Колебательные движения и его виды. Колебательное движение

Колебательными называются процессы, при которых параметры, характеризующие состояние колебательной системы, обладают определённой повторяемостью во времени. Такими процессами, например, могут являться суточные и годовые колебания температуры атмосферы и поверхности Земли, колебания маятников и т.д.

Если промежутки времени, через которые состояние системы повторяется, равны между собой, то колебания называются периодическими , а промежуток времени между двумя последовательными одинаковыми состояниями системы – периодом колебаний .

Для периодических колебаний функция, определяющая состояние колеблющейся системы, повторяется через период колебаний:

Среди периодических колебаний особое место занимают коле­бания гармонические , т.е. колебания, при которых характеристики движения системы изменяются по гармоническому закону, например:

(308)

Наибольшее внимание, уделяемое в теории колебаний именно часто встречающимся на практике гармоническим процессам, объясняется как тем, что для них наиболее хорошо развит аналитический аппарат, так и тем, что любые периодические колебания (и не только периодические) могут быть рассмотрены в виде определённой комбинации гармонических составляющих. В силу этих причин далее будут рассмотрены преимущественно гармонические колебания. В аналитическом выражении гармонических колебаний (308) величина x отклонения материальной точки от положения равно­весия называется смещением .

Очевидно, что максимальное отклонение точки от положения равновесия равно a, эта величина называется амплитудой колебаний . Физическая величина, равная:

и определяющая состояние колеблющейся системы в данный момент вре­мени, называется фазой колебаний . Значение фазы в момент начала от счёта времени

называется начальной фазой колебаний . Величина w в выражении фазы колебаний, определяющая быстроту колебательного процесса, называется его круговой или циклической частотой колебаний.

Состояние движения при периодических колебаниях должно повторяться через промежутки времени, равные периоду колебаний T. При этом, очевидно, фаза колебаний должна изменятся на 2p (период гармонической функции), т.е.:

Отсюда следует, что период колебаний и циклическая частота связаны между собой соотношением:

Скорость точки, закон движения которой определяется (301), также изменяется по гармоническому закону

(309)

Отметим, что смещение и скорость точки неодновременно обращаются в нуль или принимают максимальные значения, т.е. смешение и скорость отличаются по фазе.

Аналогично получаем, что ускорение точки равно:

Из выражения для ускорения видно, что оно смещено по фазе относительно смещения и скорости. Хотя смешение и ускорение одновременно проходят через нуль, в этот момент времени они имеют противоположные направления, т.е. смещены на p. Графики зависимостей смещения, скорости и ускорения от времени при гармонических колебаниях представлены условном масштабе на рис.81.

Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.

– это один из частных случаев неравномерного движения. Примеров колебательного движения в жизни много: это и качание качелей, и раскачивание маршрутки на рессорах, и движение поршней в двигателе… Эти движения различаются, но у них есть общее свойство: раз в некоторое время движение повторяется.

Это время называется периодом колебаний .

Рассмотрим один из простейших примеров колебательного движения – пружинный маятник. Пружинный маятник – это пружина, соединённая одним концом с неподвижной стеной, а другим – с подвижным грузом. Для простоты будем считать, что груз может двигаться только вдоль оси пружины. Это реалистичное допущение – в реальных упругих механизмах обычно груз движется вдоль направляющей.

Если маятник не колеблется, и на него не действуют никакие силы, то он находится в положении равновесия. Если его отвести от этого положения и отпустить, то маятник станет колебаться – он будет проскакивать точку равновесия на максимальной скорости и замирать в крайних точках. Расстояние от точки равновесия до крайней точки называется амплитудой , периодом в данной ситуации будет минимальное время между посещениями одной и той же крайней точки.

Когда маятник находится в крайней точке, на него действует сила упругости, стремящаяся вернуть маятник в положение равновесия. Она убывает по мере приближения к равновесию, и в равновесной точке становится равна нулю. Но маятник уже набрал скорость и проскакивает точку равновесия, и сила упругости начинает его тормозить.


В крайних точках у маятника максимальная потенциальная энергия, в точке равновесия – максимальная кинетическая.

В реальной жизни колебания обычно затухают, так как есть сопротивления среды. В таком случает от колебания к колебанию амплитуда уменьшается. Такие колебания называются затухающими .

Если же затухания нет, и колебания происходят из-за начального запаса энергии, то они называются свободными колебаниями .

Тела, участвующие в колебании, и без которых колебания были бы невозможными, вместе называются колебательной системой . В нашем случае колебательная система состоит из грузика, пружины и неподвижной стены. Вообще, колебательной системой можно назвать любую группу тел, способных к свободным колебаниям, то есть таких, в которых при отклонениях появляются силы, возвращающие систему к равновесию.

