Микроклимат и его гигиеническое значение. Микроклимат: значение, гигиеническое нормирование, меры предупреждения неблагоприятного воздействия

Цель занятия:

1. Изучить влияние на организм человека факторов микроклимата (атмосферное давление, температура, относительная влажность, скорость движения воздуха) и освоить методы их определения.

2. Проанализировать полученные результаты и дать гигиеническое заключение о микроклимате учебного помещения.

Место проведения занятия: учебно-профильная лаборатория гигиены атмосферного воздуха.

Современный человек в силу объективных и субъективных причин большую часть времени (до 70%) суток проводит в закрытых помещениях (производственные помещения, жилище, лечебно-профилактические учреждения и т.д.). Внутренняя среда помещений оказывает непосредственное влияние на состояние здоровья людей.

Микроклимат – состояние окружающей среды в ограниченном пространстве (помещение), определяемое комплексом физических факторов (температура, влажность, атмосферное давление, скорость движения воздуха, лучистое тепло) и оказывающее влияние на тепловой обмен человека.

Влияние микроклимата на организм определяется характером отдачи тепла в окружающую среду. Отдача тепла человеком в комфортных условиях происходит за счет теплоизлучения (до 45%), теплопроведения – конвекции, кондукции (30%), испарения пота с поверхности кожи (25%). Наиболее часто неблагоприятное влияние микроклимата обусловлено повышением или понижением температуры, влажности или скорости движения воздуха.

Высокая температура воздуха в сочетании с повышенной влажностью и малой скоростью воздуха резко затрудняет отдачу тепла путем конвекции и испарения, в результате чего возможно перегревание организма. При низкой температуре, высокой влажности и скорости воздуха наблюдается противоположная картина – переохлаждение. При высокой или низкой температуре окружающих предметов, стен снижается или увеличивается отдача тепла путем излучения. Возрастание влажности, т.е. насыщенности воздуха помещения водяными парами, приводит к снижению отдачи тепла испарением.

Характеристика отдельных категорий работ

¨ категория Iа – работы с интенсивностью энерготрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т.п.)

¨ категория Iб – работы с интенсивностью энерготрат 121–150 ккал/ч (140-174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т.п.)

¨ категория IIа – работы с интенсивностью энерготрат 151–200 ккал/ч (175-232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.).

¨ категория IIб – работы с интенсивностью энерготрат 201–250 ккал/ч (233-290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.).

¨ категория III – работы с интенсивностью энерготрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.).

Врач должен уметь оценивать микроклимат помещения, прогнозировать возможные изменения теплового состояния и самочувствия лиц, подвергающихся воздействию неблагоприятного микроклимата, оценивать риск возникновения простудных заболеваний и обострения хронических воспалительных процессов.

Документы, регламентирующие параметры микроклимата помещений

При оценке параметров микроклимата используются следующие документы:

¨ СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений».

¨ СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям».

Санитарные правила устанавливают гигиенические требования к показателям микроклимата рабочих мест производственных и других помещений с учетом интенсивности энерготрат работающих, времени выполнения работы и периодов года. Факторы микроклимата должны обеспечить сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Оптимальные микроклиматические условия обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

Перепады температуры воздуха по вертикали и горизонтали, а также изменения температуры воздуха в течение смены не должны превышать 2 о С и выходить за пределы величин, указанных в таблицах 1, 2.

Таблица 1

Параметры микроклимата в помещениях лечебно-профилактических учреждений

Таблица 2

Параметры микроклимата в жилых помещениях


Классификация типов микроклимата

Оптимальный – микроклимат, при котором человек соответствующего возраста и состояния здоровья находится в ощущении теплового комфорта.

Допустимый – микроклимат, который может вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния человека.

Нагревающий – микроклимат, параметры которого превышают допустимые величины и могут быть причиной физиологических сдвигов, а иногда – причиной развития патологических состояний и заболеваний (перегревание, тепловой удар, и др.).

Охлаждающий – микроклимат, параметры которого ниже допустимых величин и могут вызвать переохлаждение, а также связанные с этим патологические состояния и заболевания.

ПОРЯДОК ВЫПОЛНЕНИЯ ИССЛЕДОВАНИЙ

Определение атмосферного давления

Барометрическое давление на поверхности Земли неравномерно и непостоянно. С поднятием на высоту наблюдается уменьшение давления, при опускании на глубину – повышение. Изменение давления в одном и том же месте зависит от различных атмосферных явлений и служит известным предвестником перемены погоды.

В обычных условиях колебания атмосферного давления (10–30 мм рт.ст.) здоровые люди переносят легко и незаметно. Однако некоторые пациенты (люди с незначительными и значительными нарушениями здоровья) оказываются весьма чувствительными даже к небольшим изменениям атмосферного давления – страдающие ревматическими заболеваниями, нервными болезнями, некоторыми инфекционными: обострение течения туберкулеза легких совпадало с резкими колебаниями барометрического давления.

В особых условиях жизни и трудовой деятельности отклонения от нормального атмосферного давления могут служить непосредственной причиной нарушения здоровья людей. Рассмотрим некоторые из них.

