Ликбез по картографическим проекциям с картинками. Виды картографических проекций и их характеристики

Визуализация данных самого разного рода, имеющих некое географическое распределение, в последнее время получает все большее и большее распространение. Тут, на Хабре, статьи с картами встречаются чуть ли не каждую неделю. Карты в статьях очень разные, но роднит их одно: как правило, в них используются всего две картографические проекции, при том - не самые удачные из существующих. Мне бы хотелось дать несколько наглядных примеров проекций, которые выглядят более эстетично и лучше приспособлены для разных видов визуализации. В этой статье будут рассмотрены общемировые проекции и проекции большей части Земли, так как визуализация чего-либо на карте мира, пожалуй, является наиболее распространенной из подобных задач.

Легкое введение

Поскольку статья ориентирована на вопросы визуализации данных, я не буду касаться глубоко теории проекций (датумов, конформности, равноугольности и тому подобного), кроме общих принципов их построения. Также, я буду говорить тут о «проекциях», формально подразумевая «систему координат», coordinate reference system, потому что для карт таких масштабов не имеет смысла отдельно рассматривать проекцию и датум. Математики здесь тоже практически не будет, кроме простой геометрии. Желающие ознакомиться с математическими принципами, могут это сделать по статьям на Wolfram MathWorld . Так что изучающим программирование в области геоинформационных систем или их опытным пользователям, эта статья, возможно, будет не очень полезна.

Перед началом, объясню пару вещей. Все примеры будут даваться с использованием набора данных государственных границ с вот этого сайта и набора данных Blue Marble Next Generation с сайта NASA . Последний включает в себя синтезированные безоблачные снимки земной поверхности за каждый из двенадцати месяцев 2004-го года, что позволит внести некоторое разнообразие в иллюстрации.

Я очень люблю открытый софт, но использовать GDAL в данном случае мне показалось неэффективно - некоторых не очень ходовых, но полезных проекций в его реализации на данный момент либо нет, либо я плохо смотрел исходники, а потому иллюстрации я готовил в коммерческой программе GlobalMapper, которой пользуюсь уже много лет, и которая славится поддержкой внушительного списка систем координат.

Названия проекций и некоторые термины я буду давать и англоязычные, потому что если кому-то захочется поискать материалы по этой теме, русскоязычных источников в сети найдется несколько меньше (объем статей в Википедии на русском меньше в несколько раз). Для большинства проекций я постараюсь дать не только названия, но и коды EPSG и/или WKID, а также название проекции в библиотеке PROJ.4 , широко используемой в открытом софте (например, в пакете R) для поддержки систем координат.

Некоторые проекции, возможно, окажутся кому-то знакомыми по картинке с xkcd , но все из них тут рассмотрены не будут.

Проблема

Начнем с того, что же это за самые распространенные проекции, и что с ними не так.

Первая проекция - так называемая «Географическая» , она же – Geographic projection, Latitude/Longitude, Plate carrée EPSG:4326 WKID:54001 PROJ.4:longlat . Строго говоря, она даже не совсем является проекцией, потому что получается путем интерпретации полярных угловых координат, как линейных прямоугольных, без всяких вычислений. Эту проекцию используют, потому что она способна отобразить всю поверхность Земли целиком и потому, что она самая простая математически, а данные очень часто распространяются не спроецированными, то есть именно в географических координатах (градусах широты и долготы).

Что же получается? Получается прямоугольник, где точки полюсов обращены в линии (верхнюю и нижнюю границы). Чем дальше от экватора, тем сильнее любой объект на карте оказывается сплюснут по вертикали и растянут по горизонтали. Как я уже сказал, это худо-бедно годится для отображения глобальных наборов данных, но полярные территории (Канада, Норвегия, Швеция, север России, Финляндия, Гренландия, Антарктида, Исландия) оказываются искажены. Проекции, которые позволяют избежать этого, существуют, и о них пойдет речь дальше. Единственная причина использовать эту проекцию - ее предельная простота программной реализации - нужно просто отобразить систему координат от -180º до 180º по X и от -90º до 90º по Y на плоскость, считая угловые единицы линейными.

Другая весьма популярная проекция - «проекция Меркатора» , Mercator projection PROJ.4:merc . Она также используется для визуализации данных, покрывающих весь мир, но ее популярность продиктована не только простотой - ее варианты являются стандартом де-факто для глобальных картографических сервисов, таких как Google Maps, Bing Maps, Here. С ней глубоко связаны картографические библиотеки OpenLayers, Leaflet, API упомянутых выше сервисов. В варианте Google и OpenStreetMap она носит название Web Mercator и имеет код EPSG/WKID:3857 , иногда на нее также ссылаются, как на EPSG:900913 . Принцип ее построения не сильно сложнее Географической – это проекция на цилиндр, чья ось совпадает с географической осью Земли, проецирование происходит линиями, выходящими из центра планеты, от чего ошибка растяжения приполярных областей по горизонтали оказывается скомпенсирована пропорциональным растяжением по вертикали. Проблема с этим только в том, что карта получится слишком большой по вертикали, если попытаться отобразить и север Гренландии. Потому обычно отбрасывают 16° полярных областей (в равной пропорции или больше - с юга).

На чей-то взгляд выглядит чуть лучше, чем Географическая, но одну проблему мы уже упомянули, а вторая - чем ближе объект к полюсам, тем он кажется больше, хотя его форма уже не так искажена. Потому, если предмет визуализации - плотность маркеров на единицу территории или расстояния, такой способ отображения будет вводить в заблуждение. При грамотном выборе способа визуализации, конечно, это можно скомпенсировать, а для каких-то случаев это вообще не проблема: например, если величина какого-то показателя в целой стране соотнесена с цветом этой страны на карте, эффект растяжения площадей не сказывается. Эта проекция сохраняет только форму объектов, потому очертания континентов и стран выглядят довольно узнаваемо. И, как я уже сказал, она - ваш первый и самый простой вариант при создании интерактивных веб-карт.

Варианты решения

Что же делать с глобальными данными, если нам по какой-то причине понадобилась проекция, лучше сохраняющая такие свойства объектов, как форма, площадь, расстояния и углы? Законы геометрии не дают нам сохранить все эти свойства сразу, развернув круглую поверхность Земли на плоскость. Однако, для визуализации данных более всего важна эстетика и восприятие, а не сохранение свойств, как для навигационных или измерительных задач. Потому становится возможным подобрать такую проекцию, искажения в которой были бы равномерно распределены по свойствам. И таких проекций существует довольно много. Существуют три самых известных, обладающих сходными свойствами: Winkel Tripel WKID:54042 PROJ.4:wintri , «проекция Робинсона» Robinson projection WKID:54030 PROJ.4:robin , «проекция Каврайского» (Kavrayskiy projection). Первая и последняя имеют визуально минимальные искажения, а неспециалисту, не видя градусной сетки, вообще весьма сложно различить их, потому я приведу иллюстрацию для Winkel Tripel, как той, которая лично мне нравится больше всего.

Вот так описание этой проекции выглядит в формате ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",

],
PRIMEM["Greenwich",0],

],
PROJECTION["Robinson"],
PARAMETER["central_meridian",0],


UNIT["Meter",1]
]

Как легко видеть, хотя искажение контуров и некоторое увеличение площади стран к полюсам здесь также наблюдаются, но это нельзя даже сравнивать с растяжением Географической проекции и пропорциональным увеличением проекции Меркатора.

