Млт 1 резистор расшифровка. Маркировка резисторов млт расшифровка

Постоянные резисторы - это такой элемент, который присутствует практически во всей электронной аппаратуре. Резисторы обладают свойствами активного сопротивления . С их помощью можно ограничить или уменьшить ток в цепи, разделить определенное напряжение на две о более части, для отвода остаточных зарядов.

Состоит постоянный резистор из фарфоровой трубки или палочки, на которую напыленно железо или углерод. От толщины напыления зависит сопротивление резистора и от объема - мощность.

Маркировка резисторов

Буквенно-цифровая маркировка резисторов

Общий вид резисторов отечественного производства и обозначение их на схеме (рис1).

Большинство резисторов в своей радиолюбительской практике брал из старых радиоустройств. Как правило, эти устройства были старыми и в них были установлены отечественные резисторы с буквенно-цифровой маркировкой. В маркировке таких резисторов обычно присутствовали три буквы МЛТ, что означает, металлизированный лакированный теплостойкий. Цифра после этого словосочетания обозначает мощность.

Основная единица измерения сопротивления - Ом. В одном Оме 1000 кОм и 1 000 000 мОм. Буквы в маркировке служат в роли разделителей, как запятая в обычном наборе цифр. Например, сопротивление у резистора 5к3 будет 5,3 кОм, а 5м3 - 5,3 мОм. Все остальные буквы английского алфавита и обозначают Ом. Например, 8R0 - это 8,0 Ом. Отсутствие буквы вовсе означает, что цифра обозначает сопротивление в Ом. Например, 100 - это 100 Ом.

Приведу еще несколько примеров с буквой перед цифрами. К250 = 0.250 кОм и это равно 250 Ом. М100 = 0,100 мОм и это равно 100 кОм.

Цветовая маркировка резисторов

Современные изготовители радиодеталей уже практически ушли от буквенно-цифровой маркировки резисторов. На смену ей пришла цветовая маркировка резисторов.

Смысл данной маркировки в нанесении на корпус разноцветных колец, цвет которого несет свою цифру или множитель. Рассказывать и изучать, что означает каждый цвет, мы здесь не будем, я сам этого на память не знаю, и запоминать не хочется. Для определения номинала резисторов с цветовой маркировкой существует множество программ в интернете, скачать одну из них можно. Я начал использование программы больше пяти лет назад и пользуюсь до сих пор.

Так же цветовую маркировку резистора можно определить из шаблона резисторов с уже проставленными номиналами, во всяком случае на столе не помешают:


Универсальный способ определения номинала

И не забываем самый основной способ определения номинала резистора методом измерения. Правда, для определения сопротивления данным способом, необходим довольно точный прибор, китайский цифровой мультиметр вполне сойдет, а вот стрелочные тестеры врятли. При измерении не прикасайтесь к щупам мультиметра, что бы не учитывать сопротивление тела, и при измерении небольших сопротивлений отнимайте сопротивление проводов, показывается если щупы замкнуть накоротко (на большем пределе покажет нуль и сопротивление проводов не учитывается).

Мощность резистора

Резисторы различаются как по сопротивлению, так и по мощности. Основные номиналы мощности показаны на рисунке 1. На том же рисунке показано условно графическое изображение резистора на схеме. Если при сборке, какой либо схемы на ней указан резистор мощностью 1 Вт, то при сборке схемы он должен быть аналогичной или большей мощности.

Хорошо если на схемах такие обозначения есть, а что делать, если схема проектируется самостоятельно. К примеру, нужно подключить светодиод 3 Вольта и 30 миллиАмпер к источнику питания 12 В. Для ограничения тока в цепь светодиода врезается резистор. Что бы рассчитать рассеиваемую мощность резистора необходимо знать напряжение падения на резисторе, ток цепи и найти их произведение. (12-3)х0,03= 0,27 Вт. Принимаем ближайшее, большее значение мощности 0,5 Вт.

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току . Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм , мОм и гОм .

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (). Как узнать номинал резистора по цветовой маркировке , можем узнать из этой.

