Кодировка смд резисторов. Как маркируются резисторы по мощности и сопротивлению — обзор стандартов

Одним из самых простых и распространенных элементов электронных схем в приборах различного назначения являются резисторы. Производители делают большое количество различных модификаций, маркировка которых отличается. Поэтому тем, кто занимается ремонтом, проектированием и сборкой электронных схем требуется хорошо разбираться в маркировке резисторов различных типов. Термин SMD (Surface Mounted Device) в переводе с английского языка означает технология поверхностной пайки, разработан для упрощения установки малогабаритных элементов на печатных платах в радиоэлектронных изделиях.

Назначение резисторов SMD

Главная роль резисторов в электронных схемах – это ограничение тока на определенных участках цепи. Одним из ярких примеров является подключение резисторов в цепи питания светодиодов или на каскады усиления на транзисторах.

Резисторы в цепи являются сопротивлением электрическому току, все проводники и полупроводники имеют удельное сопротивление.

Упрощенно для схем оно рассчитывается по классическим формулам:

  • P = I2 * R – мощность равняется произведению квадрата тока на сопротивление;
  • R = P\I2 – сопротивление равно отношению мощности к квадрату тока в цепи;
  • R = P\U2 – сопротивление можно рассчитать через отношение мощности к квадрату напряжения.

Мощность выражается в Ваттах, напряжение – в Вольтах, ток – в Амперах по международной системе измерения величин СИ. На крупногабаритных резисторах старого образца мощность и сопротивление просто писали на его поверхности буквенными и цифровыми обозначениями, например, 3кОм 5Вт.

Современная аппаратура имеет печатные платы малых габаритов, соответственно, резисторы и другие детали должны иметь миниатюрные размеры, на которых нет возможности сделать надписи. Поэтому аббревиатуру стали наносить в зашифрованном виде только цифрами или цветными полосами в определенной последовательности.

Конструктивные особенности резисторов SMD

Отличие SMD полупроводниковых деталей в том, что они миниатюрных размеров и припаиваются на медные дорожки платы с одной стороны. Контактные ножки других деталей проходят через отверстия на плате и припаиваются к дорожкам с другой стороны. Форма резисторов чаще всего бывает прямоугольной или квадратной, чем больше рассеиваемая тепловая мощность резистора, тем больше его размеры.

Технология, по которой сделан чип резистор, позволяет припаивать детали на плату, не делая отверстий в дорожках, это значительно упрощает монтаж, малые размеры элементов позволяют сократить габариты всей платы. Но обозначение smd резисторов для маркировки резисторов делается условными сокращениями, чтобы надписи поместились на поверхности элемента.

Расшифровка аббревиатуры SMD резисторов

Прежде всего, SMD резисторы разделяют по типоразмерам, которые напрямую связаны с рассеиваемой мощностью. Некоторые элементы настолько малы, что маркировка чип резисторов не помещается на его корпусе даже в виде сокращенного кода. Поэтому существуют справочные таблицы, где указаны ширина, длина корпуса, из которой можно определить мощность резистора. Измерения можно определить микрометром.

Обратите внимание! Маркировка smd резисторов типоразмера 0402 (длина – 0,04, ширина – 0,02 дюйма) не делается, нет кодовых обозначений, величины сопротивления, в этом варианте мощность определяется по таблице, сопротивление лучше измерить мультиметром, погрешность сопротивления в этих резисторах составляет от 2 до 10%.

Более точные smd резисторы с погрешностью в 1% с кодом типоразмера 0603 маркируются двумя цифрами и буквой R, цифры обозначают величину в омах, буква – множитель 10-1. Определяем кодировку по таблице, например:

  • Код – 04 R;
  • Соответствует величине сопротивления 107 Ом;
  • R = 10-1.

В итоге получится величина сопротивления резистора 107х10-1 = 10,7 Ом. Когда R стоит между цифрами (2r2), это означает, что номинал сопротивления резистора – 2.2 Ом.

В обозначениях множителя применяется не только буква R :

  • A – число 100;
  • B – умножается на 101;
  • C – это число 10 в степени 2;
  • D – означает умножение на 103;
  • E – число умножается на 104;
  • F – число умножается на 105;
  • S – множитель на х10-2.