Тут стоит сделать небольшое отступление и обратить внимание на то, что вид этой проекции по умолчанию страдает одним недостатком, который касается и других общемировых проекций. Дело в том, что если за центральный меридиан - линию, соединяющую северный и южный полюс через центр карты (longitude of origin) - принять нулевой меридиан, то карта будет разрезана по 180-му. Но при этом треть Чукотки окажется на левом краю карты, а две трети - на правом. Чтобы сделать карту красивее, разрез должен проходить где-то в районе 169-го западного меридиана восточнее острова Ратманова, для чего за центральный должен быть принят 11-й. Вот иллюстрация того, что получается:

А вот измененное для этого случая описание в ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",
SPHEROID["WGS84",6378137,298.257223563]
],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]
],
PROJECTION["Robinson"],
PARAMETER["central_meridian",11],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["Meter",1]
]

В формате определения системы координат для PROJ.4 долгота центра проекции задается параметром +lon_0=.

11-й меридиан - «магическое» число: практически все мировые проекции, имеющие равномерный масштаб вдоль экватора, могут быть разрезаны по Берингову проливу, если за центральный принять именно его, а не нулевой.

Замечу, что задумываясь о выборе проекции, стоит принимать во внимание все существующие реальные требования к визуализации. Например, если данные касаются климата, то может иметь смысл либо нанести на карту линии широты, либо использовать проекцию, где они горизонтальны, а не загибаются к краям карты (то есть, отказаться от Тройной Винкеля в пользу, например, Робинсона). В данном случае, это позволит легче и точнее оценить относительную близость разных мест к полюсам и экватору. Еще один весомый плюс проекции Робинсона - то, что она поддерживается множеством софта, в том числе открытого, тогда как про некоторые другие этого сказать нельзя.

Иногда, когда требуется максимально сохранить какое-то свойство, например - соотношение площадей объектов (стран) - эстетическая сторона страдает. Но поскольку это все же может для чего-то понадобиться, я приведу один пример такой проекции - «проекцию Моллвейде» , Mollweide projection WKID:54009 PROJ.4:moll .

Как видно, она довольно сильно напоминает проекцию Робинсона, но с той разницей, что полюса все же стянуты в точки, от чего форма приполярных областей выглядит сильно искаженной. Но пропорции площадей стран, как и требовалось, сохраняются куда лучше.

Самым молодым конкурентом этих проекций является проекция Natural Earth PROJ.4:natearth - она представляет из себя гибрид проекций Каврайского и Робинсона, а ее параметры были подобраны группой американских, швейцарских и словенских специалистов в 2007 году, тогда как возраст большинства картографических проекций - не менее полувека.

Для перепроецирования данных в нее существует некоторое количество инструментов, которые были написаны специально для этого, но ее поддержка еще далека от повсеместной.

Немного экзотики и специальных случаев

Конечно, все многообразие проекций на этом не заканчивается. Их изобретено немало. Некоторые просто выглядят странно (скажем, проекция Бонне изображает Землю в виде фигуры, напоминающей разрезанное яблоко или стилизованное сердце), некоторые - предназначены для особых ситуаций. Например, готов поспорить, что очень многие видели на картинках карту мира, которая похожа на корку мандарина, которую сняли и расплющили. Это, наверняка, была Interrupted Goode Homolosine projection WKID:54052 .

Вид ее вполне достоин названия. Ее назначение - отображать размер объектов (и в некоторой степени - форму) близко к естественным пропорциям. Ее главная проблема, кроме названия и странного вида, состоит в том, что путем подбора центрального меридиана невозможно добиться того, чтобы ни один крупный кусок суши не был разрезан. Обязательно пострадает что-то из списка: Гренландия, Исландия, Чукотка, Аляска. Лично на мой взгляд, проще привести отдельно изображения стран, чем использовать такую карту, если вы не хотите стилизовать свою работу под середину XX века.

Существуют проекции, которые по своей природе никак не отнести к общемировым, но мне бы хотелось рассмотреть их здесь, потому что они способны показать земной шар, то есть как-бы вид планеты из космоса. Одна из них - Vertical Near-Side Perspective projection WKID:54049 . Ее особое свойство - показывать земную поверхность в такой перспективе, как она выглядит с определенной высоты. Высота над эллипсоидом (идеализированной фигурой, моделирующей Землю) задается для этой проекции в явном виде.

На иллюстрации эта проекция имеет широту и долготу центра, равные широте и долготе Москвы, а высоту - 5000000 метров. Чем больше это расстояние, тем сильнее изображение Земли становится похоже на ее изображение в проекции, которую мы рассмотрим последней.

Проекция, которая показывает вид на Землю в параллельной перспективе, то есть как-бы с бесконечного расстояния, называется Orthographic projection WKID:43041 PROJ.4:ortho . В каком-то смысле, она знакома всем, кто когда-либо пользовался Google Earth. Я говорю, что в каком-то смысле, потому что «направление взгляда» в этой проекции всегда перпендикулярно поверхности Земли, тогда как в Google Earth его можно наклонять как угодно.

Для нее, как и для предыдущей проекции, можно задать центральные широту и долготу, чтобы ориентировать Землю желаемым образом. Например, можно показать полушарие с центром в какой-то точке, о которой идет речь - скажем, иллюстрируя транспортные потоки континентального масштаба, исходящие от одного предприятия. Сделав две карты с противоположными значениями координат, можно получить карту всего мира (правда, на краях искажения будут очень велики). Генерация последовательности карт с плавным изменением центральной точки даст кадры для анимации вращающейся планеты без всякой трехмерной графики.

Если статья окажется интересной, постараюсь написать продолжение о проекциях, используемых для отображения отдельных стран или регионов, ориентированную, как и эта статья, на базовые свойства этих проекций для задачи визуализации данных, инфографики и тому подобного.

3. И наконец заключительным этапом создания карты является отображение уменьшенной поверхность эллипсоида на плоскости, т.е. применение картографической проекции (математический способ изображения на плоскости пов-ти эллипсоида.).

Поверхность эллипсоида нельзя без искажения развернуть на плоскость. Поэтому она проецируется на фигуру, которую можно развернуть на плоскость (Рис). При этом возникают искажения углов между параллелями и меридианами, расстояний, площадей.

Существует несколько сотен проекций, которые используются в картографии. Разберем далее их основные типы, не вдаваясь во все многоообразие деталей.

В соответствии с типом искажений проекци деляться на:

1. Равноугольные (конформные) – проекции, не искажающие углов. При этом сохраняется подобие фигур, масштаб изменяется с изменением широты и долготы. Отношение площадей не сохраняется на карте.

2. Равновеликие (эквивалентные) – проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям на Земле. Однако масштаб длин в каждой точке разный по разным направлениям. не сохраняются равенство углов и подобие фигур.

3. Равнопромежуточные проекции- проекции, сохраняющие постоянство масштаба по одному из главных направлений.

4. Произвольные проекции - проекции, не относящиеся ни к одной из рассмотренных групп, но обладающие какими-либо другими, важными для практики свойствами, называются произвольными.

Рис. Проецирование эллипсоида на фигуру, разворачиваемую в плоскость.

В зависимости от того на какую фигуру проецируется поверхность эллипсоида (цилиндр, конус или плоскость) проекции делятся на три основных типа: цилиндрические, конические и азимутальные. Тип фигуры, на которую проецируется эллипсоид определяет вид параллелей и меридианов на карте.

Рис. Различие проекций по типу фигур на которую проецируется поверхность эллипсоида и вид разверток этих фигур на плоскости.

В свою очередь в зависимости от ориентации цилундра либо конуса относительно эллипсоида цилиндрические и конические проекции могут быть: прямыми - ось цилиндра или конуса совпадает с осью Земли, поперечными - ось цилиндра или конуса перпендикулярна оси Земли и косыми - ось цилиндра или конуса наклонена к оси Земли под углом, отличным от 0° и 90°.

Рис. Различие проекций по ориентации фигуры на которую проецируется эллипсоид относительно Земной оси.

