, дорожкой из кермета (металлокерамики), проволочные и многооборотные проволочные. По причине наличия подвижного контакта переменные резисторы являются источником шумов, и порой напряжение создаваемых ими шумов может достигать десятков милливольт (15...50 мВ). Поэтому при применении переменных резисторов следует придержи-ваться следующих правил:
избегайте использования переменных резисторов с угольной дорожкой: они сильно шумят и ненадежны;
в регуляторах громкости аудиоаппаратуры применяйте потенциометры с лога-рифмическим законом регулирования сопротивления;
не применяйте переменных резисторов с угольной дорожкой в устройствах электропитания для регулировки выходного напряжения. Из-за несовершенства дорожки возможно мгновенное появление полного выходного напряжения.
В современной зарубежной технике применяются подстроечные резисторы серии POZ3, имеющие номинал от 200 Ом до 2 МОм. Средний вывод у них расположен обособленно и имеет большую ширину, чем крайние выводы. Некоторые варианты исполнения таких переменных резисторов показаны на рис. 1 и рис. 2
на рис. 1 крайние выводы обозначены цифрами 1 и 3, а средний — цифрой 2 (поворот — по часовой стрелке от выв. 1 к выв. 3).

Рисунок 1. Переменные резисторы Китайского производства.

Рисунок 2. Дискретные переменные резисторы с тонкомпенсацией Японского производства.

Рисунок 3. График зависимости сопротивления потенциометра от угла поворота движка.

Подбирая потенциометры для реализации своих разработок, необходимо уделять особое внимание типу зависимости изменения номинала сопротивления от угла поворота потенциометра или положения линейного движка в продольных потенциометрах.

Рисунок 4. Ползунковый линейный потенциометр в металлическом корпусе.

Рисунок 4. Ползунковый двухканальный линейный потенциометр.



Просмотров