В горных районах, расположенных на высоте 2500–3000 м над уровнем моря и выше, наблюдается значительное уменьшение барометрического давления, сопровождающееся соответствующим уменьшением парциального давления кислорода. Это обстоятельство служит основной причиной возникновения горной (высотной) болезни, выражающейся в появлении одышки, сердцебиения, головокружения, тошноты, носового кровотечения, бледности кожных покровов и др. В основе клинических признаков горной болезни лежит гипоксия.

Повышенное атмосферное давление встречается в кессонах (фр. caisson букв . ящик) – специальных устройствах при водолазных работах. При несоблюдении необходимых профилактических мероприятий повышенное давление способно вызвать резкие физиологические сдвиги в организме, которые могут принять патологический характер с развитием кессонной болезни : при быстром переходе из атмосферы с повышенным давлением в атмосферу с обыкновенным давлением избыточное количество азота, растворенное в крови и тканевых жидкостях (главным образом в жировой ткани и в белом веществе мозга) не успевает выделиться через легкие и остается в них в виде пузырьков газа. Последние разносятся кровью по всему организму и могут обусловить газовые эмболии в различных частях тела. Клинические проявления кессонной болезни заключаются в мышечно-суставных и загрудинных болях, кожном зуде, кашле, вегетативно-сосудистых и мозговых нарушениях. Попадание газового эмбола в коронарные сосуды сердца может послужить причиной смерти.

Таким образом, измерения барометрического давления имеют большое практическое значение для предупреждения серьезных последствий этих изменений для здоровья людей.

Атмосферное давление измеряют с помощью ртутного барометра или барометра-анероида . Для непрерывной регистрации колебаний атмосферного давления пользуются барографом (рис.1). Атмосферное давление в среднем колеблется в пределах 760±20 мм рт.ст.

Рис 1. Барограф

Определение температуры воздуха

Температура воздуха оказывает прямое влияние на теплообмен человека. Колебания ее существенным образом отражаются на изменении условий теплоотдачи: высокая температура ограничивает возможность отдачи тепла телом, низкая повышает ее.

Совершенство терморегуляционных механизмов, деятельность которых осуществляется под постоянным и строгим контролем со стороны центральной нервной системы, позволяет человеку приспосабливаться к различным температурным условиям окружающей среды и кратковременно переносить значительные отклонения температуры воздуха от обычных оптимальных величин. Однако пределы терморегуляции отнюдь небезграничны и переход их вызывает нарушение теплового равновесия организма, что может причинить существенный вред здоровью.

Продолжительное пребывание в сильно нагретой атмосфере вызывает повышение температуры тела, ускорение пульса, ослабление компенсаторной способности сердечно-сосудистого аппарата, понижение деятельности желудочно-кишечного тракта вследствие нарушения условий теплоотдачи. В таких условиях внешней среды отмечается быстрая утомляемость и понижение умственной и физической работоспособности: снижается внимание, точность и координация движений, что может послужить причиной травматических повреждений при выполнении работы на производстве и др.

Низкая температура воздуха, увеличивая теплоотдачу, создает опасность переохлаждения организма. В результате создаются предпосылки к простудным заболеваниям, в основе которых лежит нейрорефлекторный механизм, вызывающий те или иные дистрофические изменения в тканях на почве нарушения баланса регуляции обменных процессов.

Умеренные колебания температуры можно рассматривать как фактор, обеспечивающий физиологически необходимую тренировку организма как единого целого и его терморегуляторных механизмов.

Наиболее благоприятной температурой воздуха в жилых помещениях для человека, находящегося в покое, является 20–22 о С в холодное время года и 22–25 о С в теплое время года при нормальной влажности и скорости движения воздуха.

Методика оценки температурного режима

Температуру воздуха измеряют с помощью ртутных и спиртовых термометров .

Для определения температурного режима помещения измеряют температуру воздуха по вертикали и горизонтали в трех точках: у наружной стены (в 10 см от нее), в центре и у внутренней стены (в 10 см от нее). Измерения проводят на уровне 0,1–1,5 м от пола. Отсчет показаний производят спустя 10 минут после того, как термометр установлен. Рассчитывается средняя арифметическая величина из шести полученных значений температур, которые заносят в протокол и анализируют перепады температуры по вертикали и горизонтали.

Среднюю температуру помещения по горизонтали вычисляют по трем значениям измерений в различных точках, проведенным на высоте 1,5 м.

Изменение температуры по горизонтали от наружной стены к внутренней не должно превышать 2 о С, а по вертикали – 2,5 о С на каждый метр высоты. Колебания температуры в течение суток не должны превышать 3 о С.

Определение влажности воздуха

Каждой температуре воздуха соответствует определенная степень насыщения его водяными парами: чем температура выше, тем больше степень насыщения, так как теплый воздух вмещает большее количество водяных паров, чем холодный воздух.

Для характеристики влажности применяют следующие понятия.

Абсолютная влажность – количество водяных паров в г в 1 м 3 воздуха.

Максимальная влажность – количество водяных паров в г, необходимое для полного насыщения 1 м 3 воздуха при той же температуре.

Относительная влажность – отношение абсолютной влажности к максимальной, выраженное в процентах.

Дефицит насыщения – разность между максимальной и абсолютной влажностью.

Точка росы – температура, при которой находящиеся в воздухе водяные пары насыщают пространство.

Наибольшее гигиеническое значение имеют относительная влажность и дефицит насыщения, которые дают ясное представление о степени насыщения воздуха водяными парами и скорости испарения влаги с поверхности тела при той или иной температуре.