Конус и цилиндр могут либо касаться поверхности эллипсоида, либо пересекать ее. Взависимости от этого проекция будет касательная или секущая. Рис.



Рис. Касательная и секущая проекции.

Нетрудно заметить (рис), что длина линии на эллипсоиде и длина линии на фигуре которую он проецируется будет одна и таже вдоль экватора, касательной к конусу для касательной проекции и вдоль секущих линий конуса и цилиндра при секущей проекции.

Т.е. для этих линий масштаб карты будет точно соответствовать масштабу эллипсоида. Для остальных точек карты масштаб будет несколько больше или меньше. Это необходимо учитывать при нарезке листов карты.

Касательная к конусу для касательной проекции и секущие конуса и цилиндра для секущей проекции называются стандартными параллелями.

Для азимутальной проекции также существует несколько разновидностей.

В зависимости от ориентации касательной к эллипсоиду плоскости азумутальная проеция может быль полярной, экваториальной или косой (рис)

Рис. Виды Азимутальной проекции по положению касательной плоскости.

В зависимости от положения воображаемого источника света, который проецирует эллипсоид на плоскость – в центре эллипсоида, на полюсе, или на бесконечном удалении различают гномоническую (цетрально-перспективную), стереографическую и ортографическую проекции рис

Рис. Виды азимутальной проеции по положению воображаемого источника света.

Географические координаты любой точки эллипсоида остаются неизменными при любом выборе картографической проекции (определяются только выбранной системой «географических» координат). Однако наряду с географическими, для проекций эллипсоида на плоскости используют так называемые спроектированная системы координат. Это прямоугольные системы координат - с началом координат в определенной точке, чаще всего имеющей координаты 0,0. Координаты в таких системах измеряются в единицах длины (метрах). Более подробно об этом речь пойдет ниже при рассмотрении конкретных проекций. Часто при упоминании о системы координат слова «географические» и «спроецированная», опускают, что приводит к некоторой путанице. Географические координаты определяются выбранным эллипсоидом и его привязками к геоиду, «спроецированные» - выбранным типом проекции уже после выбора эллипсоида. В зависимости от выбранной проекции одним «географическим» координатам могут соответствовать разные «спроецированные». И наобоот одним и тем же «спроецированным» координатам могут соответствовать разные «географические», если проекция применена к разным эллипсоидам. На картах могут обозначаться одновременно как те так и другие координаты и «спроецированные» тоже являются географическими, если понимать дословно, что они описывают Землю. Подчеркнем, еще раз, что принципиальным является то, что «спроецированные» координаты связаны с типом проекции и измеряются, в единицах длины (метрах), а «географические» не зависят от выбранной проекции.

Рассмотрим теперь более детально две картографические проекции, наиболее важные для практической работе в археологии. Это проекция Гаусса-Крюгера и проекция Universal Transverse Mercator (UTM) – разновидности равноугольной поперечно (transverse)-цилиндрической проекции. Проекцию называют по имени флпмпндского картографа Меркатора, впервые применившему прямую цилиндрическую проекцию при создании карт.

Первая из этих проекций была разработана немецким математиком Карлом Фридррихом Гауссом в 1820-30 гг. для картографирования Германии - так называемой ганноверской триангуляции. Как истинно великий математик, он решил эту частную задачу в общем виде и сделал проекцию, пригодную для картографирования всей Земли. Математическое описание проекции было опубликовано в 1866 г. В 1912-19 гг. другой немецкий математик Крюгер Иоганнес Генрих Луис провел исследование этой проекции и разработал для нее новый, более удобный математический аппарат. С этого времени проекция называется по их именам - проекцией Гаусса-Крюгера

Проекция UTM была разработана после Второй Мировой Войны, когда страны НАТО пришли к согласию, что необходима стандартная пространственная система координат. Так как каждая из армий стран НАТО использовала свою собственную пространственную систему координат, было невозможным точно координировать военные перемещения между странами. Опрделение параметров системы UTM было опубликовано Армией США в 1951 г.

Для получения картографической сетки и составления по ней карты в проекции Гаусса-Крюгера поверхность земного эллипсоида разбивают по меридианам на 60 зон по 6° каждая. Как нетрудно заметить это соответствует разбиению Земного шара на 6°-е зоны при построении карты масштаба 1:100000. Зоны нумеруются с запада на восток, начиная с 0°: зона 1 простирается с меридиана 0° до меридиана 6°, ее центральный меридиан 3°. Зона 2 - с 6° до 12°, и т. д. Нумерация номенклатурных листов начинается с 180°, например, лист N-39 находится в 9-й зоне.

Для связи долготы точки λ и номера n зоны в которой точка находится можно использовать соотношения:

в Восточном полушарии n = (целая часть от λ/ 6°) + 1, где λ – градусы восточной долготы

в Западном полушарии n = (целая часть от (360-λ)/ 6°) + 1, где λ – градусы западной долготы.

Рис. Разбиение на зоны в проекции Гауса-Крюгера.

Далле каждая из зон проектируется на поверхность цилиндра, а цилиндр разрезается по образующей и разворачивается на плоскость. Рис

Рис. Система координат в пределах 6 градусных зон в проекциях ГК и UTM.

В проекции Гаусса-Крюгера цилиндр касается эллипсоида по центральному меридиану и масштаб вдоль него равен 1. рис

Для каждой зоны отсчет координат X, Y ведется в метрах от начала координат зоны, причем Х расстояние от экватора (по вертикали!), а Y- по горизонтали. Вертикальные линии сетки параллельны центральному меридиану. Начало координат смещено, от центрального меридиана зоны на запад (или центр зоны смещен на восток, для обозначения этого смещения часто используют английский термин – «false easting») на 500000 м для того, чтобы координата Х была положительной во всей зоне т. е. координата X на центральном меридиане равна 500 000 м.

В южном полушарии в тех же целях вводится северное смещение (false northing) 10 000 000 м.

Координаты записыватся в виде Х=1111111.1 м, Y=6222222,2 м либо

X s =1111111.0 м, Y=6222222,2 м

X s - означает, что точка в южном полушарии

6 – первая или две первые цифры в Y координате (соответственно всего 7 или 8 цифр до запятой) означают номер зоны. (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1=6 - 6 зона).

В проекции Гаусса–Крюгера для эллипсоида Красовского составлены все топографические карты СССР масштаба 1:500000 и крупнее применение этой проекции в СССР началовсь в 1928 году.

2. Проекция UTM в целом аналогична проеции Гаусса-Крюгера, однако нумерация 6-градусных зон ведется по другому. Отсчет зон происходит от 180 меридиана на восток, таким образом номер зоны в проекции UTM на 30 больше, чем системе координат Гаусса-Крюгера (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1+30=36 - 36 зона).

Кроме того UTM - это проекция на секущий цилиндр и масштаб равен единице вдоль двух секущих линий, отстоящих от центрального меридиана на 180 000 м.

В проекции UTM координаты приводятся в виде: Северное полушарие, 36 зона, N (северное положение)=1111111.1 м, E (восточное положение)=222222.2м. Начало координат каждой зоны также смещено на 500000 м на запад от центрального меридиана и на 10000000 на юг от экватора для южного полушария.

В проекции UTM составлены современные карты многих стран Европы.

Сравнение проекций Гаусса-Крюгера и UTM приведено в таблице

Параметр UTM Гаус-Крюгер
Величина зоны 6 градусов 6 градусов
Нулевой меридиан -180 градусов 0 градусов (Гринвич)
Масштаб коэф = 1 Секущие на расст 180 км от центр.меридиана зоны Центральный меридиан зоны.
Центральный меридиан иоответствующая ему зона 3-9-15-21-27-33-39-45 и.т.д 31-32-33-34-35-35-37-38-… 3-9-15-21-27-33-39-45 и.т.д 1-2-3-4-5-6-7-8-…
Соответствующая центр мердиану зона 31 32 33 34
Масштабный коэфф. по центральному меридиану 0,9996
Ложный восток (м) 500 000 500 000
Ложный север (м) 0 – северное полушарие 0 – северное полушарие
10 000 000 – южное полушарие

Забегая вперед следует отметить, что большинство GPS навигаторов может показывать координаты в поекции UTM, но не могут в проекции Гаусса-Крюгера для эллипсода Красовского (т.е. в системе координат СК-42).