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R Омах . Очень важным является позиция этой буквы. Если на резисторе надпить типа 12 R то номинал резистора будет 12Ом . Если же буква будет в начале R 12 , то сопротивление будет 0,12Ом . Также возможно обозначение типа 12 R1 , что будет означать 12,1 Ом.
  2. Буква K к Омах . Действуют теже правила что и для предыдущего примера. 12 K = 12кОм, K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М – означает, что номинал резистора будет измеряться в м Омах . 12 М = 12мОм, М 12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала . При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные . С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.



Если на переменном резисторе написано что он имеет номинал 10кОм , то это означает, что он производит регулировку в пределах от 0 до 10 кОм . В среднем положении ручки его номинал будет приблизительно около 5 кОм , в крайнем или 0 или 10 кОм .


Новая деталь - резистор.

Резистор - это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так - сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода . Однако у всех остальных элементов сопротивление - это не главная характеристика, а так скажем - побочная. На самом деле, лампочка - светит, двигатель - вращается, диод - выпрямляет, транзистор - усиливает, а провод - проводит. А вот у резистора нет иной "профессии", кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако - это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части - это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.


А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление - 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это - резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 - Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление - достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как - длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае - не отчаивайтесь - это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха - 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… "Миллиметр", "километр", "мегабайт", "гигабайт", "децибелл" - все эти слова образованы из слов "метр", "байт" и "Белл" при помощи кратных приставок: "милли-", "кило-", "Мега-", "Гиго-", "деци-". Все прекрасно знают, что в 1-м километре - 1000 метров, а в 1-м грамме - 1000 миллиграмм, а в одном гигабайте - где-то 1000 000 000 байт. И можно, в принципе, говорить не "3 километра" а "3 тысячи метров", не "40 милиграмм" а "0,04 грамма". Однако - это долго и неудобно. Для того, собственно, и служат эти приставки - чтоб облегчить нам с вами жизнь. Они образуют из некоторой базовой виличины (метр, грамм, байт и т.д.) новую величину, которая больше или меньше базовой во сколько-то раз. Во сколько - об этом нам как раз и скажет кратная приставка! Ниже приведена таблица кратных приставок. Обратите внимание, что некоторые приставки пишутся с большой буквы, некоторые - с маленькой. Об этом нельзя забывать, иначе вы рискуете перепутать милливольт с Мегавольтом. Последствия будут печальны =(…

Тера - 1 000 000 000 000 (10^12) (триллион)
Гига - 1 000 000 000 (10^9) (миллиард)
Мега - 1 000 000 (10^6) (миллион)
кило - 1 000 (10^3) (тысяча)

Деци - 0,1 (10^-1) (десятая)
санти - 0,01 (10^-2) (сотая)
милли - 0,001 (10^-3) (тысячная)
микро - 0,000 001 (10^-6) (миллионная)
нано - 0,000 000 001 (10^-9) (миллиардная)
пико - 0,000 000 000 001 (10^-12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но - редко. Итак:

1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.

Теперь поехали лопатить обозначения на корпусе!


Маркировка резисторов

Маркировка - это условные обозначения , наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве - сопротивлении.

Существует несколько различных способов маркировки резисторов.

Способ 1-й, совдеповский.

1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем - 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм


Способ 2-й, буржуазный

152, 683, 164, 200, 391.

Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры - это некоторое число. Последняя - количество нулей, дописываемых после этого числа. Проще некуда!


Способ 3-й, цветовой

Не подходит для дальтоников и ленивых.
Идеалогия - как в предыдущем способе, но вместо цифр - цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):


Как читать?
Берем резистор с цветовой маркировкой. На корпусе - 4 полоски. Три находятся рядом, одна - чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее - см. предыдущий способ.


Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора - сопротивление всегда можно померить измерительными приборами . О них мы еще поговорим.


ID: 641

Как вам эта статья?