Пример расшифровки такой маркировки следующий. Код 05Е, смотрим по таблице, 05 соответствует значению 110 Ом, умножаем на 104. Сопротивление с таким кодом будет 110х104 = 11440 Ом или 11,44 кОм.

Маркировка, обозначающая величину сопротивления на смд резисторах, имеет три варианта:

  • Рассмотренный случай с двумя цифрами и одной буквой;
  • С тремя цифрами;
  • С четырьмя цифрами.

Расшифровка группы изделий с типоразмером 0805 с тремя цифрами (100, 102, 103…107 или 113) имеет следующие обозначения:

  • Первые две цифры указывают величину сопротивления в Ω, иногда это значение называют мантисса, последняя цифра – степень, в основании которой всегда стоит 10;
  • 113 соответствует 11х103 Ом = 11кОм;
  • 182 соответствует 18х102 Ом = 18 кОм или 1800 Ом.

Маркировка резисторов с четырьмя цифрами расшифровывается аналогичным способом, просто значения номинального сопротивления резисторов на порядок больше:

  • 7882 = 788х102 = 78800 Ω или 78,8 кОм;
  • 1853 = 185х103 = 185000 Ω или 185 кОм.

Профессионалам, которые часто сталкиваются с расшифровкой, это делать несложно. Обычному обывателю непросто запомнить методики расшифровки маркировки резисторов SMD. Для этого на различных ресурсах интернета созданы калькуляторы в режиме онлайн, достаточно внести элементы кодовой маркировки резистора, и в окне появится соответствующее значение этому сопротивлению. В некоторых вариантах калькулятора можно выбирать единицы измерения Ом, кОм, МОм.

Видео

Все SMD резисторы для поверхностного монтажа обычно маркируются. Кроме сопротивлений в 0402-ом корпусе, т.к они не имеют маркировки в связи с их миниатюрными размерами. Резисторы других типоразмеров маркируются двумя основными методами. Если у чип резисторов допуск сопротивления 2%, 5% или 10%, то их маркировка состоит из 3-х цифр: две первые обозначают мантиссу, а третья является степенью для десятичного основания, т.е, получается значение сопротивления резистора в Омах. Например, код сопротивления 106 - первые две цифры 10 - это мантисса, 6 - степень, в итоге получаем 10х10 6 , то есть 10 Мом.


Иногда к цифровой маркировке прибавляется латинская буква R - она является дополнительным множителем и обозначает десятичную точку. SMD резисторы типоразмера 0805 и более, имеют точность 1% и обозначаются кодом из четырех цифр: первые три - мантисса, а последняя - степень для десятичного основания. К данной маркировке также может прибавляться латинский символ R. Например, код сопротивления 3303 - 330 - это мантисса, 3 - степень, в итоге получаем 330х10 3 , т.е 33 кОм. Кодовая маркировка SMD сопротивлений с допуском в 1% и типоразмером 0603 обозначается всего двумя цифрами и буквой с помощью таблицы.

Цифры обозначают код, по которому из нее выбирается значение мантиссы, а буква - множитель с десятичным основанием. Например, код 14R - первые две цифры 14 - это код. По таблице для кода 14 значение мантиссы 137, R - степень равная 10 -1 , в итоге получаем 137х10 -1 , то есть 13,7 Ом. Резисторы с нулевым сопротивлением (перемычки), маркируются просто цифрой 0.

Маркировка SMD резисторов - корпуса



Справочник по кодовой маркировке smd резисторов фирмы Philips

Фирма Philips кодирует номинал smd резисторов следующим образом первые две или три цифры указывают номинал в омах, а последние - количество нулей (множитель). В зависимости от точности резистора номинал кодируется в виде трех или четырех символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7, 8 и 9 в последнем символе. Буква R выполняет роль десятичной запятой или, если она стоит в конце, то указывает на диапазон. Единичный символ "0" указывает на резистор с нулевым сопротивлением (Zero - Ohm).

SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска. Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя - показатель степени по основанию 10 для определения номинала резистора в Омах.

При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513 означает, что резистор имеет номинал 51x103 Ом = 51 КОм. Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя - показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750x101 Ом = 7.5 КОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква - показатель степени по основанию 10 для определения номинала резистора в Омах.

Например, маркировка 10C означает, что резистор имеет номинал 124x102 Ом = 12.4 КОм.