Абсолютная влажность дает представление об абсолютном содержании водяных паров в воздухе, но не показывает степени его насыщения, поэтому и является менее показательной величиной, чем относительная влажность.

Влажность воздуха определяется приборами, которые называются психрометрами. Они бывают двух видов: психрометр Августа и психрометр Ассмана .

Для определения влажности воздуха психрометром Августа прибор следует установить на уровне 1,5 м от пола и провести наблюдения в течение 10–15 минут.

При использовании психрометра Августа абсолютная влажность вычисляется по формуле Реньо:

К = f a ( t – t 1) В , где

К – абсолютная влажность в мм. рт. ст.;

f – максимальная влажность при температуре влажного термометра (ее значение берут из таблицы 4);

а – психрометрический коэффициент (для комнатного воздуха 0,0011);

t – температура сухого термометра;

t 1 – температура влажного термометра;

В – атмосферное давление.

Вычисление относительной влажности производится по формуле:

R – относительная влажность в %;

К – абсолютная влажность;

F –максимальная влажность при температуре сухого термометра(берут из таблицы 4).

Пример: при исследовании обнаружилось, что температура сухого термометра составляет 18 о С, а влажного 13 о С; барометрическое давление – 762 мм рт.ст. По таблице 4 «Максимальная упругость водяных паров при разных температурах (мм рт.ст)» находим величину f – максимальное напряжение водяных паров при 13 о С, которое равняется 11,23 мм рт.ст., и подставляем найденные величины в формулу:

К = 11,23–0,0011 (18–13) 762 = 7,04 мм рт.ст.

Перевод абсолютной влажности в относительную произведем по формуле:

R = (K / F ) 100,

В нашем примере F при 18 о С по табл.4 равна 15,48 мм рт.ст., откуда:

R = (7,04 / 15,48) 100 = 45%

Для более точных замеров применяют аспирационный психрометр Ассмана (рис.2). Психрометр Ассмана имеет два ртутных термометра, заключенных в металлический футляр, предохраняющий прибор от воздействия теплового излучения. Один из термометров (нижняя его часть) покрыт материей и требует перед работой прибора увлажнения. Механическое аспирационное устройство – вентилятор, расположенный в верхней части психрометра, обеспечивает постоянную скорость движения воздуха около термометров, что позволяет проводить измерения при постоянных условиях.

Перед определением влажности воздуха материю на резервуаре одного из термометров («влажный») смачивают водой, затем часовой механизм вентилятора заводят на 3–4 мин. Снятие показаний термометров проводят в тот момент, когда температура влажного термометра станет минимальной.

Рис 2. Психрометр Ассмана

Расчет абсолютной влажности производится с помощью формулы Шпрунга:

(обозначения и формулу для определения относительной влажности см. выше).

Пример: Допустим, что после работы прибора в течение 3–4 минут температура сухого термометра равнялась 18 о С, а влажного 13 о С. Барометрическое давление на момент исследования составляло 762 мм рт.ст. По таблице 4 «Максимальная упругость водяных паров при разных температурах (мм рт.ст)» находим величину F – максимальная упругость водяных паров при 13 о С, которая равняется 11,23 мм рт.ст., и, подставляя найденную величину в формулу, получаем:

К = 11,23 – 0,5(18–13)(762/755) = 8,71 мм рт.ст.

Переведем найденную абсолютную влажность в относительную по формуле:

R = (К / F ) 100,

В нашем примере:

R = (8,71 / 15,48) 100 = 56,3%

Кроме расчетного определения относительной влажности по формулам, ее можно находить сразу по психрометрическим таблицам 5 и 6, используя данные, полученные с помощью психрометра Августа и Ассмана.

Относительная влажность воздуха в жилых и производственных помещениях допускается в пределах от 30 до 60%.

Определение скорости движения воздуха

Скорость движения воздуха оказывает определенное влияние на тепловой баланс организма человека. Кроме того, большая подвижность воздуха в больничных помещениях способствует поднятию в воздух осевшей пыли, ее перемещению и вместе с микроорганизмами создает условия для возможного заражения людей.

Для определения больших скоростей воздуха в открытой атмосфере используют анемометры (рис.3). Ими измеряют скорость движения воздуха в пределах от 1 до 50 м/с.

Рис 3. Анемометр

Определение малых скоростей движения воздуха от 0,1 до 1,5 м/с осуществляется с помощью кататермометра (от греч. kata – движение сверху вниз) – особого спиртового термометра (рис.4). Этот прибор позволяет определить величину потери тепла физическим телом в зависимости от температуры и скорости движения окружающего воздуха.

При этом сначала определяют охлаждающую способность воздуха. Для этого погружают прибор в горячую воду, пока спирт не поднимется до половины верхнего расширения капилляра. Затем его вытирают насухо и определяют время в секундах снижения уровня спирта с 38 о С до 35 о С.


Рис 4. Кататермометр

Вычисление величины охлаждающей способности воздуха в милликалориях с 1 см 2 за секунду (Н ) проводится по формуле:

F – факторприбора – постоянная величина, показывающая количество тепла, теряемое с 1 см 2 поверхности кататермометра за время опускания столбика спирта с 38 о С до 35 о С (обозначен на тыльной стороне прибора);

а – число секунд, в течение которых столбик спирта опускается с 38 о С до 35 о С.