Большинство людей приходят в радиолюбительство из-за желания сделать что-то своими руками, чего-то неповторимого, что несомненно принесет пользу себе и окружающим… Но выбрав конструкцию для самостоятельной сборки зачастую возникает масса проблем связанная со скудным запасом знаний в области радиоэлектроники. Конечно сразу начинается повальное чтение книг соответствующей тематики и извлечение оттуда ценной информации о разнообразии радиоэлементов, о работе транзистора и прочих приборов. Когда много чего прочитано, уже имеется представление об условном графическом отображении элементов на схеме, и есть какие-то понятия о принципе работы, возникает проблема переноса схемы с бумаги в реальность, а именно поиск компонентов схемы. Сейчас не составляет проблемы составить список сходить и купить радиодетали, но у многих все же отсутствует возможность приобретения деталей, и на помощь приходит старая сломанная радиоаппаратура. О том как найти нужные радиодетали в старой технике и пойдет речь в этой статье. Я преднамеренно не буду описывать какую-то конкретную схему, поскольку невозможно охватить все разнообразие электронных компонентов в рамках одного устройства. Так же не буду описывать принципа работы элементов, все это вы уже должны знать.

Пассивные компоненты

Резисторы

Самым часто встречающимся элементом является резистор , без него невозможно построить ни одну схему. Встретить его можно практически в любом электронном устройстве, резистор представляет из себя цилиндр с двумя диаметрально-противоположными выводами. Служит для ограничения тока в цепи и имеет определенное сопротивление, измеряемое в Омах. Обозначается прямоугольником с двумя черточками с противоположных сторон, внутри прямоугольника обычно указывают мощность(рис.1).

В бытовой аппаратуре применяются резисторы с номиналами, расположенными по ряду Е24 , это значит, что в диапазоне от 1 до 10 имеется 24 номинала сопротивления. Существует множество типов резисторов, вот наиболее часто встречающиеся:

Рис. 1. Обозначение резисторов. Тип МЛТ

Резисторы типа МЛТ (металлический лакированный теплостойкий) – часто встречаются в ламповой аппаратуре(обычно не меньше 0,5 Вт), и в советской аппаратуре 80 годов. В зависимости от габаритов имеют различную мощность, если на схеме мощность не указана, то как правило, можно применять резисторы 0,125 Вт.

На резисторах данного типа ставится маркировка, обозначающая непосредственно сопротивление, далее буква русского или латинского алфавита обозначает множитель, составляющий сопротивление и определяет положение запятой десятичного знака ("R(E)"=1; "К(К)"=10^3; "М(М)"=10^6; "G(Г)"=10^9; "Т(Т)" =10^12).

18 – 18 Ом, при обозначениях единиц Ом буква иногда не ставится, в том числе и на схемах.

Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой.

1М5-1,5 МОм.

К51- 510 Ом, если буква стоит перед числом, то это значит, что сопротивление меньше килоома (мегаома), следующая цифра показывает сопротивление.

Дальше в обозначении стоит буква, обозначающая величину допуска в процентах: (Е=±0.001; L=±0.002; R=±0.005; Р=±0.01; U=±0, 02; В(Ж)=±0.1; С(У)=±0.25; D(Д)=±0.5; F(Р)=±1; G(Л)=±2; J(И)=±5; К(С)=±10; М(В)=±20; N(Ф)=±30. Величина допуска может быть нанесена под номиналом сопротивления во второй строке и будет выражена в процентах.

Резисторы типа ВС (водостойкие) можно встретить в ламповой аппаратуре 60-70х годов (рис.2). А именно в радиолах и черно-белых телевизорах. Практической ценности в настоящее время не несут. Маркировка схожа с МЛТ, имеют несколько габаритных размеров в зависимости от мощности.


Рис. 2. Тип ВС

В середине 80-х годов появилась цветовая маркировка резисторов (рис.3, рис.4), которая существует и по сей день, что позволило быстро определять номинал без выпайки из схемы (нам это тоже на руку, поиск нужного резистора значительно ускоряется). Резисторов с такого рода маркировкой производит множество отечественных и зарубежных фирм, поэтому определить конкретный тип резистора весьма сложно, да зачастую и не нужно.


Рис. 3. Резисторы с цветовой кодовой маркировкой


Рис. 4. Расшифровка цветовой маркировки резисторов

В таблице показана методика определения номинала резистора и класса точности. Класс точности показывает на сколько процентов может отличаться сопротивление от заявленного номинала.

Определить сопротивление по цветовым полосам можно с помощью: .

В последнее время появилась тенденция к минимизации и стали появляться компоненты для поверхностного монтажа(SMD). Вот так называемые чип-резисторы (рис.5).