Справочник по маркировке SMD резисторов BOURNS

Smd резисторы bourns кодируются по трем стандартам:

Первые две цифры указывают значения в омах, последняя - количество нулей. Распространяется на резисторы из ряда Е-24, допусками 1 и 5%, типоразмерами 0603, 0805 и 1206

Первые три цифры указывают значения в омах, последняя - количество нулей. Распространяется на резисторы из ряда Е96, допуском 1%, типоразмерами 0805 и 1206.

Первые два символа - цифры, указывающие значение сопротивления в омах, взятые из нижеприведенной таблицы, последний символ - буква, указывающая значение множителя:S = 0.01; R = 0.1; А = 1; В = 10; С = 100; D = 1000; Е = 10000;F = 100000. Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмером 0603

Многие компании выпускают в роли плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и резисторы с "нулевым" сопротивлением. Они изготавливаются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в типовом корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких компонентов лежат в диапазоне единиц или десятков миллиом (~ 0.005...0.05 Ом). В цилиндрических корпусах маркировку наносят черным кольцом посередине, в SMD корпусах для поверхностного монтажа (0603, 0805, 1206...) маркировки либо нет, либо наносится цифры "000" (иногда просто "0").


Подборка справочников по SMD компонентам


SMD - Абривиатура из английского языка, от Surface Mounted Device - Устройство монтируемое на поверхность, т.е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности.

Устройство, конструкция и технология производства чип-резисторов

SMD-резисторы широко распространены и ими уже никого не удивишь. Но, несмотря на это, немногие интересуются их устройством и конструкцией. А, зря! Тут есть чем утолить голод любопытства, ведь чип-резисторы впитали в себя все самые передовые технологии и методы производства резисторов.

Устройство SMD-резистора

В основе практически любого чип-резистора лежит так называемая плёночная технология (Film Technology), где резистивный слой представляет собой тонкую или толстую плёнку, нанесённую на изоляционную подложку, которая является основанием и заодно служит для отвода тепла.

В общих чертах SMD-резистор устроен так.

Типовой SMD-резистор состоит из керамической подложки, на которую нанесён резистивный слой. Сопротивление этого слоя зависит от его толщины, формы и материала из которого он изготовлен. Для окончательной "подгонки" до номинального сопротивления используется лазерный тримминг. О нём мы ещё поговорим.

Так как от толщины плёнки зависит как сложность изготовления изделия, так и его технические характеристики, то чип-резисторы делят на две большие группы:

    Толстоплёночные (Thick Film Chip Resistors). Толщина плёнки ~0,0027"...0,00039" (70...10 мкм). Считаются самыми дешёвыми резисторами;

    Тонкоплёночные (Thin Film Chip Resistors). Толщина плёнки 0,00025" (6,35 мкм) и вплоть до 50 нм.

Резисторы с толстой и тонкой плёнкой несколько различаются по устройству и технологии производства, хотя внешне их отличить довольно трудно.

Толстоплёночные чип-резисторы. Технология производства.

Толстоплёночные резисторы изготавливают печатным методом. В них резистивный слой, который представляет собой пасту, наносят на поверхность подложки с помощью трафаретов. Затем производят термообработку (вжигание) получившегося отпечатка при температуре 700-900 0 С в конвейерной печи, благодаря чему образуется крепкая монолитная структура.

Паста состоит из смеси нескольких компонентов:

    Функциональная основа - высокодисперсный порошок резистивного материала (нанопорошок с размером частиц 500-100 нм и менее);

    Стеклосвязка . Мелкодисперсный низкоплавкий стекольный порошок (стеклянная фритта) на основе свинцово-боро-алюмо силикатных стекол;

    Органические связующие вещества необходимые для придания пасте вязкости.

В качестве резистивного материала для пасты используются металлы или их оксиды. В основном это оксиды рутения, серебра и палладия. Примером может служить диоксид рутения RuO 2 . Также может использоваться композиция палладий-серебро. Из-за наличия серебра в составе пасты ТКС толстоплёночных резисторов довольно высок (50 ppm/ 0 С и более).

Вжигание отпечатка пасты приводит к размягчению стеклянной фритты, которая обволакивает и связывает проводящие частицы. Финальная подгонка сопротивления до номинала осуществляется с помощью лазерной обрезки.

В следующем анимационном ролике фирмы YAGEO пошагово показан процесс изготовления SMD резисторов с толстой плёнкой.