Каждый лист карты или плана имеет законченное оформление. Основными элементами листа являются: 1) собственно картографическое изображение участка земной поверхности, координатная сетка; 2) рамка листа, элементы которой определены математической основой; 3) зарамочное оформление (вспомогательное оснащение), которое включает данные, облегчающие пользование картой.

Картографическое изображение листа ограничивается внутренней рамкой в виде тонкой линии. Северная и южная стороны рамки - отрезки параллелей, восточная и западная - отрезки меридианов, значение которых определяется общей системой разграфки топографических карт. Значения долготы меридианов и широты параллелей, ограничивающих лист карты, подписываются возле углов рамки: долгота на продолжении меридианов, широта на продолжении параллелей.

На некотором расстоянии от внутренней рамки вычерчивается так называемая минутная рамка, на которой показаны выходы меридианов и параллелей. Рамка представляет собой двойную линию, расчерченную на отрезки, соответствующие линейной протяженности 1" меридиана или параллели. Количество минутных отрезков на северной и южной сторонах рамки равно разности значений долготы западной и восточной сторон. На западной и восточной сторонах рамки количество отрезков определяется разностью значений широты северной и южной сторон.

Завершающим элементом является внешняя рамка в виде утолщенной линии. Часто она составляет одно целое с минутной рамкой. В промежутках между ними дается разметка минутных отрезков на десятисекундные, границы которых отмечены точками. Это упрощает работу с картой.

На картах масштаба 1: 500 000 и 1: 1 000 000 дается картографическая сетка параллелей и меридианов, а на картах масштаба 1: 10 000 - 1: 200 000 - координатная сетка, или километровая, так как линии ее проводятся через целое число километров (1 км в масштабе 1: 10 000 - 1: 50 000, 2 км в масштабе 1: 100 000, 4 км в масштабе 1: 200 000).

Значения километровых линий подписываются в промежутках между внутренней и минутной рамками: абсциссы на концах горизонтальных линий, ординаты на концах вертикальных. У крайних линий указываются полные значения координат, у промежуточных - сокращенные (только десятки и единицы километров). Кроме обозначений на концах часть километровых линий имеет подписи координат внутри листа.

Важным элементом зарамочного оформления являются сведения о среднем на территорию листа карты магнитном склонении, относящиеся к моменту его определения, и годовом изменении магнитного склонения, которые помещают на топографических картах масштаба 1:200 000 и крупнее. Как известно магнитный и географический полюса не совпадают и стрелка копмаса показывает направление несколько отличающееся от на правленя на географический пояс. Величину этого отклонения и называют магнитным склонением. Оно может быть восточное, либо западное. Прибавив к величине магнитного склонения годовое изменение магнитного склонения, умноженное на число лет пошедщих с момента создания карты до текущего момента определить магнитное склонение на текущий момент.

В заключении темы об основах картографии остановимся кратко на истории картографии в России.

Первые карты с отображенной географической системой координат (карты России Ф. Годунова (издана в 1613г.), Г. Геритса, И. Массы, Н. Витсена) появились в XVII веке.

В соответствии с законодательным актом русского правительства (боярским “приговором”) от 10 января 1696 «О снятии чертежа Сибири на холсте с показанием в оном городов, селений, народов и расстояний между урочищами» С.У. Ремизовым (1642-1720) создается огромное (217х277 см) картографическое произведение «Чертеж всех сибирских градов и земель», ныне находится в постоянной экспозиции Государственного Эрмитажа. 1701 г. - 1 января – дата, стоящая на первом титульном листе Атласа России Ремизова.

В 1726-34 гг. выходит в свет первый Атлас Всероссийской Империи, руководителем работ по созданию которого был обер-секретарь Сената И. К. Кириллов. Атлас был издан на латинском языке, и состоял из 14 специальных и одной генеральной карты под заглавием "Atlas Imperii Russici". В 1745 году был издан "Атлас Всероссийский". Первоначально работами по составлению атласа руководил академик, астроном И. Н. Делиль, представивший в 1728 г. проект составления атласа Российской империи. Начиная с 1739 года выполнение работ по составлению атласа осуществлял учрежденный по инициативе Делиля Географический департамент Академии Наук, задачей которого было составление карт России. Атлас Делиля включает комментарии к картам, таблицу с географическими координатами 62 городов России, легенду карт и сами карты: Европейской России на 13 листах при масштабе 34 версты в дюйме (1:1428000), Азиатской России на 6 листах в меньшем масштабе и карту всей России на 2-х листах в масштабе около 206 верст в дюйме (1:8700000) Атлас издан в виде книги параллельными изданиями на русском и латинском языках с приложением Генеральной Карты.

При создании атласа Делиля большое внимание уделялось математической основе карт. Впервые в России проводилось астрономическое определение координат опорных пунктов. В таблице с координатами указан способ их определения – "по достоверным основаниям" либо "при сочинении карты" В течение XVIII века в общей сложности было сделано 67 полных астрономических определений координат, относящихся к наиболее важным городам России, а также выполнено 118 определений пунктов по широте. На территории Крыма были определены 3 пункта.

Со второй половины XVIII в. роль главного картографо-геодезического учреждения России постепенно стало выполнять Военное ведомство

В 1763 г. был создан Особый Генеральный штаб. Туда были отобраны несколько десятков офицеров, которыеофицеры командировались для снятия районов расположения войск, маршрутов их возможного следования, дорог, по которым проходили сообщения воинскими подразделениями. По сути эти офицеры были первыми российскими военными топографами, которые выполнили первичный объем работ по картографированию страны.

В 1797 г. было учреждено Депо карт. В декабре 1798 г. Депо получило право контроля над всеми топографическими и картографическими работами в империи, а в 1800 г. к нему был присоединен Географический департамент. Все это сделало Депо карт центральным картографическим учреждением страны. В 1810 г. Депо карт перешло в ведение военного министерства.

8 февраля (27 января по старому стилю) 1812 г., когда было высочайшее утверждено «Положение для Военного Топографического Депо» (далее ВТД), в которое Депо карт вошло как особое отделение – архив военно-топографического депо. Приказом Министра обороны Российской Федерации от 9 ноября 2003 г. становлена дата годового праздника ВТУ ГШ ВС РФ – 8 февраля.

В мае 1816 г. ВТД было введено в состав Главного штаба, при этом директором ВТД назначался начальник Главного штаба. С этого года ВТД (независимо от переименований) постоянно находится в составе Главного или Генерального штаба. ВТД руководило созданным в 1822 году Корпусом топографов (после 1866 года -Корпусом военных топографов)

Важнейшими результатами работ ВТД на протяжении почти целого столетия после его создания являются три большие карты. Первая - специальная карта европейской России на 158 листах, размером 25х19 дюймов, в масштабе 10 верст в одном дюйме (1:420000). Вторая - военно-топографической карты Европейской России в масштабе 3 версты в дюйме (1:126000), проекция карты коническая Бонна, долгота считается от Пулково.

Третья - карта Азиатской России на 8 листах размером 26х19 дюймов, в масштабе 100 верст в дюйме (1:42000000). Кроме этого для части России, особенно для приграничных районов были подготовлены карты в полуверстовом (1:21000) и верстовом (1:42000) масштабе (на эллипсоиде Бесселя и проекции Мюфлинга).