Скоростьдвижения воздуха в м/сек. (V ) определяется по формуле:

, где

H – охлаждающая способностьвоздуха.

Q – разность между средней температурой тела 36,5 о С и температурой окружающего воздуха;

0,2 и 0,4 – эмпирические коэффициенты.

Скорость движения воздуха можно определить также по таблице 7.

Нормальной скоростью движения воздуха в жилых и учебных помещениях считают скорость 0,2–0,4 м/с. Скорость движения воздуха в палатах лечебно-профилактических учреждений должна составлять от 0,1 до 0,2 м/с.


Таблица 3

Сводные данные проведенных исследований

Гигиеническое заключение. На основании полученных результатов оценивают соответствие факторов микроклимата оптимальным условиям. В случае отклонения от нормативов вносят рекомендации по их улучшению.

Контрольные вопросы:

1. Микроклимат. Понятие, факторы, его определяющие.

2. Метеозависимые заболевания.

3. Влияние пониженного и повышенного атмосферного давления на организм человека.

4. Влияние низкой и высокой температуры воздуха на организм человека.

5. Влажность воздуха. Гигиеническое значение.

6. Оптимальные значения температуры, относительной влажности и скорости движения воздуха в лечебно-профилактических учреждениях. Документы, их регламентирующие.

7. Приборы для оценки микроклимата помещений.

8. Преимущества аспирационного психрометра Ассмана перед психрометром Августа.

9. Приборы для непрерывной, длительной регистрации температуры, влажности и атмосферного давления воздуха.


Таблица 4

Максимальная упругость водяных паров при разных температурах (мм рт.ст.)


Таблица 5

Определение относительной влажности по показаниям психрометра Августа при скорости движения воздуха в помещении 0,2 м/сек


Таблица 6

Определение относительной влажности по показаниям психрометра Ассмана


Таблица 7

Скорости движения воздуха менее 1 м/с (с учетом поправок на температуру), H=F/a

Требования к вентиляции и отоплению, естественному и искусственному освещению.
Основные источники загрязнения воздуха закрытых помещений. Роль полимерных материалов. Химическое и бактериальное загрязнение воздуха помещений, санитарно-показательное значение содержания двуокиси углерода, формальдегида, фенола и др. в воздухе помещений.

4. Требования к отоплению, вентиляции, микроклимату и воздушной среде помещений

Выдержка из Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.2.1002-00

"Санитарно-эпидемиологические требования к жилым зданиям и помещениям"

4.1. Системы отопления и вентиляции должны обеспечивать допустимые условия микроклимата и воздушной среды помещений.

Оптимальные и допустимые параметры микроклимата в помещениях жилых зданий приведены в прилож.1.

4.2. Нагревательные приборы должны быть легко доступны для уборки. При водяном отоплении температура поверхности нагревательных приборов не должна превышать 90°С. Для приборов с температурой нагревательной поверхности более 75°С необходимо предусматривать защитные ограждения.

4.3. Помещения первых этажей жилых зданий, расположенных в 1 климатическом районе, должны иметь системы отопления для равномерного прогрева поверхности полов.

4.4. Устройство автономных котельных для теплоснабжения жилых зданий допускается при наличии положительного заключения органов и учреждений государственной санитарно-эпидемиологической службы.

4.5. Естественная вентиляция жилых помещений должна осуществляться путем притока воздуха через форточки, либо через специальные отверстия в оконных створках и вентиляционные каналы. Вытяжные отверстия каналов должны предусматриваться на кухнях, в ванных комнатах, уборных и сушильных шкафах.

Устройство вентиляционной системы должно исключать поступление воздуха из одной квартиры в другую.

Не допускается объединение вентиляционных каналов кухонь и санитарных узлов с жилыми комнатами.

4.7. Концентрация химических веществ в воздухе жилых помещений при сдаче их в эксплуатацию не должна превышать среднесуточных предельно допустимых концентраций (ПДК) загрязняющих веществ, установленных для атмосферного воздуха населенных мест, а при отсутствии среднесуточных ПДК не превышать максимальные разовые ПДК.

5. Требования к естественному и искусственному освещению и инсоляции

5.1. Жилые комнаты и кухни должны иметь непосредственное естественное освещение.

5.2. Коэффициент естественной освещенности (КЕО) в жилых комнатах и кухнях должен быть не менее 0,5% в середине помещения.


5.3. Жилые здания должны обеспечиваться инсоляцией согласно действующим санитарным нормам.

Длительность инсоляции в весенне-осенний период года в жилых помещениях (не менее чем в одной комнате 1 - 3-комнатных квартир и не менее чем в двух комнатах 4 - 5-комнатных квартир) должна быть:

В центральной зоне (58-48°с.ш.) - не менее 2,5 часов в день в период с 22 марта по 22 сентября;

В северной зоне (севернее 58°с.ш.) - не менее 3 часов в день в период с 22 апреля по 22 августа;

В южной зоне (южнее 48°с.ш.) - не менее 2 часов в день в период с 22 февраля по 22 октября.

5.4. В случае прерывистого режима инсоляции суммарная длительность инсоляции должна быть увеличена на 0,5 ч. В жилых домах меридионального типа для квартир, где одновременно инсолируются все жилые помещения, а также в реконструируемой жилой застройке или в особо сложных градостроительных условиях (исторически ценная городская среда, зона общегородского или районного центра) допускается сокращение продолжительности инсоляции, но не более чем на 0,5 ч.