Толстоплёночные резисторы иногда называют керметными, так как основой их резистивного слоя является смесь порошков металлов и оксидов.

Тонкоплёночный чип-резистор. Устройство и конструкция.

Тонкоплёночный чип-резистор по своему устройству схож с толстоплёночным. Основное и немаловажное отличие заключается в том, что резистивный слой на керамической подложке создаётся методом вакуумного ионного напыления. Это, пожалуй, самое важное отличие от резисторов с толстой плёнкой.

Благодаря этому удаётся сформировать очень тонкий однородный слой толщиной вплоть до 50 нм.

Резисторы с тонкой плёнкой очень термостабильны, имеют очень низкий ТКС (25 ppm/K). ТКС прецизионных резисторов может достигать ±2 ppm/ 0 С (серия PLTU от Vishay).

Материалом резистивной плёнки, как правило, служит нихром (сплав никеля и хрома). Нихромовая плёнка обладает довольно низким ТКС (до 10 ppm/ 0 С) что позволяет изготавливать очень точные резисторы с допуском в ±0,01%.

Резистивный слой.

В качестве основы резистивного слоя чип-резисторов используются различные материалы:

    Никель-хром (он же нихром, Nichrome, NiCr ). Обладает низким TCR (ТКС), который составляет 10 ppm/ 0 С (-55...+125 0 С). Благодаря этому широко используется при производстве тонкоплёночных резисторов;

    Нитрид тантала (Tantalum nitride, TaN ). Используется в тонкоплёночных резисторах, устойчивых к высокой влажности (moisture-resistant);

    Нитрид дитантала (Ta 2 N ). Его TCR составляет 25 ppm/ 0 С (-55...+125 0 С);

    Диоксид рутения (Ruthenium oxide, RuO 2 ) (используется в толстоплёночных резисторах);

    Рутенит свинца Pb 2 Ru 2 O 6 и рутенит висмута (Bi 2 Ru 2 O 7) (применяется в чип-резисторах с толстой плёнкой);

    Диоксиды рутения, легированные ванадием (Ru 0,8 V 0,2 O 2 , Ru 0,9 V 0,1 O 2 , Ru 0,67 V 0,33 O 2);

    Оксид свинца (PbO);

    Висмут иридий (Bi 2 Ir 2 O 7).

    Сплав никеля (Nikel alloy). Низкоомные (0,03...10 Ом) тонкоплёночные резисторы (Vishay, серия L-NS).

Подложка SMD-резистора (Substrate).

Наиболее используемый материал подложки SMD-резисторов - это чистая керамика на основе 94...96% поликристаллического оксида алюминия Al 2 O 3 (Alumina ). Она обладает высокой твёрдостью, хорошей адгезией, огнеупорностью и является изолятором.

Немаловажно и то, что она обладает хорошей теплопроводностью, ведь от резистивного слоя необходимо отводить тепло. Такую керамику часто применяют в качестве подложек для интегральных схем и микросборок.

Высокомощные чип-резисторы могут иметь подложку из нитрида алюминия (Aluminum nitride - AlN ). Это высокочистая керамика, обладающая высокой теплопроводностью.

Такая подложка применяется в чип-резисторах серии PCAN фирмы Vishay.

Слой пентаоксида тантала создают путём распыления, после чего происходит самостоятельный рост оксидной плёнки.

Поверх слоя Ta 2 O 5 уже наносится внешний слой эпоксидной смолы, служащий для механической защиты и изоляции. Замечательным свойством таких резисторов является то, что даже при механическом повреждении защитного слоя из пентаоксида тантала, он будет "зарастать" за счёт самовосстановления.

Естественно, производители всё время ищут новые способы и методы защиты резистивной плёнки. По понятным причинам технологические детали могут не раскрываться.

Например, в технической записке "Major Advancements in the Protection of Thin Film Nichrome-Based Resistors with Specialized Passivation Methods (SPM) " фирмы Vishay рассказывается о специальных методах пассивации (SPM), благодаря которым удаётся изготовить маломощные тонкоплёночные резисторы с нихромовой плёнкой, которые устойчивы к воздействию влаги и не уступают по своей стабильности резисторам с плёнкой на основе нитрида тантала Ta 2 N.

В серии L низкоомных резисторов того же Vishay используется нихромовая плёнка (NiCr) и защитное покрытие из пентаоксида тантала (Ta 2 O 5).