В 1918 г. в состав созданного Всероссийского Главного штаба вводится Военно-топографическое управление (правопреемник ВТД), которое в дальнейшем до 1940 г. принимало разные названия. В подчинении этого управления на ходится и корпус военных топографом. С 1940 г. по настоящее время оно именуется «Военно-топографическое управление Генерального штаба Вооруженных Сил».

В 1923 года Корпус военных топографов был преобразован в военно-топографическая службу.

В 1991 году, была образована Военно-топографическая служба Вооружённых сил России, которая в 2010 году была преобразована в Топографическую службу Вооружённых сил Российской Федерации.

Следует сказать так же о возможности использования топографических карт в исторических исследованиях. Мы будем говорить только о топографических картах, созданных в XVII веке и позднее, построение которых опиралось на математические законы и специально проводившееся систематическое обследование территории.

Общие топографические карты отражают физическое состояние местности и ее топонимику на момент составления карты.

Карты мелких масштабов (более 5 верст в дюйме – мельче 1:200000) возможно использовать для локализации указанных на них объектов, лишь с большой неопределенностью в координатах. Ценность содержащейся информации в возможности выявления изменения топонимики территории, главным образом при ее сохранении. Действительно, отсутствие топонима на более поздней карте может свидетельствовать об исчезновении объекта, изменении названия, либо просто о его ошибочном обозначении, в то же время как его наличие будет подтверждать более старую карту причем, как правило, в таких случаях возможна более точная локализация..

Карты крупных масштабов дают наиболее полную информацию о территории. Они могут быть непосредственно использованы для поиска обозначенных на них и сохранившихся до настоящего времени объектов. Развалины построек являются одним из элементов, входящим в легенду топографических карт, и, хотя, лишь немногие из обозначенных развалин относятся к памятникам археологии, их идентификация является вопросом, заслуживающим рассмотрения.

Координаты сохранившихся объектов, определенные по топографическим картам СССР, либо путем непосредственных измерений при помощи глобальной космической системы местоопределения (GPS), могут быть использованы для привязки старых карт к современным системам координат. Однако даже карты начала-середины XIX века могут на отдельных участках территории содержать значительные искажения пропорций местности и процедура привязки карт состоит не только из соотнесений начал отсчета координат, но требует неравномерного растяжения или сжатия отдельных участков карты, которое осуществляется на основе знания координат большого количества опорных точек (так называемая трансформация изображения карты).

После проведения привязки, возможно, осуществить сравнение знаков на карте, с объектами присутствующими на местности в настоящее время, либо существовавшими в периоды предшествующие или последующие времени ее создания. Для этого необходимо производить сопоставление имеющихся карт разных периодов и масштабов.

Крупномасштабные топографические карты XIX века представляются весьма полезными при работе с межевыми планами XVIII - XIX веков, как связующее звено между этими планами и крупномасштабными картами СССР. Межевые планы составлялись во многих случаях без обоснования на опорных пунктах, с ориентировкой по магнитному меридиану. В силу изменений характера местности, вызванных природными факторами и деятельностью человека, непосредственное сопоставление межевых и прочих детальных планов прошлого века и карт XX века не всегда возможно, однако сопоставление детальных планов прошлого века с современной им топографической картой представляется более простым.

Еще одна интересная возможность применения крупномасштабных карт их использование для изучения изменений контуров берега. За последние 2,5 тысячи лет уровень, например, Черного моря повысился, как минимум на несколько метров. Даже за прошедшие с момента создания первых карт Крыма в ВТД два столетия, положение береговой линии в ряде мест могло сместиться на расстояние от нескольких десятков до сотен метров, главным образов вследствие абразии. Такие изменения вполне соизмеримы с размерами достаточно крупных по античным меркам поселений. Выявление поглощенных морем участков территории может способствовать открытию новых археологических памятников.

Естественно, что основными источниками по территории Российской империи для указанных целей, могут выступать трехверстная и верстовая карты. Использование геоинформационных технологий позволяет накладывать друг на друга и привязывать их к современным картам, совмещать слои крупномасштабных топографических карт различного времени и далее дробить их на планы. Причем планы создаваемые сейчас, как и планы XX века, окажутся привязанными к планам XIX века.


Современные значения параметров Земли: Экваториальный радиус, 6378 км. Полярный радиус, 6357 км. Средний радиус Земли, 6371 км. Длина экватора, 40076 км. Длина меридиана, 40008 км...

Здесь, конечно, надо учитывать, что величина самого «стадия» вопрос дискуссионный.

Диоптр - прибор, служащий для направления (визирования) известной части угломерного инструмента на данный предмет. Направляемая часть снабжается обыкновенно двумя Д. - глазным , с узким прорезом, и предметным , с широким прорезом и волоском, натянутым посередине (http://www.wikiznanie.ru/ru-wz/index.php/Диоптр).

По материалам сайта http://ru.wikipedia.org/wiki/Советская _система_разгравки_и_номенклатуры_топографических_карт#cite_note-1

Герхард Меркатор (1512 - 1594) - латинизированное имя Герарда Кремера (и латинская, и германская фамилии означают «купец»), фламандского картографа и географа.

Описание зарамочного оформления приводится по работе: «Топография с основами геодезии». Под ред. А.С.Харченко и А.П.Божок. М - 1986

С 1938 года в течении 30 лет ВТУ (при Сталине, Маленкове, Хрущеве, Брежневе) возглавлял генерал М.К.Кудрявцев. Никто на подобной должности ни в одной армии мира такое время не держался.

План лекции
1. Классификация проекций по виду нормальной картографической сетки.
2. Классификация проекций в зависимости от ориентирования вспомогательной картографической поверхности.
3. Выбор проекций.
4. Распознавание проекций.

6.1. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ВИДУ НОРМАЛЬНОЙ КАРТОГРАФИЧЕСКОЙ СЕТКИ

В картографической практике распространена классификация проекций по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические, когда вспомогательной поверхностью служит боковая поверхность цилиндра; конические, когда вспомогательной плоскостью является боковая поверхность конуса; азимутальные, когда вспомогательная поверхность - плоскость (картинная плоскость).
Поверхности, на которые проектируют земной шар, могут быть к нему касательными или секущими его. Они могут быть и по-разному ориентированы.
Проекции, при построении которых оси цилиндра и конуса совмещались с полярной осью земного шара, а картинная плоскость, на которую проектировалось изображение, размещалась касательно в точке полюса, называются нормальными.
Геометрическое построение названных проекций отличается большой наглядностью.

6.1.1. Цилиндрические проекции

Для простоты рассуждения вместо эллипсоида воспользуемся шаром. Заключим шар в цилиндр, касательный по экватору (рис. 6.1, а).

Рис. 6.1. Построение картографической сетки в равновеликой цилиндрической проекции

Продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа 1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями аАа 1 , бБб 1 , вВв 1 ..., перпендикулярными экватору АБВ.
Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам.
Полученная цилиндрическая проекция (рис. 6.1, б) будет равновеликой , так как боковая поверхность шарового пояса АГДЕ, равная 2πRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по мере удаления от экватора.
Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция будет равнопромежуточной по меридианам .
Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах.
Нередко вместо касательного цилиндра используют цилиндр, секущий сферу по двум параллелям (рис. 6.2), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях - больше главного масштаба.


Рис. 6.2. Цилиндр, секущий шар по двум параллелям

6.1.2. Конические проекции

Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 6.3, а).


Рис. 6.3. Построение картографической сетки в равнопромежуточной конической проекции

Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 6.3, б) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ,..., исходящими из точки Т. Обратите внимание на то, что углы между ними (схождение меридианов) будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб.
Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из определенных условий, одно из которых - сохранение главного масштаба вдоль меридианов (АЕ = Ае) - приводит к конической равнопромежуточной проекции.