Тема данного урока: «Колебательное движение. Свободные колебания. Колебательные системы». Вначале дадим определение нового вида движения, который мы начинаем изучать, - колебательного движения. Рассмотрим в качестве примера колебания пружинного маятника и определим понятие свободных колебаний. Также изучим, что такое колебательные системы, и обсудим условия, необходимые для существования колебаний.

Колебание - это периодическое изменение любой физической величины: колебания температуры, колебания цвета светофора и т. д. (рис. 1).

Рис. 1. Примеры колебаний

Колебания - самый распространенный вид движения в природе. Если касаться вопросов, связанных с механическим движением, то это самый распространенный вид механического движения. Обычно говорят так: движение, которое с течением времени полностью или частично повторяется, называется колебанием . Механические колебания - это периодические изменение физических величин, характеризующих механическое движение: положения тела, скорости, ускорения.

Примеры колебаний: колебание качелей, шевеление листьев и качание деревьев под воздействием ветра, маятник в часах, движение человеческого тела.

Рис. 2. Примеры колебаний

Наиболее распространенными механическими колебательными системами являются:

  • Грузик, закрепленный на пружине - пружинный маятник . Сообщая маятнику начальную скорость, его выводят из состояния равновесия. Маятник совершает колебания вверх-вниз. Для совершения колебаний в пружинном маятнике имеет значение количество пружин и их жесткость.

Рис. 3. Пружинный маятник

  • Математический маятник - твердое тело, подвешенное на длинной нити, совершающее колебание в поле тяготения Земли.

Рис. 4. Математический маятник

Условия существования колебаний

  • Наличие колебательной системы. Колебательная система - это система, в которой могут существовать колебания.

Рис. 5. Примеры колебательных систем

  • Точка устойчивого равновесия. Именно вокруг этой точки и совершаются колебания.

Рис. 6. Точка равновесия

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное. Устойчивое: когда система стремится вернуться в первоначальное положение при малом внешнем воздействии. Именно наличие устойчивого равновесия является важным условием того, что в системе могут происходить колебания.

  • Запасы энергии, которые приводят к тому, что совершаются колебания. Ведь колебания сами по себе не могут совершаться, мы должны вывести систему из равновесия, чтобы происходили эти колебания. То есть сообщить энергию этой системе, чтобы потом колебательная энергия превращалась в то движение, которое мы рассматриваем.

Рис. 7 Запасы энергии

  • Малое значение сил трения. Если эти силы будут большими, то о колебаниях речи идти не может.

Решение главной задачи механики в случае колебаний

Механические колебания - это один из видов механического движения. Главная задача механики - это определение положения тела в любой момент времени. Получим закон зависимости для механических колебаний.

Закон, который необходимо найти, мы постараемся угадать, а не вывести математически, потому что уровня знаний девятого класса недостаточно для строгих математических выкладок. В физике очень часто пользуются таким методом. Сначала пытаются предсказать справедливое решение, а потом его доказывают.

Колебания - это периодический или почти периодический процесс. Это значит, что закон - периодическая функция. В математике периодическими функциями являются или .

Закон не будет являться решением главной задачи механики, так как - безразмерная величина, а единицы измерения - метры. Усовершенствуем формулу, добавив перед синусом множитель, соответствующий максимальному отклонению от положения равновесия - амплитудное значение: . Обратите внимание, что единицами измерения времени являются секунды. Подумайте, что значит, например, ? Данное выражение не имеет смысла. Выражение под синусом должно измеряться в градусах или радианах. В радианах измеряется такая физическая величина, как фаза колебания - произведение циклической частоты и времени.

Свободные гармонические колебания описывает закон:

Используя это уравнение, можно найти положение колеблющегося тела в любой момент времени.

Энергия и равновесие

Исследуя механические колебания, особый интерес следует уделять понятию положения равновесия - необходимому условию наличия колебаний.

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное.

На рисунке 8 изображен шарик, который находится в сферическом желобе. Если вывести шарик из положения равновесия, на него будут действовать следующие силы: сила тяжести , направленная вертикально вниз, сила реакции опоры , направленная перпендикулярно касательной по радиусу. Векторная сумма этих двух сил будет равнодействующей, которая направлена обратно к положению равновесия. То есть шарик будет стремится вернуться в положение равновесия. Такое положение равновесия называется устойчивым .

Рис. 8. Устойчивое равновесие

Положим шарик на выпуклый сферический желоб и немного выведем его из положения равновесия (рис. 9). Сила тяжести по-прежнему направлена вертикально вниз, сила реакции опоры по-прежнему перпендикулярна касательной. Но теперь равнодействующая сила направлена в сторону, противоположную начальному положению тела. Шарик будет стремится скатиться вниз. Такое положение равновесия называется неустойчивым .