Как видим, технологические приёмы могут комбинироваться. Всё зависит от стоимости производства и требуемых характеристик готового изделия.

Серостойкие резисторы (Sulfur resistant resistors)

В последнее время можно услышать о так называемых серостойких резисторах - Sulfur resistant resistors или Anti-Sulfur resistors . Например, в своих промо-материалах компания Gigabyte заявляет о том, что в их материнских платах применяются такие чип-резисторы.

Долгосрочная надёжность чип-резисторов во многом зависит от той окружающей среды, в которой они эксплуатируются.

Наличие в окружающей среде газов с содержанием серы приводит к тому, что они проникают сквозь микропоры и трещины в защитном эпоксидном или стеклянном покрытии SMD-резистора. Как правило, самым незащищённым участком является граница защитного покрытия и внешних контактов.

На фото поперечного среза толстоплёночного резистора показана область, подвергшаяся воздействию серосодержащих газов и образованию сульфида серебра.

Механизм повреждения чип-резистора такими газами следующий.

Наличие сульфида серебра в структуре чип-резистора с течением времени приводит к росту его номинального сопротивления вплоть до электрического "обрыва".

Чтобы предотвратить образование сульфида серебра производители используют разные методы. Компромиссным вариантом считается легирование серебра драгоценными металлами. В чип-резисторах, от которых требуется долговременная надёжность вместо серебра и вовсе применяется палладий или платина.

Кроме этого участок, наиболее подверженный воздействию газов дополнительно покрывают защитными покрытиями или сплавами.

Anti-Sulfur резисторы применяются в оборудовании, которое задействовано на промышленных производствах, в нефтяной промышленности, телекоммуникационных и IT-системах, автомобильной электронике.

Лазерный тримминг резисторов.

Чтобы привести сопротивление резистивного слоя к заданному номиналу используется лазерная подгонка или на зарубежный манер, тримминг (trimming - "обрезка"). Суть её заключается в удалении части топологического рисунка из плёнки за счёт лазерного излучения.

На фото показан пример обрезки (L-Cut), сделанный с помощью лазерного тримминга (слева резистор на 33 Ома (330), справа на 1 МОм (105)).

Чтобы подобрать требуемую величину сопротивления резистора на поверхности резистивного слоя делают лазерный "надрез". В зависимости от требуемых характеристик форма надреза может быть весьма оригинальной. Вот основные из них:

    Поперечный i-рез ("Plunge Cut"). Самый "быстрый" и наименее точный подгоночный рез.

    L-рез ("L Cut"). Из его достоинств можно отметить малое среднеквадратичное отклонение R s и высокую точность. Более медленный тип реза, по сравнению с поперечным i-резом.

    На фото показан L-рез на поверхности SMD-резистора типоразмера 2512 на 100 кОм (рядом для масштаба положена миллиметровая линейка). Скорее всего, это толстоплёночный резистор. Защитный слой мне удалось снять острым лезвием перочинного ножа.

    Кроме реза типа L, может применяться так называемый Opposing "L", когда делается два L-реза по обоим сторонам плёнки.

    "Серпантин" или "Змейка" ("Serpentine"). Можно встретить название "Меандр" ("Meandering"). Это "медленный" рез, но за счёт него обеспечивается самый большой прирост сопротивления.

    Такой рез используется при изготовлении чип-резисторов мегаомных и гигаомных номиналов.

    "Двойной поперечный рез" ("Double Plunge Cut"). Высокая точность и малое среднеквадратичное отклонение R s .

    "Vernier". Очень похожий на предыдущий рез. Судя по всему, назван так из-за сходства со штангенциркулем (vernier caliper).

    "U-рез" ("U-Cut"). Применяется для изготовления высоковольтных резисторов с высокой долговременной стабильностью.

    "П-рез" ("Plunge Cut: Top Hat Resistor"). Продольный "быстрый" рез, используемый для нормировки Top-Hat резисторов.

    "Скан-рез" или Scrub. Также можно встретить название "Shave-рез". Применяется для изготовления высоковольтных резисторов. Самый медленный, но наиболее точный и стабильный рез. Боковая часть плёнки удаляется лазером.

    Также применяется симметричный скраб ("Symetrical Scrub"), когда часть резистивной плёнки удаляется с обеих сторон.