Рис. 5. Чип-резисторы

Применяются в современной технике повсеместно и имеют несколько типоразмеров (рис.6).


Рис. 6. Основные типоразмеры SMD резисторов

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают номинал резистора без множителя, а последняя - показатель степени по основанию 10 для определения множителя. Например: 123 – 12* 10^3 =12000 Ом =12 кОм. Часто встречаются чип резисторы с обозначением 0, это резистор нулевого сопротивления или попросту перемычка.

Для построения усилителей, а вернее их выходных каскадов часто требуются мощные резисторы более 2-х ватт с сопротивлением не более 1 ома, это как правило резисторы марки ПЭ или ПЭВ - резисторы проволочные, бывают от 1 до нескольких сотен ватт (рис.7). Также наиболее современные различных фирм производителей (рис.8). Встретить можно в старых ламповых телевизорах, радиолах и устройствах промышленной автоматики. В случае отсутствия необходимого резистора, его можно изготовить самостоятельно из спирали от электронагревателя, отрезав необходимую длину, подобрав сопротивление при помощи омметра.


Рис. 7. Резисторы ПЭВ


Рис. 8

Отдельное место среди постоянных резисторов занимают резисторные сборки (рис.9), которые очень удобны при построении схем, где требуется много одинаковых резисторов.


Рис. 9. Резисторные сборки dip и smd

Сборки имеют два типа соединения, либо в виде нескольких обычных резисторов, только в одном корпусе, либо резисторов с одним общим выводом. Встретить можно во многих цифровых устройствах, там они, как правило применяются, как подтягивающие.

В электронных устройствах часто применяются резисторы с изменяемым сопротивлением, их можно разделить на переменные - применяются для оперативного изменения параметров устройства в процессе эксплуатации, таких как громкость, тембр, яркость, контраст, и подстроечные – используются для настройки прибора во время сборки и наладки.

Резисторы переменные:


Рис. 10. Переменные резисторы

Резисторы переменные рис.10:

1.Со встроенным тумблером, можно встретить в ламповых телевизорах и радиолах 70-х годов
2. Резистор типа СП3-30а можно встретить в телевизорах, приемниках, абонентских громкоговорителях до 90-х годов выпуска.
3. Резистор Сп-04, встречаются в телевизорах и носимых магнитофонах 80-х годов.
4. СП3-4а во всей технике конца 80-х начала 90-х.
5. Специализированный счетверенный с тумблером СП3-33-30, обычно встречается в разного типа магнитолах.


Рис. 11. Ползунковые переменные резисторы

Ползунковые резисторы (рис.11) часто встречаются в магнитофонах 80-90х годов в качестве регуляторов звука и тембра.


Рис. 12. Современные переменные резисторы

Более современные резисторы(рис. 12), можно встретить в любой импортной технике с начала 90-х годов, от кассетных плееров и автомагнитол, до телевизоров и музыкальных центров. Часто встречаются сдвоенные резисторы для регулировки звука сразу по двум каналам (стерео). Очень интересен последний резистор (на рисунке), так называемый 3D – резистор или же джойстик, представляет из себя несколько сочлененных резисторов и отслеживает перемещение рукоятки влево-вправо, вверх- вниз и вращение вокруг своей оси. Встретить такой экземпляр можно в джойстиках от игровых консолей.

Для всех переменных резисторов помимо сопротивления есть очень важный параметр – зависимость сопротивления от угла поворота вала (линейного перемещения), обозначается буквой после значения сопротивления:

Советские:
А - линейная зависимость
Б - логарифмическая зависимость
В - обратно-логарифмическая зависимость

Импортные:
A - логарифм
B - линейная
С - обратный логарифм

Для регулировки громкости как правило используют резисторы с логарифмической зависимостью.

Подстроечные резисторы:


Рис. 13. Подстроечные резисторы СССР

Подстроечные резисторы рис.13:
1,2,3 – как правило встречаются в старых ламповых телевизорах.
4,7 (РП1-64Б), 8 (СП3-29А) - в полупроводниковых цветных телевизорах
5 – во всей советской технике 80-х годов
6 – СП5-50МА мощный проволочный резистор, в цветных ламповых телевизорах.
9 – СП3-36 многооборотный подстроечный резистор, встречается как правило в блоке настройки каналов телевизоров.


