Классификация пиротехнических изделий по степени потенциальной опасности. Классификация потенциально опасных объектов с угрозой возникновения техногенных чc Свидетельствующие о потенциальной опасности объекта

Потенциальной опасностью загрязнения воды нефтью является нарушение биологических сообществ. Для общения друг с другом многие водные организмы пользуются химическими сигналами. Эти сигналы необходимы для размножения, сбора, обнаружения добычи. Однако при наличии неочищенной нефти и углеводородов передача таких сигналов нарушается .[ ...]

Потенциальная опасность проникновения химических веществ, удаленных в подземное хранилище с жидкими отходами, в водоносные горизонты и другие объекты внешней среды, имеющие хозяйственное значение, возможна в пределах фронта распространения указанных отходов в поглощающем горизонте, который наменяет свое положение во времени. Но границы второго пояса санитарно-защитных зон должны устанавливаться, исходя из максимального положения этого фронта на момент окончания эксплуатации полигона захоронения.[ ...]

К опасным факторам антропогенного характера, способствующим серьезному ухудшению качества атмосферы, следует отнести ее загрязнение радиоактивной пылью. Так, при ядерных взрывах или авариях на АЭС большая часть радионуклидов образуется в результате деления урана-235, урана-238 и плутония-239. Установлено, что через несколько десятков секунд после взрыва образуются примерно 100 различных радионуклидов, 29 из которых вносят наибольший вклад в радиоактивное загрязнение атмосферы через час, 20 - через двое суток, а 3 - через 100 лет. Особую потенциальную опасность для человека и животных представляет стронций-90 не только как долгоживущий элемент, но и как аналог кальция, способный заменять его в костях. Во время ядерных взрывов радионуклиды находятся в газообразном состоянии и по мере понижения температуры конденсируются в аэрозольное облако. Наиболее крупные частицы (диаметром более 40 мкм) выпадают из атмосферы и оседают на земной поверхности. Мелкие же частицы (диаметром от 1 до 20 мкм) попадают не только в верхние слои тропосферы, но и в стратосферу, обусловливая так называемое глобальное загрязнение, сопровождающееся выпадением радионуклидов в пределах обоих полушарий.[ ...]

Огромную потенциальную опасность представляет сосредоточение средне - и низкоактивных жидких отходов в открытых водоемах. В озере Карачай, являющимся приемником среднеактивных отходов, находится около 4,4 ЭБк (120 млн.Ки) радиоактивных материалов, преимущественно -стронция-90 и цезия-137. В каскаде промышленных водоемов, созданных в пойменной части верховьев р.Течи после прекращения сбросов в нее отходов радиохимического производства, накоплено 350 млн.м загрязненной воды, являющейся по сути низкоактивными отходами с суммарной активностью около 7,4 ПБк (0,2 млн.[ ...]

По степени потенциальной опасности воздействия на организм человека вредные вещества подразделяются на 4 класса в соответствии с ГОСТ 12.1.0007-76 (с изменением № 1 от 01.01.82 г.): 1 - чрезвычайно опасные, 2 - высокоопасные, 3 - умеренноопасные, 4 - малоопасные. Критериями при определении класса опасности служат ПДК, среднесмертельная доза, средняя смертельная концентрация и др. Определение проводится по показателю, значение которого соответствует наиболее высокому классу опасности.[ ...]

При наличии потенциально опасных мест, таких как: дефектные участки сварных швов, усталостные трещины стенок или коррозионные повреждения, - возможно разрушение стенок трубопровода в этих местах. Причем в начальные моменты времени эти повреждения проявляются в виде небольших трещин и свищей. Затем, при продолжении перекачки, размеры повреждения увеличиваются и могут достичь величины, сопоставимой с диаметром трубы.[ ...]

Анализ уровня опасности установок свидетельствует, что наиболее опасными являются: парк емкостей высокого давления газораздаточной станции (ГРС), установка каталитического крекинга Г-43-107, установка подготовки сырья, установка ЭЛОУ-АВТ-6. Из приведенного анализа энергетического потенциала наружных установок следует, что на промышленной территории завода существует потенциальная опасность крупных аварий с большими разрушительными последствиями.[ ...]

Для уменьшения опасности возникновения эффекта “домино” необходимо предусматривать размещение резервуаров с учетом их потенциальной опасности на соответствующих безопасных расстояниях друг от друга. Расстояния размещения хранилищ в соответствии с категориями опасности представлены в табл. 2.45.[ ...]

ЭО характеризует потенциальную опасность компонентов технологических растворов. В табл.1.1 представлены значения ПДК для воды водоемов рыбохозяйственного назначения и степень экологической опасности токсичных компонентов технологических растворов, которая определялась как отношение всего диапазона (для каждого типа растворов) значений максимальных концентраций компонента в к его ПДК. Среди кислотных остатков и лигандов наибольшей экологической опасностью обладают йодидные, фторидные и цианидные компоненты (4,3 2)-106, наименьшей - сульфаты, хлориды и нитраты (9-Н)103. Аммонийные 2-10Э и пирофосфатные (1,1- 4,3)104 соединения занимают промежуточное положение.[ ...]