6.1.3. Азимутальные проекции

Для построения азимутальной проекции воспользуемся плоскостью, касательной к шару в точке полюса П (рис. 6.4). Пересечения плоскостей меридианов с касательной плоскостью дают изображение меридианов Па, Пе, Пв,... в виде прямых, углы между которыми равны разностям долгот. Параллели, являющиеся концентрическими окружностями, могут быть определены различным путем, например, проведены радиусами, равными выпрямленным дугам меридианов от полюса до соответствующей параллели ПА = Па. Такая проекция будет равнопромежуточной по меридианам и сохраняет вдоль них главный масштаб.


Рис. 6.4. Построение картографической сетки в азимутальной проекции

Частным случаем азимутальных проекций являются перспективные проекции, построенные по законам геометрической перспективы. В этих проекциях каждая точка поверхности глобуса переносится на картинную плоскость по лучам, выходящим из одной точки С , называемой точкой зрения. В зависимости от положения точки зрения относительно центра глобуса проекции подразделяются на:

  • центральные - точка зрения совпадает с центром глобуса;
  • стереографические - точка зрения располагается на поверхности глобуса в точке, диаметрально противоположной точке касания картинной плоскости к поверхности глобуса;
  • внешние - точка зрения вынесена за пределы глобуса;
  • ортографические - точка зрения вынесена в бесконечность, т. е. проектирование осуществляется параллельными лучами.


Рис. 6.5. Виды перспективных проекций: а - центральная;
б - стереографическая; в - внешняя; г - ортографическая.

6.1.4. Условные проекции

Условные проекции - проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др. В частности, к условным принадлежат псевдоцилиндрические, псевдоконические, псевдоазимутальные и другие проекции, полученные путем преобразования одной или нескольких исходных проекций.
У псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу линии (что роднит их с цилиндрическими проекциями), а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 6.6)


Рис. 6.6. Вид картографической сетки в псевдоцилиндрической проекции.

У псевдоконических проекций параллели - дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 6.7);


Рис. 6.7. Картографическая сетка в одной из псевдоконических проекций

Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 6.8.

Рис. 6.8. Принцип построения поликонической проекции:
а - положение конусов; б - полосы; в - развертка

Буквами S на рисунке обозначены вершины конусов. На каждый конус проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса.
Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего — прямого), а параллели — дуги эксцентрических окружностей.
В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.
После развертки конусов получают изображение этих участков в виде полос на плоскости (рис. 6.8, б); полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений (рис. 6.8, в).


Рис. 6.9. Картографическая сетка в одной из поликонических

Многогранные проекции - проекции, получаемые путем проектирования на поверхность многогранника (рис. 6.10), касательного или секущего шар (эллипсоид). Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические создают исключительно в многогранной проекции, и рамка каждого листа представляет собой трапецию, составленную линиями меридианов и параллелей. За это приходится "расплачиваться" - блок листов карт нельзя совместить по общим рамкам без разрывов.


Рис. 6.10. Схема многогранной проекции и расположение листов карт

Необходимо отметить, что в наши дни для получения картографических проекций не пользуются вспомогательными поверхностями. Никто не помещает шар в цилиндр и не надевает на него конус. Это всего лишь геометрические аналогии, позволяющие понять геометрическую суть проекции. Изыскание проекций выполняют аналитически. Компьютерное моделирование позволяет достаточно быстро рассчитать любую проекцию с заданными параметрами, а автоматические графопостроители легко вычерчивают соответствующую сетку меридианов и параллелей, а при необходимости - и карту изокол.
Существуют специальные атласы проекций, позволяющие подобрать нужную проекцию для любой территории. В последнее время созданы электронные атласы проекций, с помощью которых легко отыскать подходящую сетку, сразу оценить ее свойства, а при необходимости провести в интерактивном режиме те или иные модификации или преобразования.

6.2. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ В ЗАВИСИМОСТИ ОТ ОРИЕНТИРОВАНИЯ ВСПОМОГАТЕЛЬНОЙ КАРТОГРАФИЧЕСКОЙ ПОВЕРХНОСТИ

Нормальные проекции - плоскость проектирования касается земного шара в точке полюса или ось цилиндра (конуса) совпадает с осью вращения Земли (рис. 6.11).


Рис. 6.11. Нормальные (прямые) проекции

Поперечные проекции - плоскость проектирования касается экватора в какой-либо точке или ось цилиндра (конуса) совпадает с плоскостью экватора (рис. 6.12).




Рис. 6.12. Поперечные проекции

Косые проекции - плоскость проектирования касается земного шара в любой заданной точке (рис. 6.13).


Рис. 6.13. Косые проекции

Из косых и поперечных проекций наиболее часто используют косые и поперечные цилиндрические, азимутальные (перспективные) и псевдоазимутальные проекции. Поперечные азимутальные применяют для карт полушарий, косые - для территорий, имеющих округлую форму. Карты материков часто составляют в поперечных и косых азимутальных проекциях. Поперечно-цилиндрическая проекция Гаусса - Крюгера применяется для государственных топографических карт.

6.3. ВЫБОР ПРОЕКЦИЙ

На выбор проекций влияет много факторов, которые можно сгруппировать следующим образом:

  • географические особенности картографируемой территории, ее положение на Земном шаре, размеры и конфигурация;
  • назначение, масштаб и тематика карты, предполагаемый круг потребителей;
  • условия и способы использования карты, задачи, которые будут решаться по карте, требования к точности результатов измерений;
  • особенности самой проекции - величины искажений длин, площадей, углов и их распределение по территории, форма меридианов и параллелей, их симметричность, изображение полюсов, кривизна линий кратчайшего расстояния.

Первые три группы факторов задаются изначально, четвертая - зависит от них. Если составляется карта, предназначенная для навигации, обязательно должна быть использована равноугольная цилиндрическая проекция Меркатора. Если картографируется Антарктида, то почти наверняка будет принята нормальная (полярная) азимутальная проекция и т.д.
Значимость названных факторов может быть различной: в одном случае на первое место ставят наглядность (например, для настенной школьной карты), в другом - особенности использования карты (навигация), в третьем - положение территории на земном шаре (полярная область). Возможны любые комбинации, а следовательно - и разные варианты проекций. Тем более что выбор очень велик. Но все же можно указать некоторые предпочтительные и наиболее традиционные проекции.
Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические проекции иногда дают с разрывами на океанах.
Карты полушарий всегда строят в азимутальных проекциях. Для западного и восточного полушарий естественно брать поперечные (экваториальные), для северного и южного полушарий - нормальные (полярные), а в других случаях (например, для материкового и океанического полушарий) — косые азимутальные проекции.
Карты материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего строят в равновеликих косых азимутальных проекциях, для Африки берут поперечные, а для Антарктиды - нормальные азимутальные.
Карты отдельных стран , административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных проекциях, но многое зависит от конфигурации территории и ее положения на земном шаре. Для небольших по площади районов задача выбора проекции теряет актуальность, можно использовать разные равноугольные проекции, имея в виду, что искажения площадей на малых территориях почти неощутимы.
Топографические карты Украины создают в поперечно-цилиндрической проекции Гаусса, а США и многие другие западные страны - в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UТМ). Обе проекции близки по своим свойствам; по существу та и другая являются многополостными.
Морские и аэронавигационные карты всегда даются исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения всего Мирового океана - равновеликие проекции с разрывами на материках.
В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять «математическим» факторам выбора проекции, и наоборот - для малых территорий и крупных масштабов более существенными становятся «географические» факторы.