Рис. 14


Рис. 15. Многооборотные резисторы

Многооборотный подстроечный, применяется в усилительной аппаратуре для установки тока покоя и во всех системах, где нужна точная настройка.

Все переменные и подстроечные резисторы, также различаются по мощности, которая как правило указана на корпусе или в документации на элемент. Для своих конструкций можно применять практически любые из перечисленных исходя из требуемых габаритов и мощности.

Со временем и подстроечные и переменные резисторы портятся и у них появляется нежелательное явление, именуемое шорохом. Вызвано это явление недостаточным прижимом (контактом) ползунка или износом подложки, как правило ремонтировать резисторы смысла нет, хотя иногда встречаются очень редкие и уникальные(например в большинстве микшерных пультов), что найти замену, не представляется возможным. В этом случае резистор нужно аккуратно разобрать, подогнуть контакт, восстановить при помощи твердого карандаша графитовое покрытие и смазав силиконовой смазкой собрать назад. Резистор после такой реанимации сможет еще послужить.

Существуют также резисторы, реагирующие на изменения окружающей среды, в любительских конструкциях используются мало, но все же о них стоит упомянуть: терморезисторы


Рис. 16. Терморезисторы

Применяются для термостабилизации схемы, встречаются очень часто, но в самодельных устройствах применяются мало.


Рис. 17. Фоторезистор

Изменяет свое сопротивление в зависимости от освещенности. Можно вынуть из любительских фотоаппаратов, там они применяются в качестве датчика света.

Тензорезиторы


Рис.18. Тензорезисторы

Изменяют свое сопротивление в зависимости от деформации, их в бытовой аппаратуре встретить можно очень редко и применяются они как правило в виде датчиков в устройствах автоматики.

Варистором называется полупроводниковый резистор, сопротивление которого эффективно уменьшается под действием приложенного к нему напряжения, а ток, протекающий в цепи, нарастает.


Рис. 19. Варисторы

Применяются как устройство защиты в импульсных блоках питания бытовой аппаратуры от превышения напряжения питания. Можно встретить в любом современном устройстве.

Слово «резистор » произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах (Ом), килоомах (кОм) или мегаомах (МОм). Номинальные значения сопротивлений указываются на корпусе резисторов , однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы , они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления (ТКС) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С. В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е – 27 Ом
  • 4Е7 – 4,7 Ом
  • К680 – 680 Ом
  • 1К5 – 1,5 кОм
  • 43К – 43 кОм
  • 2М4 – 2,4 МОм
  • 3М – 3 МОм

Различают два основных вида резисторов : нерегулируемые (постоянные ) и регулируемые (переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭВ-Р

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы , лакированные эмалью, теплостойкие:

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R , после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.


Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.


Сопротивление резистора ориентировочное

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка * .

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.


Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.


Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость


Регулируемый резистор с двумя дополнительными отводами


Сдвоенный переменный резистор


Двойной переменный резистор


Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.


Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления (ТКС) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления (ТКС) таких резисторов положительный.


Терморезисторы (термисторы)


Условное графическое обозначение варисторов

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное ) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах , например – СН-1-2-1-100 .

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.


Условное графическое обозначение фоторезисторов

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление ), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1 .

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное ). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1 .