Микроклиматические факторы. К числу наиболее важных, определяющих

комфорт в жилище, принадлежит метеорологический фактор. Влияние на человека тех или иных микроклиматических факторов создает различные условия для теплообмена организма со средой и обеспечивает определенное функциональное состояние, которое называется тепловым. Оно определяется

не только в субъективном теплоощущении человека, но и в характере тех терморегуляторных процессов, которые происходят в организме при изменении метеорологических условий. Тепловое состояние, наконец, влияет на все физиологические системы организма и определяет функциональные возможности

человека, его здоровье. Это делает актуальным нормирование оптимальных

параметров микроклимата в помещениях жилых и общественных зданий.

При оценке теплового состояния организма выделяют зону теплового комфорта.

Под зоной теплового комфорта понимают такой комплекс метеорологических

условий, при которых терморегуляторная система организма находится

в состоянии наименьшего напряжения (или физиологического покоя), а все

другие физиологические функции осуществляются на уровне, наиболее благоприятном

для отдыха и восстановления сил организма после его нагрузки.

На микроклимат производственных помещений большое влияние оказывает технологический процесс. Практически производственные помещения делят на холодные, имеющие нормальную температуру, и горячие. При пониженной температуре проводится работа в холодильниках, элеваторах, складских помещениях. К горячим помещениям относятся мартеновские, прокатные, литейные цехи и др.

Технологический процесс может оказывать влияние и на влажность воздуха производственных помещений. Источниками повышения влажности воздуха являются красильные и промывочные аппараты, гальванические ванны. Они могут повышать влажность воздуха до
80-90%.

Реже в производственных цехах приходится встречаться с пониженной влажностью (20-25%). Такой воздух вызывает неприятное чувство сухости слизистых оболочек верхних дыхательных путей.

Нагретые поверхности в горячих цехах могут явиться причиной возникновения воздушных потоков, направленных кверху, и притекания на их место более холодного воздуха. Такое движение воздуха может создавать сквозняки. В горячих цехах возможно также действие теплового излучения (инфракрасного).

Неблагоприятное действие производственного микроклимата прежде всего проявляется в нарушении процессов терморегуляции, функции различных органов и систем.

Несмотря на значительные колебания температуры, влажности и движения воздуха в производственных условиях, организм справляется с ними благодаря приспособляемости терморегуляционного аппарата.

Однако при длительном воздействии особо неблагоприятного микроклимата терморегуляторные способности организма оказываются недостаточными, нарушается тепловой баланс, возникают глубокие сдвиги в состоянии организма.

Высокая температура воздуха в сочетании с тепловым излучением и физической нагрузкой оказывает влияние и на сердечно-сосудистую систему, водно-солевой обмен, дыхание. Наблюдается падение артериального давления, сгущение крови. Вместе с потом организм теряет значительное количество соли.

К мероприятиям по борьбе с перегреванием организма относятся: механизация тяжелых работ, защита от источников излучения, вентиляция, личная профилактика. Механизация трудоемких работ, облегчая труд, уменьшает образование тепла в организме.

Для удаления нагретого воздуха применяют организованную аэрацию; для предупреждения перегревания организма устраивают воздушный душ - поток воздуха, направляемый непосредственно на рабочего (рис. 29). Уменьшение теплоизлучения достигается экранированием теплоизлучающих поверхностей различными теплоизоляционными материалами (асбестом, пеностеклом), применением водяных завес (рис. 30).

Рис. 29. Схема отдувающей вентиляции (воздушный душ) в литейном цехе.

Рис. 30. Водная завеса перед отверстием печи для защиты от облучения.

Для регуляции водно-солевого обмена применяют для питья подсоленную (0,5%) газированную воду.

К мерам личной профилактики относятся также кратковременные перерывы в работе, проводимые в кабинах с водяным охлаждением (рис. 31), применение рациональной спецодежды и обуви.


Рис. 31. Кабина с водяным охлаждением.

Для предупреждения переохлаждения организма используют устройство местного лучистого отопления на постоянных местах работы, специальные помещения для обогрева; работающих снабжают спецодеждой, обувью, рукавицами из малотеплопроводных материалов.