6.4. РАСПОЗНАВАНИЕ ПРОЕКЦИЙ

Распознать проекцию, в которой составлена карта, - значит установить ее название, определить принадлежность к тому или иному виду, классу. Это нужно для того, чтобы иметь представление о свойствах проекции, характере, распределении и величине искажений - словом, для того, чтобы знать, как пользоваться картой, чего от нее можно ожидать.
Некоторые нормальные проекции сразу распознаются по виду меридианов и параллелей. Например, легко узнаваемы нормальные цилиндрические, псевдоцилиндрические, конические, азимутальные проекции. Но даже опытный картограф не сразу распознает многие произвольные проекции, потребуются специальные измерения по карте, чтобы выявить их равноугольность, равновеликость или равнопромежуточность по одному из направлений. Для этого существуют особые приемы: сперва устанавливают форму рамки (прямоугольник, окружность, эллипс), определяют, как изображены полюсы, затем измеряют расстояния между соседними параллелями вдоль по меридиану, площади соседних клеток сетки, углы пересечения меридианов и параллелей, характер их кривизны и т.п.
Существуют специальные таблицы-определители проекций для карт мира, полушарий, материков и океанов. Проведя необходимые измерения по сетке, можно отыскать в такой таблице название проекции. Это даст представление о ее свойствах, позволит оценить возможности количественных определений по данной карте, выбрать соответствующую карту с изоколами для внесения поправок.

Вопросы для самоконтроля:

  1. Как классифицируют проекции по виду вспомогательной поверхности?
  2. Как классифицируют проекции в зависимости от положения оси вспомогательной поверхности относительно оси вращения глобуса?
  3. Какой принцип построения поликонической проекции?
  4. Как получают азимутальные проекции?
  5. Как получить косую проекцию на касательном цилиндре?
  6. Как получить азимутальную экваториальную проекцию?
  7. Какие виды перспективных проекций вы знаете? Дайте им краткую характеристику.
  8. Какие проекции относят к условным?
  9. Какие факторы оказывают влияние на выбор картографической проекции?
  10. В каких проекциях обычно составляют карты мира,морские и аэронавигационные карты, топографические карты, карты отдельных стран, карты материков, карты полушарий?
  11. По каким признакам распознают проекции?

КАРТОГРАФИЧЕСКАЯ ПРОЕКЦИЯ И ЕЁ ВИДЫ

Обоснование выбора темы параграфа

Для своей работы мы выбрали тему «Картографические проекции». В настоящее время в учебниках географии данная тема практически не рассматривается, сведения о различных картографических проекциях можно увидеть только в атласе 6 класса. Мы считаем, что учащимся будет интересно знать, по каким принципам выбираются и строятся различные проекции географических карт. Вопросы о картографических проекциях часто затрагиваются в олимпиадных заданиях. Встречаются они и на ЕГЭ. Кроме того, карты атласов, как правило, построены в разных проекциях, что вызывает вопросы у учащихся.Картографическая проекция является основой для построения карт. Тем самым, знание основных принципов построения картографических проекций пригодится учащимся при выборе профессий летчика, моряка, геолога. В связи с этим, мы считаем целесообразным включить данный материал в учебник географии. Поскольку на уровне 6 класса математическая подготовка учащихся еще не такая сильная, на наш взгляд, имеет смысл изучать данную тему в начале 7го класса в разделе «Общие особенности природы Земли» при рассмотрении материала об источниках географической информации.

Картографические проекции

Географическую карту невозможно представить себе без системы параллелей и меридиан, формирующих её градусную сеть . Именно они позволяют нам точно определить местоположение объектов, именно по ним определяются стороны горизонта на карте. Даже расстояния по карте возможно вычислить с помощью градусной сети. Если посмотреть на карты в атласе, можно заметить, что градусная сеть на разных картах выглядит по-разному. На одних картах параллели и меридианы пересекаются под прямым углом и представляют собой сетку из параллельных и перпендикулярных прямых. На других картах меридианы веером расходятся из одной тоски, а параллели представлены в виде дуг. На карте Антарктиды меридианы похожи на снежинку, а параллели отходят от центра концентрическими кругами.

СОЗДАНИЕ КАРТ

Созданием картографических произведений занимается раздел картографии картоведение. Картоведение - это отрасль науки, производства и техники, охватывающая историю картографии и изучение, создание и использование картографических произведений. Создание карт выполняется с помощью картографических проекций - способа перехода от реальной, геометрически сложной земной поверхности к плоскости карты. Для этого сначала переходят к математически правильной фигурe эллипсоида или пули, а затем проектируют изображение на плоскость с помощью математических зависимостей.

Виды проекций

Что же собой представляет картографическая проекция?

Картографи́ческая прое́кция - математически определенный способ отображения поверхности эллипсоида на плоскости. Принятая при данной картографической проекции система изображения сети меридианов и параллелей называется картографической сеткой .

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, условные, азимутальные, и др.

На конических проекциях при переносе координатных линий Земли на плоскость используется конус.После получения изображения на его поверхности, конус разрезают и разворачивают на плоскость.Для получения конической сетки необходимо точное совпадение оси конуса с осью Земли. На полученной карте параллели изображаются дугами окружностей, меридианы - прямыми линиями, исходящими из одной точки. В такой проекции можно изобразить северное или южное полушарие нашей планеты, Северную Америку или Евразию. В процессе изучения географии конические проекции чаще всего будут встречаться в ваших атласах при построении карты России.

Картографические проекции

На цилиндрических проекциях получение нормальной сетки осуществляется путем проектирования её на стенки цилиндра, ось которого совпадает с Земной осью. Затем его разворачивают на плоскость. Сетка получают из взаимно перпендикулярных прямых линий параллелей и меридианов.

На азимутальных проекциях нормальная сетка получается сразу на плоскости проекции. Для этого центр плоскости совмещается с полюсом Земли. В результате параллели имеют вид концентрических окружностей, радиус которых увеличивается по мере удаления от центра, а меридианы выглядят прямыми, пересекающимися в центре.

Условные проекции строятся по каким-либо заранее поставленным условиям. Эту категории нельзя отнести к другим видам проекции. Их число неограниченно.

Конечно, перенести изображение с поверхности шара на плоскость абсолютно точно невозможно. Если мы попробуем это сделать, неизбежно получим разрыв в изображении. Тем не менее, на карте мы этих разрывов не видим, да и при переносе изображения на поверхности цилиндра, конуса или плоскость изображение получается единым. В чем же дело?

Проецируя точки с поверхности Земного шара на поверхности будущей карты, мы получаем искаженные изображения. Если представить проектирование поверхности Земли на плоскость в виде тени, которая получится при подсвечивании объекта из центра Земли, то чем дальше объект от места непосредственного соприкосновения поверхности карты с шаром, тем больше изменится его изображение.

По характеру искажений все проекции делят на равноугольные, равновеликие и произвольные.

На равноугольных проекциях углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями, то есть они(углы) не имеют искажений. Масштаб зависит только от положения точки и не зависит от направления. Угол на местности всегда равен углу на карте, линия, прямая на местности - прямая на карте. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Но линейные размеры на картах этой проекции будут иметь искажения.Представьте себе идеально круглое озеро.В каком бы месте полученной карты оно ни располагалось, его форма останется круглой, а вот размеры могут существенно измениться. Русло реки будет изгибаться так же, как изгибается на местности, но расстояние между его изгибами не будет соответствовать реальному.

Равновеликая проекция

На равновеликих проекциях не искажаются площади, сохраняется их пропорциональность. Но сильно искажены углы и формы. При перенесении его очертаний на карту в месте соприкосновения шара и поверхности будущей карты, его изображение будет таким же круглым. В то же время, чем дальше оно будет расположено от линии соприкосновения, тем больше будут вытягиваться его очертания, хотя площадь озера будет неизменной.