Система обозначений резисторов

Сокращенная система обозначений резисторов введена в соответ­ствии с ГОСТ 13453-68 с учетом вышеназванных групп и свойств резисторов и состоит из букв и цифр. Буквами обозначается группа резисторов: С - резисторы постоянные, СП - резисторы переменные. Первая цифра после букв указывает материал, из которого они изготовлены (1 -непроволочные тонкослойные углеродистые и бороуглеродистые; 2 - непроволочные тонкослойные металлопленочные и металлоокисные; 3 - непроволочные композиционные пленочные; 4 - непроволочные композиционные объемные; 5 - проволочные; 6-непроволочные тонкослойные металлизированные). Следующие цифры, написанные через дефис, указывают порядковый номер разработки конструктивной разновидности резисторов данного вида. Например, резистор С2-22 - постоянный непроволочный с порядковым номером разработки 22.
С 1980 г. введена система сокращенных условных обозначений, в которой первый элемент - буква или сочетание букв - обозначает подкласс резистора (Р - постоянные резисторы, РП - переменные резисторы, HP - наборы резисторов); второй элемент - цифра обозначает группу резисторов по материалу резистивного элемента (1 - непроволочные, 2 - проволочные); третий элемент - цифра обозначает регистрационный номер конкретного типа резистора. Между вторым и третьим элементами ставится дефис. Например, резисторы переменные проволочные с номером 18 записываются РП2-18.
Резисторы, которые изготовлялись до введения вышеуказанных систем сокращенных обозначений, имеют старые наименования, в основу которых положены отличительные признаки (вид токопроводящего материала, защиты и др.). К ним относятся резисторы типа ВС (высокостабильные), МЛТ (металлизированные лакированные теплостойкие) и другие.

Маркировка резисторов

Маркировка резисторов (их буквенно-цифровой код) содержит значение номинального сопротивления и допустимые отклонения от него. Кроме того, в обозначении имеется буква, которая указывает единицы сопротивления. Она пишется на том месте, где должна быть запятая, разделяющая целую и дробную части обозначения. Если в значении сопротивления резистора отсутствуют целые числа, то нуль впереди буквы не ставится. В конце обозначения резистора буквой указывается допустимое отклонение от номинального значения сопротивления. Например, сопротивление 0,47 Ом ± 5 % сокращенно обозначается Е47И; сопротивление 4,7 кОм ± 10 % - 4К7С, сопротивление 4,7 МОм ± 20 % - 4M7BJ. Далее рассмотрим более подробно маркировку резисторов.

Резисторы с номинальным значением до 100 Ом маркируются буквами E или R, например:

  • 0,47 Ом – R47 или Е47
  • 1 Ом – 1R0 или 1Е0
  • 4,3 Ом – 4R3 или 4Е3
  • 33 Ом – 33R или 33E
  • 47,5 Ом – 47R5 или 47Е5

Резисторы с номинальным значением от 100 до 999 Ом маркируются в долях килоома и обозначаются буквой К, например:

  • 100 Ом – К10
  • 470 Ом – К47
  • 560 Ом – К56
  • 820 Ом – К82

Резисторы с номинальным значением от 1 до 99 кОм маркируются буквой К, например:

  • 1 кОм – 1К0
  • 4,7 кОм – 4К7
  • 10 кОм – 10К
  • 47,5 кОм – 47К5
  • 75 кОм – 75К

Резисторы с номинальным значением от 100 до 999 кОм маркируются в долях мегаома и обозначаются буквой М, например:

  • 100 кОм – М10
  • 150 кОм – М15
  • 360 кОм – М36
  • 475 кОм – М475
  • 560 кОм – М56

В соответствии с ГОСТ 17598-72 для постоянных резисторов допускается маркировка цветным кодом номинального сопротивле­ния и допустимых отклонений от него. Маркировку наносят знаками в виде кругов или полос. Для маркировки цветным кодом номинальное сопротивление резисторов в омах выражается двумя или тремя цифрами (в случае трех цифр - последняя не равна нулю) и множителем 10 в степени n, где n - любое целое число от -2 до +9.
Для резисторов с номинальным сопротивлением, выраженным двумя цифрами и множителем, цветная маркировка состоит из четырех или трех знаков при допустимом отклонении сопротивления ±20% (допустимое отклонение ± 20 % не маркируется). Маркировочные знаки располагают на резисторе слева направо в следующем порядке:

  1. первая цифра;
  2. вторая цифра
  3. множитель;

Для резисторов с номинальным сопротивлением, выраженным тремя цифрами и множителем, цветная маркировка состоит из пяти знаков и располагается слева направо в следующем порядке:

  1. первая цифра;
  2. вторая цифра;
  3. третья цифра;
  4. множитель;
  5. допустимое отклонение сопротивления.

Маркировочные знаки сдвинуты к одному из торцов резистора. Первый знак расположен у торца. Если размеры резистора не позволяют разместить маркировку ближе к одному из торцов, то площадь первого знака делается приблизительно в два раза больше площади остальных знаков. Пример можно посмотреть здесь.