Cмотрите так же...
Шпапгалки к экзамену по гигиене. Часть 1
Место гигиены в системе медицинских наук. Значение гигиены в деятельности врача лечебного профиля.
История становления и развития гигиены. Основоположники и виднейшие представители отечественной гигиенической науки (А.П.Доброславин, Ф.Ф.Эрисман, Г.В.Хлопин, А.Н.Сысин, В.В.Горинсвский).
Гигиенические проблемы в экологии. Причины экологического кризиса и его отличительные особенности. Экологические факторы и здоровье населения.
Предельно допустимые концентрации (ПДК) вредных веществ
Проблемы гигиены и экологии в условиях научно-технического прогресса. Роль гигиены в прогнозировании здоровья населения и оздоровлении внешней среды.
Предупредительный и текущий санитарный надзор. Роль санитарного надзора в решении вопросов оптимизации внешней среды, условий труда, проживания, питания.
Основные причины деградации окружающей среды. Неблагоприятные факторы химической, физической и биологической природы, влияющие на здоровье населения в современных условиях. Значение
Особенности действия на организм вредных факторов окружающей среды. Понятие о комбинированном, сочетанием действии и комплексном поступлении вредных веществ в организм. Отдаленные эффекты действия вредных факторов на организм, отражение этого действия в структуре и уровне заболеваемости населения.
Использование достижений научно-технического прогресса с целью охраны и оздоровления окружающей среды и здоровья населения. Анализ состояния здоровья в зависимости от характера и уровня загрязнения окружающей среды.
Гигиеническое регламентирование и прогнозирование. Методология и принципы гигиенического регламентирования (ПДК, ПДУ. ОБУВ) как основа санитарного законодательства.
Методы обоснования гигиенических норм
Теория риска здоровью населения от воздействия факторов окружающей среды.
Актуальные вопросы гигиены и экологии.
Химический состав атмосферного воздуха и его гигиеническое значение. Загрязнение и охрана атмосферного воздуха как экологическая проблема в условиях научно-технического прогресса.
Гигиеническое значение загрязнений атмосферы
Физические свойства воздуха и их значения для организма (температура, влажность, барометрическое давление и скорость движения воздуха). Микроклимат и его гигиеническое значение. Виды и влияние дискомфорного микроклимата на теплообмен и здоровье человека (переохлаждение и перегревание)
Солнечная радиация и ее гигиеническое значение. Световой климат. Значение инфракрасной, ультрафиолетовой и видимой частей солнечного спектра.
Действие Уф-лучей
Природно-географические условия среды обитания и здоровье человека. Погода, определение и медицинская классификация типов погоды. Периодические и апериодические изменения погоды. Гелиометеотропные реакции и их профилактика.
Климат, определение понятия, Строительно-климатическое районирование территории РФ. Климат, здоровье и работоспособность.
Акклиматизация и ее гигиенические аспекты. Особенности труда, быта, жилища, одежды; обуви, питания, закаливания в различных климатических районах, их значение в акклиматизации. Использование климата в лечебно-оздоровительных целях.
Физиологическое, санитарно-гигиеническое и хозяйственное значение воды.
Вода как фактор окружающей среды. Значение. Влияние качества питьевой воды на здоровье. Требования к качеству питьевой воды.
Атмосферные осадки
Гигиенические требования к качеству питьевой воды при централизованном и местном водоснабжении.
Санитарная характеристика централизованной и децентрализованной систем водоснабжения. Гигиенические требования к устройству и эксплуатации шахтных колодцев и других сооружений местного водоснабжения.
All Pages

Физические свойства воздуха и их значения для организма (температура, влажность, барометрическое давление и скорость движения воздуха).

Микроклимат и его гигиеническое значение.

Атмосферное давление . При изменении внешнего атмосферного давления для уравновешивания его изнутри требуется время,необходимое для увеличения или снижения количества газов,растворенных в организме.В течение этого времени человек может ощущать некоторое чувство дискомфорта,поскольку при изменении атмосферного давления всего на несколько мм. рт. столба общее давление на поверхность тела изменяется на десятки килограммов.С пониженным давлением человек встречается при подъеме на высоту. Основным фактором,который оказывает влияние на человека, является кислородная недостаточность.С увеличением высоты атмосферное давление постепенно снижается. Хотя процентное содержание кислорода в атмосферном воздухе, с поднятием на высоту почти не меняется,но в связи со снижением общего давления снижается и парциальное давление кислорода в нем.Парциальное давление кислорода обеспечивает переход кислорода из альвеолярного воздуха в венозную кровь (за счет разницы парциального давления кислорода в венозной крови и в альвеолярном воздухе-диффузное давление).При малом диффузном давлении артериализация крови в легких затрудняется,наступает гипоксемия(одышка,сердцебиение,бледность кожных покровов и акроцианоз,головокружение,слабость,быстрая утомляемость,сонливость,тошнота,рвота,потеря сознания).В зависимости от парциального давления кислорода в воздухе на разных высотах различают следующие зоны:

1.Индифферентная зона -до 2 км 2. Зона полной компенсации-2-4 км 3. Зона неполной компенсации-4-6 км 4. Критическая зона -6-8 км 5. Смертельная зона -выше 8 км

Снижение барометрического давления при подъеме на высоту приводит и к другим нарушениям состояния организма. Это декомпрессионные расстройства,выражающиеся в расширении газов,находящихся в естественных полостях организма(придаточные пазухи носа, среднее ухо, плохо запломбированные зубы, газы в кишечнике)При этом могут возникнуть боли.Особенно опасны эти явления при резком снижении давления (разгерметизация кабин самолетов). При этом возникают повреждения легких,кишечника,носовые кровотечения. Снижение давления до 47 мм рт. ст. и ниже (на высоте 19 км) приводит к тому,что жидкости в организме закипают при температуре тела,так как давление становится ниже давления водяных паров при этой температуре-возникает подкожная эмфизема.

Водолазные и кессонные работы человек вынужден выполнять при повышенном давлении.Переход к повышенному давлению здоровые люди переносят безболезненно. При переходе из атмосферы с повышенным давлением к нормальному (при декомпрессии) - азот, растворившийся в крови и тканевых жидкостях организма,стремится выделиться во внешнюю атмосферу. Если декомпрессия происходит медленно,то азот постепенно диффундирует через легкие и десатурация происходит нормально. Но в случае ускорения декомпрессии азот не успевает диффундировать через легочные альвеолы и выделяется в тканевых жидкостях и в крови в газообразном виде (в виде пузырьков),При этом возникают болезненные явления,носящие название кессонной болезни-возникновение резких ломящих болей в мышцах, костях и суставах.