На произвольных проекциях искажены и углы, и площади, не сохранятся подобие фигур, но имеют какие-либо специальные свойства, не присущие другим проекциям, поэтому они наиболее употребляемые.

Карты создаются либо непосредственно в результате топографических съемок местности, либо на основе других карт, то есть, в конечном счете, опять-таки в результате съемки. В настоящее время, подавляющее большинство топографических карт создастся с помощью метода аэрофотосъемки, который позволяет в короткий срок получить топографическую карту огромной территории. С летящего самолета с помощью особых фотографических аппаратов делается много снимков (аэрофотоснимки) местности. Потом эти аэрофотоснимки обрабатывают на специальных приборах. Прежде чем стать картой, серия аэрофотоснимков проходит в производстве длинный и сложный путь.

Эллипсоид

Все мелкомасштабные общегеографические и специальные карты (в том числе и электронные GPS карты) создаются на основе других карт, только более крупного масштаба.

Термины

Градусная сеть - система меридианов и параллелей на географических картах и глобусах, служащая для отсчёта географических координат точек земной поверхности - долгот и широт.

Эллипсоид - замкнутая поверхность. Эллипсоид можно получить из поверхности шара, если шар сжать (растянуть) в произвольных отношениях в трех взаимно перпендикулярных направлениях.

Нормальная сетка - картографическая сетка для каждого класса проекций, изображение меридианов и параллелей которой имеет наиболее простой вид.

Концентрические окружности - окружности, имею­щие общий центр и лежащие в одной плоскости.

Вопросы

1. Что такое картографическая проекция? 2. Какие виды картографических проекций вы знаете? 3. Какой раздел картографии занимается созданием проекций? 4. От чего зависит характер искажений на карте?

Поработайте дома

1.Заполните в тетради таблицу, отражающую характеристики различных картографических проекций.

2.Определите, в каких проекциях построены карты атласа. Какой вид проекции использовался чаще? Почему?

Задание для любознательных

Пользуясь дополнительными источниками информации, найдите, в какой проекции построена карта полушарий.

Информационные ресурсы для углубленного изучения данной темы

Литература по теме

А.М.Берлянт "Карта - второй язык географии:(очерки о картографии)".192с. МОСКВА. ПРОСВЕЩЕНИЕ. 1985

Была раскрыта сущность построения фигур и линий на плоской горизонтальной поверхности способом проложения. Если же мы применим такой прием для всей земной поверхности, то столкнемся с существенными трудностями, связанными со сложностью геометрической формы Земли.
Сферическую поверхность развернуть на плоскости без разрывов и складок невозможно, то есть ее плановое изображение на плоскости нельзя представить без искажений, с полным геометрическим подобием всех ее очертаний. Относительно полного подобия спроектированных на уровенную поверхность очертаний островов, материков и различных объектов можно добиться лишь на сфере или шаре (глобусе) . Изображение поверхности Земли на глобусе обладает равномасштабностью, равноугольностью и равновеликостью.

Безусловно, модель нашей планеты удобнее всего представить в виде глобуса, при этом искажения будут минимальны. Однако во время выполнения многих практических и исследовательских задач работать с такой моделью неудобно. Дело даже не в том, что носить с собой глобус не всегда представляется возможным, а в громоздкости такой модели, если мы захотим ее представить в относительно крупном масштабе. Так, если изготовить глобус с изображением поверхности Земли в масштабе 1:1 000 000, то получим шарообразную модель нашей планеты диаметром 12,7 м. Представьте себе, что вам потребуется переносить такую модель, определять на ней координаты точек или производить линейные измерения. По этой причине карты и планы значительно удобнее в пользовании, переноске и хранении.

Геометрические преимущества глобуса (равномасштабность, равноугольность и равновеликость) одновременно и полностью сохранить на плоской карте невозможно. Построенная на плоскости географическая сетка , изображающая меридианы и параллели, будет иметь определенные искажения, поэтому будут искажены изображения всех объектов земной поверхности. Характер и размеры искажений зависят от способа построения картографической сетки, на основе которой составляется карта.

Отображение поверхности эллипсоида или шара на плоскости называется картографической проекцией . По сути, картографическая проекция является горизонтальным проложением точек земной поверхности, расположенных на фигуре Земли .
Существуют различные виды картографических проекций. Каждому из них соответствуют определенная картографическая сетка и присущие ей искажения. В одном виде проекции искажаются размеры площадей, в другом - углы, в третьем - площади и углы. При этом во всех проекциях без исключения искажаются длины линий.



Виды картографических проекций

Картографические проекции классифицируют по характеру искажений, виду изображения меридианов и параллелей (географической сетке) и некоторым другим признакам.

По характеру искажений различают следующие картографические проекции:

- равноугольные , сохраняющие равенство углов, между направлениями на карте и в натуре. На такой карте сохранено подобие углов, но искажены размеры площадей.

- равновеликие , сохраняющие пропорциональность площадей на карте соответствующим площадям на земном эллипсоиде. На карте, составленной с применением равновеликой проекции, сохранена пропорциональность всех площадей поверхности земного шара, но искажено подобие (форма) фигур, то есть отсутствует равноугольность. Взаимная перпендикулярность меридианов и параллелей на такой карте сохраняется только по среднему меридиану.

- равнопромежуточные , сохраняющие постоянство масштаба по какому-либо направлению;

- произвольные , не сохраняющие ни равенства углов, ни пропорциональности площадей, ни постоянства масштаба. Смысл применения произвольных проекций заключается в более равномерном распределении искажений на карте и удобстве решения некоторых практических задач.

По виду изображения сетки меридианов и параллелей картографической проекции подразделяются на конические , цилиндрические , азимутальные и др. Причем в пределах каждой из этих групп могут быть разные по характеру искажений проекции (равноугольные, равновеликие и т. д.).

Геометрическая сущность конических и цилиндрических проекций заключается в том, что сетка меридианов и параллелей проектируется на боковую поверхность конуса или цилиндра, описывающего земной эллипсоид, с последующим развертыванием этих поверхностей в плоскость.
Геометрическая сущность азимутальных проекций заключается в том, что сетка меридианов и параллелей проектируется на плоскость, касательную к эллипсоиду в одном из полюсов или секущую по какой-либо параллели.

Различают проекции нормальные (ось цилиндра или конуса при проецировании совмещена с осью Земли), косые (наклон цилиндра или конуса относительно полярной оси составляет острый угол) и поперечные (угол между осью Земли и осью фигуры проекции составляет 90 градусов).
При описании проекций много внимания уделяется тому, как выглядят на них параллели и меридианы. Отклонение формы сетки от квадрата показывает степень искажения проецируемого с шара на плоскость изображения. Изучая географическую сетку на карте в какой-либо проекции, можно понять, в какой степени и в каких местах эта карта искажена.
По типу географической сетки можно выделить:
- псевдоцилиндрические проекции , у которых параллели - прямые, параллельные друг другу, а меридианы - кривые, симметричные, относительно среднего прямолинейного меридиана;
- псевдоконические , где параллели - дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана;
- поликонические , параллели которых - дуги эксцентрических окружностей с центрами на среднем прямолинейном меридиане, а меридианы - кривые, симметричные относительно среднего меридиана.
На приведенном рисунке видно, какие очертания может принимать географическая сетка в различных проекциях.

a - цилиндрическая, b - коническая, c - азимутальная, d - псевдоцилиндрическая,
e - псевдоконическая, f - поликоническая, g - псевдоазимутальная.

Помимо упомянутых, существует много других типов и разновидностей картографических проекций. Проекцию, наиболее подходящую по характеру, величине и распределению искажений для той или иной карты, выбирают в зависимости от назначения, содержания карты, а также от размеров, конфигурации и географического положения поверхности картографируемой территории.



Просмотров