Имеющий собственное сопротивление. Практически ни одна электрическая схема не обходится без этих элементов. Существует множество видов резисторов. Они отличаются по номинальному сопротивлению, по мощности, по классу точности, по видам и др. Для того чтобы уметь выбрать нужный элемент, необходимо научиться читать обозначения и символы, нанесенные на резистор (его маркировку). В этой статье пойдет речь о способах нанесения нужных обозначений и символов и методах их дешифровки. Маркировка резисторов бывает трех типов: цифровая, символьная и цветовая.

Маркировка мощности

Прежде чем переходить к маркировке номинального сопротивления резистора, поговорим о его мощности и дешифровке ее маркировки. Даже в том случае, если на поврежденном корпусе резистора невозможно прочитать символы, то мощность можно определить по размеру элемента, но для этого надо иметь практический опыт определения этого параметра. Например, самые маленькие резисторы имеют и наименьшую мощность - 0,125 Вт, и дальше по возрастанию - от 0,25 Вт до 3 Вт. Но, повторимся, для такой «прикидки на глазок» необходимо иметь опыт работы с элементами. Символьное обозначение мощности на резисторах следующее:

Две косые линии означают мощность элемента, равную 0,125 Вт;

Одна косая линия - 0,25 Вт;

Одна горизонтальная линия - 0,5 Вт;

Одна вертикальная линия - 1 Вт;

Две вертикальные линии - 2 Вт;

Три вертикальные линии - 3 Вт.

На резисторах типа МЛТ, выпущенных в СССР, мощность указывалась, начиная от одного Ватта: МЛТ-1, МЛТ-2 и МЛТ-3 соответственно.

Описание маркировки: значения номинального сопротивления

Теперь перейдем к определению номинальных значений и рассмотрим, как наносится такая маркировка резисторов. Как было сказано выше, такая кодировка бывает трех видов. Первый - это цифровая маркировка резисторов. Она используется только для элементов, номинал которых менее 999 Ом. Например, такая запись номинального сопротивления будет иметь следующий вид: 1,5; 150; 200. При этом по умолчанию принято, что номинал записан в Ом. Второй вид - символьная (цифрово-буквенная) кодировка. При этом виде маркировки исключается такой символ, как запятая. Вместо нее используют буквы латинского алфавита R, K, M. В том случае, когда при записи номинального сопротивления используется литера R, необходимо умножить числовое значение на 1; если К - то умножить на 1000; если литера М - то необходимо умножить на 1000000. Например, номинальное сопротивление 150R - означает 150 Ом; 5К6 - означает 5600 Ом; 1М5 - означает 1500 кОм.

Маркировка SMD-резисторов

Кодировка таких резисторов делится на три типа: с 3 цифрами, с 4 цифрами и с 3 символами. В первом случае первые 2 цифры обозначают номинал элемента в Ом, а последняя - количество нулей. Приведем пример: цифры на сопротивлении 152 будут означать 1500 Ом. Во втором типе первые 3 цифры указывают номинал элемента в Ом, последняя - количество нулей. Код на резисторе 5602 означает 56 кОм. Третий вид записи означает: первые 2 цифры - это номинал в Ом, который взят из таблицы, приведенной ниже, а последний символ - множитель: S=10 -2 ; R=10 -1 ; B=10; C=10 2 ; D=10 3 ; E=10 4 ; F=10 5 . Пример: код на резисторе 13С означает 13300 Ом.

Для декодировки такого вида обозначений необходимо определить начало отсчета. В изделиях периода СССР штриховка всегда смещена к краю - это и есть начало отсчета. В современных элементах последняя полоса бывает или золотистого, или серебряного цветов. Эта полоса обозначает точность резистора (5% или 10%), если маркировка состоит из трех полос, точность таких элементов составляет 20%. Во всех типах цветового кода 1 и 2 полосы - это значение номинала элемента.

Когда штриховка состоит из 3-4 полос, то третья обозначает число, на которое необходимо умножить номинальное значение. Если кодовая штриховка резисторов содержит 5 полос, то третья тоже относится к номиналу, а четвертая означает множитель, пятая полоса - точность. Если кодировка состоит из шести полос, то последняя - это надежность элемента либо температурный коэффициент.



Просмотров