    "Multiplunge". Такой тип реза обеспечивает практически линейное изменение сопротивления. Используя "i-рез" создаются последовательные секции многосекционного резистора (резисторной SMD-сборки).

    Для подгонки многосекционного резистора "лестничного" типа может использоваться перерезка шунтирующих перемычек.

    На следующей картинке показан резистор "лестничного типа" (Ladder resistor), а также пример использования данной топологии в структуре резистивной плёнки.

Если хорошенько присмотреться, то на поверхности толстоплёночных чип-резисторов иногда можно разглядеть разрезы, сделанные лазером. Они слегка проступают под внешним защитным покрытием.

Как видим, несмотря на кажущуюся простоту, для изготовления SMD-резисторов требуется высокоточное оборудование и строгое соблюдение технологии производства.

Прочие резисторы для монтажа на поверхность

Естественно, кроме рядовых SMD-резисторов существуют и другие. Например, чип-резисторы серии UBR (Ultra-Broadband resistors) способны работать в частотном диапазоне вплоть до 20 Гигагерц (20 GHz).

Номинальная мощность их невелика, всего 125 mW и выпускаются они в корпусе типоразмера 0402. Конструкция их также отличается от той, что привычна для рядовых чип-резисторов и называется "Glass wafer sandwich", что можно перевести, как "сэндвич из стеклянных пластин". В качестве подложки и верхней оболочки используется стекло.

Применяются такие резисторы в высокочастотной аппаратуре (спутниковой, оптоволоконной).

Также существуют так называемые Power Metal Strip ® резисторы (Vishay). Их резистивным слоем является монолитный резистивный элемент из сплава никель-хром или марганец-медь.

Подложка в таких резисторах отсутствует, так как резистивный элемент является самонесущей конструкцией. Толщина резистивного элемента составляет 0,0089" (226,06 мкм).

Наличие массивного резистивного элемента позволяет быстро поглощать тепловую энергию. Обычным чип-резисторам на основе плёнок требуется время на отвод тепла в подложку, а затем и в печатную плату.

К резисторам Power Metal Strip ® относятся такие серии, как WSL, WSK, WSLP, WSR. Как правило, это очень низкоомные резисторы (вплоть до миллиОм).

Используются такие резисторы в устройствах, где имеют место высокоэнергетические, кратковременные импульсные переходные процессы, которые сопровождаются быстрым и обильным выделением тепла.

К SMD-резисторам также относятся и MELF-резисторы , так как они также предназначены для монтажа на поверхность. Их подложка выполнена в виде цилиндрического стрежня из керамики, а резистивный слой имеет спиралевидную лазерную нарезку. Резистивным материалом может быть, как плёнка из углерода, так и металла.

За счёт цилиндрической формы подложки эффективная площадь охлаждения таких резисторов больше, чем SMD-резисторов с аналогичной площадью монтажа. Благодаря этому они более устойчивы к импульсной нагрузке, чем стандартные SMD-резисторы, а также способны выдерживать более высокое рабочее напряжение.

SMT-технология не обошла стороной и фольговые резисторы (Bulk Metal ® Foil, BMF ), которые также адаптировали под этот вид монтажа. Как известно, фольговые резисторы обладают самой высокой температурной стабильностью (имеют самый низкий ТКС).

Например, чип-резисторы серии VSMP (Vishay) имеют ТКС 0,2 ppm/ 0 С (-55 0 С...+125 0 С, относительно +25 0 С). А для температурного диапазона 0 0 С...+60 0 С ТКС составляет вообще 0,05 ppm/ 0 С!

Не составляет особого труда встретить на печатных платах и всевозможные SMD-перемычки (zero ohm jumpers , SMD Jumpers ). Примером может служит серия тонкоплёночных SMD-перемычек PZHT (Vishay).

В зависимости от типоразмера, который начинается с 02016, эти SMD-перемычки способны выдержать ток от 0,28А (PZHT02016 ) до 2А (PZHT2512 ) при рабочей температуре 215 0 С. Проводящим слоем в них является плёнка золота (Au) или сплава олова и серебра (SnAg).

В приведённом материале были затронуты вопросы, в основном, касающиеся конструкции, материалов и технологии изготовления SMD-резисторов. Но, несмотря на это, многие вопросы, например, относящиеся к типоразмеру, маркировке и мощности чип-резисторов затронуты не были. Рассказ и без того получился более чем содержательным для формата интернет-статьи. Если есть что добавить, пишите в комментариях!