2.Движение воздуха. В результате неравномерного нагревания земной поверхности создаются места с повышенным и пониженным атмосферным давлением, что приводит к перемещению воздушных масс. Движение воздуха способствует сохранению постоянства и относительной равномерности воздушной среды (уравновешивание температур,перемешивание газов,разбавление загрязнений),а также способствует отдаче тепла организмом.Особое значение при планировке населенных мест имеет "роза ветров"-графическое изображение повторяемости направления ветров в данной местности за определенный промежуток времени. В жилых и общественных помещениях скорость движения воздуха нормируется в пределах 0,2-0,4м/с.Слишком маленькая скорость движения

воздуха свидетельствует о плохой вентилируемости помещения,большая(более 0,5 м/с) - создает неприятное ощущение сквозняка.

3.Влажность воздуха . Воздух тропосферы содержит значительное количество водяных паров,которые образуются в результате испарения с поверхности воды, почвы, растительности. Эти пары переходят из одного агрегатного состояния в другое,влияя на общую влажностную динамику атмосферы.Важное значение имеет относительная влажность воздуха -степень насыщения воздуха водяными парами. Она играет большую роль при осуществлении терморегуляции организма. Оптимальной величиной относительной влажности воздуха считается 40-60 %, допустимой - 30-70 % При низкой влажности воздуха (15-10 %) происходит более интенсивное обезвоживание организма(ощущается повышенная жажда,сухость слизистых оболочек дыхательных путей)Особенно тягостны эти ощущения у температурящих больных. Высокая влажность воздуха неблагоприятно сказывается на терморегуляции организма, затрудняя или усиливая теплоотдачу в зависимости от температуры воздуха.

4.Температура воздуха. С подъемом на высоту температура воздуха постепенно снижается -нормальный температурный градиент.Но в силу особых сложившихся метеорологических условий (низкая облачность,туман)этот температурный градиент иногда нарушается и наступает температурная инверсия,когда верхние слои воздуха становятся более теплыми,чем нижние.Это имеет особое значение в решении проблем,связанных с загрязнением атмосферного воздуха. Возникновение температурной инверсии снижает возможности для разбавления загрязнений,выбрасываемых в воздух,и способствует созданию высоких их концентраций.

5. Терморегуляция. Одним из важнейших условий для нормальной жизнедеятельности человеческого организма является сохранение постоянства температуры тела.Наиболее важным путем теплоотдачи является поверхность тела. С поверхности тела тепло отдается в виде излучения (инфракрасная радиация),проведения (путем непосредственного контакта с окружающими предметами и прилегающим к поверхности тела слоем воздуха)и испарения (в виде пота или других жидкостей).В обычных комфортных условиях соотношение степени теплоотдачи следующее:1. Излучение-45 %

2. Проведение-30 % 3. Испарение-25 % Эти механизмы терморегуляции называются физическими. Химические механизмы заключаются в том,что при воздействии низких или высоких температур изменяются процессы обмена веществ в организме, в результате чего происходит увеличение или снижение выработки тепла.

Микроклимат производственных помещений – микроклиматические условия производственной среды (температура, влажность, давление, скорость движения воздуха, тепловое излучение) помещений, которые оказывают влияние на тепловую стабильность организма человека в процессе труда. Различают абсолютную и относительную влажность.Абсолютная влажность – это количество водяных паров, содержащихся в 1 м3. воздуха. Максимальная влажность – количество водяных паров (в кг), которое полностью насыщает 1 м3 воздуха при данной температуре (упругость водяных паров).Относительная влажность – это отношение абсолютной влажности к максимальной влажности, выраженной в процентах.

Перегревание происходит обычно при высокой температуре окружающей среды в сочетании с высокой влажностью.При сухом воздухе высокая температура переносится значительно легче, потому что при этом значительная часть тепла отдается способом испарения. Особенно хорошо теплоотдача происходит,если сопровождается движением воздуха.Тогда испарение происходит наиболее интенсивно.Однако если высокая температура воздуха сопровождается высокой влажностью,то испарение с поверхности тела будет происходить недостаточно интенсивно или вовсе прекратится.В этом случае теплоотдача происходить не будет, и тепло начнет накапливаться в организме -произойдет перегревание.Различают два проявления перегревания : гипертермия и судорожная болезнь. При гипертермии различают три степени: а) легкая, б) умеренная,в)тяжелая (тепловой удар). Судорожная болезнь возникает из-за резкого снижения в крови и тканях организма хлоридов, которые теряются при интенсивном потении.

Переохлаждение . Низкая температура в сочетании с низкой относительной влажностью и малой скоростью движения воздуха переносится человеком довольно хорошо.Однако низкая температура в сочетании с высокой влажностью и скоростью движения воздуха создают возможности для возникновения переохлаждения. В силу большой теплопроводности водыи большой ее теплоемкости в условиях сырого воздуха резко повышается отдача тепла способом теплопроведения.Этому способствует повышенная скорость движения воздуха. Переохлаждение может быть общим и местным. Общее переохлаждение способствует возникновению простудных и инфекционных заболеваний вследствие снижения общей резистентности организма. Местное переохлаждение может привести к ознобу и отморожению,причем главным образом при этом страдают конечности. При местном охлаждении могут иметь место и рефлекторно возникающие реакции в других органах и системах.Таким образом высокая влажность воздуха играет отрицательную роль в вопросах терморегуляции как при высоких, так и при низких температурах,а увеличение скорости движения воздухаспособствует теплоотдаче.