Рис. 9. Неустойчивое равновесие

На рисунке 10 шарик находится на горизонтальной плоскости. Равнодействующая двух сил в любой точке на плоскости будет одинаковой. Такое положение равновесия называется безразличным .

Рис. 10. Безразличное равновесие

При устойчивом и неустойчивом равновесии шарик стремится занять такое положение, в котором его потенциальная энергия будет минимальной .

Всякая механическая система стремится самопроизвольно занять такое положение, в котором ее потенциальная энергия будет минимальной. Например, нам комфортнее лежать, чем стоять.

Итак, необходимо дополнить условие существования колебаний тем, что равновесие обязательно должно быть устойчивым.

Если данному маятнику, колебательной системе сообщили энергию, то колебания, происходящие в результате такого действия, будут называться свободными . Более распространенное определение: свободными называют колебания , которые происходят только под действием внутренних сил системы.

Свободные колебания еще называют собственными колебаниями данной колебательной системы, данного маятника. Свободные колебания являются затухающими. Они рано или поздно затухают, так как действует сила трения. В данном случае она хоть и малая величина, но не нулевая. Если никакая дополнительная сила не вынуждает двигаться тело, колебания прекращаются.

Уравнение зависимости скорости и ускорения от времени

Для того чтобы понять, меняются ли скорость и ускорение при колебаниях, обратимся к математическому маятнику.

Маятник вывели из положения равновесия, и он начинает совершать колебания. В крайних точках колебания скорость меняет свое направление, причем в точке равновесия скорость максимальная. Если меняется скорость, значит, у тела есть ускорение. Будет ли такое движение равноускоренным? Конечно, нет, так по мере увеличения (уменьшения) скорости меняется и ее направление. Это значит, что ускорение также будет меняться. Наша задача - получить законы, по которым будут меняться проекция скорости и проекция ускорения со временем.

Координата со временем меняется по гармоническому закону, по закону синуса или косинуса. Логично предположить, что скорость и ускорение также будут меняться по гармоническому закону.

Закон изменения координаты:

Закон, по которому будет меняться проекция скорости со временем:

Данный закон также является гармоническим, но если координата меняется со временем по закону синуса, то проекция скорости - по закону косинуса. Координата в положении равновесия равна нулю, скорость же в положении равновесия максимальная. И наоборот, там, где координата максимальная, скорость равна нулю.

Закон, по которому будет меняться проекция ускорения со временем:

Знак минус появляется, поскольку при приращении координаты возвращающая сила направлена в противоположную сторону. По второму закону Ньютона, ускорение направлено туда же, куда и результирующая сила. Итак, если координата растет, ускорение растет по модулю, но противоположно по направлению, и наоборот, о чем и говорит знак минус в уравнении.

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. - 1983. - № 9. - С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. - М.: Просвещение, 1992. - 191 с.
  3. Черноуцан А.И. Гармонические колебания - обычные и удивительные // Квант. - 1991. - № 9. - С. 36-38.
  4. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «youtube.com» ()
  2. Интернет-портал «eduspb.com» ()
  3. Интернет-портал «physics.ru» ()
  4. Интернет-портал «its-physics.org» ()

Домашнее задание

  1. Что такое свободные колебания? Приведите несколько примеров таких колебаний.
  2. Вычислите частоту свободных колебаний маятника, если длина его нити 2 м. Определите, сколько времени будут длиться 5 колебаний такого маятника.
  3. Чему равен период свободных колебаний пружинного маятника, если жесткость пружины 50 Н/м, а масса груза 100 г?

1. Движение называется колебательным, если при движении происходит частичная или полная повторяемость состояния системы по времени. Если значения физических величин, характеризующих данное колебательное движение, повторяются через равные промежутки времени, колебания называют периодическими.

2. Что такое период колебаний? Что такое частота колебаний? Какова связь между ними?

2. Периодом называют время, в течение которого совершается одно полное колебание. Частота колебаний - число колебаний в единицу времени. Частота колебаний обратно пропорциональна периоду колебаний.

3. Система колеблется с частотой 1 Гц. Чему равен период колебания?

4. В каких точках траектории колеблющегося тела скорость равна нулю? Ускорение равно нулю?

4. В точках максимального отклонения от положения равновесия скорость равна нулю. Ускорение равно нулю в точках равновесия.

5. Какие величины, характеризующие колебательное движение, изменяются периодически?

5. Скорость, ускорение и координата в колебательном движении изменяются периодически.

6. Что можно сказать о силе, которая должна действовать в колебательной системе, чтобы она совершала гармонические колебания?

6. Сила должна изменяться с течением времени по гармоническому закону. Эта сила должна быть пропорциональна смещению и направлена противоположно смещению к положению равновесия.



Просмотров