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая - десятичный множитель, пятая - точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья - множитель, четвёртая - точность, а пятая - температурный коэффициент.

Маркировка в виде 4 колец


Маркировка в виде 5 колец


Калькулятор номиналов SMD-резисторов

Кодирование 3-я цифрами

Кодирование 4-я цифрами

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 05.10.2014

    Данный предусилитель прост и имеет хорошие параметры. Эта схема основана на TCA5550, содержащий двойной усилитель и выходы для регулировки громкости и выравнивания ВЧ, НЧ, громкости, баланса. Схема потребляет очень малый ток. Регуляторы необходимо как можно ближе расположить к микросхеме, чтобы уменьшить помехи, наводки и шум. Элементная база R1-2-3-4=100 Kohms C3-4=100nF …

  • 16.11.2014

    На рисунке показана схема простого 2-х ваттного усилителя (стерео). Схема проста в сборке и имеет низкую стоимость. Напряжение питания 12 В. Сопротивление нагрузки 8 Ом. Схема усилителя Рисунок печатной платы (стерео)

  • 20.09.2014

    Его смысл pазличен для pазных моделей винчестеpов. В отличие от высокоуpовневого фоpматиpования — создания pазделов и файловой стpуктуpы, низкоуpовневое фоpматиpование означает базовую pазметку повеpхностей дисков. Для винчестеpов pанних моделей, котоpые поставлялись с чистыми повеpхностями, такое фоpматиpование создает только инфоpмационные сектоpы и может быть выполнено контpоллеpом винчестеpа под упpавлением соответствующей пpогpаммы. …

SMD резисторы для поверхностного монтажа имеют три основные характеристики: размер элемента (типоразмер), сопротивление в Омах, допуск сопротивления в процентах. Типоразмер обозначается четырехзначной цифрой. Ниже приведена таблица распространенных типоразмеров и их геометрических размеров.

Обозначение типоразмера EIA Размеры, мм
L W H a
0402 1.00 0.50 0.20 0.25
0603 1.60 0.85 0.30 0.30
0805 2.10 1.30 0.40 0.40
1206 3.10 1.60 0.50 0.50
1210 3.10 2.60 0.50 0.40
2010 5.00 2.50 0.60 0.40
2512 6.35 3.20 0.60 0.40

Трехзначная нумерация резисторов с допуском 2%, 5% и 10%

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами. Первые две цифры обозначают мантиссу, третья - показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 512 означает, что резистор имеет номинал 51x100 Ом = 5.1 КОм, маркировка 104 означает номинал 10x10000 = 100кОм.

Существуют также SMD резисторы с нулевым сопротивлением или так называемые перемычки. Они маркируются символом 0 или 000.

Ниже приведена таблица, используя которую вы сможете быстро определить номинал SMD резистора.

Изображение Номинал Изображение Номинал
10 Ом 51 Ом
100 Ом 510 Ом
1 кОм 5.1 кОм
10 кОм 51 кОм
100 кОм 510 кОм
1 МОм 5.1 МОм

Четырехзначная нумерация резисторов с допуском 1%

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами. Первые три из них обозначают мантиссу, а последняя - показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 3401 означает, что резистор имеет номинал 340x10 Ом = 3.4 КОм.


Код Значение Код Значение Код Значение Код Значение
01 100 25 178 49 316 73 562
02 102 26 182 50 326 74 576
03 105 27 187 51 332 75 590
04 107 28 191 52 340 76 604
05 110 29 196 53 348 77 619
06 113 30 200 54 357 78 634
07 115 31 205 55 365 79 649
08 118 32 210 56 374 80 665
09 121 33 215 57 383 81 681
10 124 34 221 58 392 82 698
11 127 35 226 59 402 83 715
12 130 36 232 60 412 84 732
13 133 37 237 61 422 85 750
14 137 38 243 62 432 86 768
15 140 39 249 63 442 87 787
16 143 40 255 64 453 88 806
17 147 41 261 65 464 89 825
18 150 42 267 66 475 90 845
19 154 43 274 67 487 91 866
20 158 44 280 68 499 92 887
21 162 45 287 69 511 93 909
22 165 46 294 70 523 94 931
23 169 47 301 71 536 95 953
24 174 48 309 72 549 96 976


Просмотров