Гигиена труда - >го отрасль медицинских знаний, изучающая взаимодей-ствие работающего персонала с производственной средой и разрабатывающая нормы и практические мероприятия по улучшению условий труда.

Цель гигиены труда - не лечение больного, а предупреждение заболева-ний, основным объектом внимания здесь является здоровый человек.

Предметом изучения гигиены труда является производственная среда и от-дельные ее компоненты (технологическое оборудование, животные, корма), их влияние на здоровье и самочувствие работающего персонала. При этом важ-нейшими параметрами среды являются:

физико-метеорологические условия труда - температура, влажность, скорость движения воздуха;

санитарно-гигиенические условия - концентрация вредных веществ в воздухе, запыленность, шум и вибрация, освещенность рабочих мест;

наличие и эффективность работы санитарно-технических устройств (вентиляции, отопления, канализации) и средств коллективной защиты.

Задачей гигиены труда является разработка санитарно-профилактических мероприятий, направленных на создание благоприятных условий труда и обес-печение высокого уровня состояния здоровья и трудоспособности работающе-го персонала.

Производственная санитария- это одно из направлений гигиены труда, ко-торое связано с разработкой мероприятий и средств, предотвращающих воз-действие на работающих вредных производственных факторов.

Микроклимат в производственных помещениях и его влияние на работоспособность человека.

Человеку для нормальной жизнедеятельности необходимы нормальные внешние условия. "Гак, для человека необходимым является объем производст-венного здания 15 м 3 , площадь - не менее 4.5 м 2 , содержание 0 2 в воздухе не менее 20,95 %, СО; не более 0,03 %, температура воздуха - от +8 до 21 °С.

Большое влияние на работоспособность рабочего персонала оказывает ми-кроклимат производственных помещений - совокупность физических свойств и химического состава воздушной среды, наличие микроорганизмов и взвешен-ных частиц.

Микроклимат в производственных помещениях оценивается следующими параметрами:

температурой воздуха, °С,

относительной влажностью воздуха, %,

скоростью движения воздуха, V м/с,

барометрическим давлением, Р ГПа (мм. рт. ст.).

Различают 4 уровня комфортности производственной среды для работаю-щего человека:

комфортный, при котором обеспечивается оптимальная работоспо-собность, хорошее самочувствие и сохранение здоровья;

относительно дискомфортный, при котором обеспечивается задан-ная работоспособность и сохраняется здоровье, но возникают функциональные изменения не выходящие за пределы нормы;

экстремальный, когда снижается работоспособность и возникают функциональные изменения, но без патологии;

сверхэкстремальный, приводящий к возникновению в организме человека патологических и соматических изменений.

Влияние физических параметров воздуха на микроклимат.

Основное влияние на комфортность микроклимата оказывают физические параметры воздуха. Температура воздуха определяет тепловой комфорт. В ус-ловиях теплового комфорта у человека не возникает беспокоящих его тепло-вых ощущений. Избыточная теплота отрицательно влияет на сердечно-сосуди-стую систему, дыхание, водный и солевой баланс. При понижении температуры (до - 15 °С) организм может быстро переохладиться, возможны обморожения. Система терморегуляции человека обеспечивает поддержание температуры те-ла в ограниченном диапазоне изменения наружной температуры, за пределами которых необходимо проведение искусственных мероприятий, обеспечиваю-щих нормальное функционирование организма.

Большое гигиеническое значение имеет влажность воздуха, оцениваемая разными гигрометрическими показателями.

Абсолютная влажность - масса водяного пара в 1 м 3 воздуха (г/м 3), она не дает представления о степени насыщения.

Относительная влажность - отношение абсолютной влажности к макси-мальной в том же объеме и при той же температуре, выраженное в %.

Дефицит насыщения - разность между максимальной и абсолютной влаж-ностью.

Точка росы - температура, при которой отмечается насыщение воздуха во-дяным паром.

Для определения относительной влажности воздуха используют психро-метры и волосяные гигрометры и гигрографы.

Оптимальной для работающих является влажность воздуха в пределах 40 -70 %. При повышенной влажности увеличивается теплопроводность воздуха, это усиливает теплопотери при низкой температуре и затрудняет кожное дыха-ние и теплоотдачу при повышенных температурах. Низкая влажность также неблагоприятна, особенно при повышенных температурах вследствие усиленного испарения влаги с кожных покровов, появлению сухости слизистых обо-лочек и снижению иммунитета организма.

Движение воздуха также оказывает влияние на самочувствие человека. В жарком помещении движение воздуха способствует увеличению теплоотдачи и улучшает состояние организма, при низкой температуре это может усиливать охлаждение организма работающих. Скорость движения воздуха в производст-венных помещениях в летнее время не должна превышать 0,3 м/с, в холодное время года - 0,1 м/с.

Изменения атмосферного давления могут вызывать болезненные реакции в организме работающих, особенно опасными могут быть значительные перепа-ды атмосферного давления в течение короткого времени.



Просмотров