Одним из наиболее опасных последствий разработки россыпных месторождений золота является значительное увеличение мутности природных водотоков, приводящее к заиливанию русла и ухудшению кормовой базы рыбохозяйственных объектов, а также к устойчивому ртутному загрязнению донных отложений техногенных водоемов. Во время аварийных сбросов сточных вод из таких водоемов или при паводковом разрушении дамб и плотин создается потенциальная опасность ртутного загрязнения природных водотоков.[ ...]

Протяженность зоны потенциальной опасности и масштабы ущерба в значительной степени будут определяться спецификой и динамикой аварийного истечения перекачиваемого продукта из трубопровода. В этой связи ниже исследуются характерные физические особенности аварийных процессов в магистральных газопроводах и трубопроводах для перекачки ШФЛУ (нестабильного конденсата) и даются рекомендации по их математическому моделированию.[ ...]

Цель первого этапа - определение потенциальных экологических рисков и степени их воздействия, прогнозирование последствий возможных катастроф и мер по их предупреждению, подбор соответствующего оборудования для устранения той или иной потенциально опасной ситуации и т. д. По результатам экоаудита специалисты ВСЕОМ выдают заказчику обоснованные рекомендации по проведению организационно-технических профилактических мер, по закупке современного оборудования, по дальнейшему развитию тех или иных производств и степени их воздействия на окружающую среду и т. д. .[ ...]

Специфической проблемой С. р. является потенциальная опасность загрязнения окружающей среды радиоактивными отходами. Это связано в первую очередь с деятельностью предприятий гос. Российского центра атомного судостроения в г. Северодвинске (Архангельская обл.) и базой атомного подводного флота, атомных надводных кораблей и ледоколов (гг. Мурманск и Североморск Мурманской обл.), а также Кольской атомной электростанции (пос. Полярные Зори Мурманской обл.). Кроме того, в непосредственной близости от берегов Мурманской и Архангельской обл., в Белом и Баренцевом морях производится захоронение радиоактивных отходов.[ ...]

Нефтяная и газовая промышленостъ остаются потенциально опасными по загрязнению окружающей среды и ее отдельных объектов. Возможное воздействие их на основные компоненты окружающей среды (воздух, почву, растительный, животный мир и человека) обусловлено токсичностью природных углеводородов, их спутников, большим разнообразием химических веществ, используемых в технологических процессах, а также все возрастающим объемом добычи нефти и газа, их подготовки, транспортировки, хранения, переработки и широкого разнообразного использования /19,22/.[ ...]

Отходы, содержащие вредные вещества, которые обладают опасными свойствами (токсичностью, пожаро-взрывоопасностью, высокой радиационной активностью) или содержат возбудителей инфекционных болезней, а также могут представлять потенциальную опасность для окружающей природной среды и здоровья человека самостоятельно или при вступлении в контакт с другими веществами, называют опасными отходами.[ ...]

Необходимо выяснить, какие вещества нарушают экологию природных вод или являются потенциально опасным для человека. В отдельных главах данной книги представлены материалы, освещающие более подробно перечисленные нами важнейшие аспекты проблемы загрязнения природных вод. Понимание процессов самоочищения природных вод облегчит разработку новых стандартов на химические вещества с учетом влияния этих веществ на внешнюю среду и организм человека.[ ...]

Основной задачей в этой области является обеспечение экологической безопасности потенциально опасных видов деятельности, реабилитация территорий и акваторий, пострадавших в результате техногенного воздействия на окружающую среду.[ ...]

Основываясь на изложенной генетической модели образования природообусловленных потенциально опасных участков трасс магистральных газопроводов, опробована модель методики прогнозирования риска аварий магистральных газопроводов, основой которой является специальный анализ цифровых карт рельефа поверхности трасс головных участков магистральных газопроводов: северные районы Тюменской области-Урал; Уренгой-Петровск; Уренгой-Челябинск - вторая нитка; северные районы Тюменской области-Урал - вторая нитка, Уренгой-Помары. Для определения комплекса признаков, характерных для природообусловленного аварийноопасного участка была применена традиционная методика выявления информативных признаков: выбраны эталонные обучающие и контрольные точки, которые в обучении не использовались. За эталон были приняты сами точки аварий и прилегающие к ним территории, расположенные на небольшом (в пределах 1 - 2 км от точек аварии) расстоянии. Всего определенных таким образом эталонных точек было выбрано 140; 100 из них участвовали в обучении - по ним определялись характерные природные признаки аварийно-опасных участков, 40 - служили контролем, по ним определялась эффективность прогноза опасных участков. Была исследована информативность, примерно 40 признаков, характеризующих две основных характеристики рельефа пластику - распределение высот и раздробленность, выраженную в плотности и преимущественном простирании линейных элементов рельефа. По результатам обучения на эталонных объектах в оптимальную модель аварийно-опасного участка были включены следующие признаки (табл. 2).[ ...]

Углеводородные фракции являются источником повышенной пожаровзрывоопасности. Эта потенциальная опасность проявляется при выходе фракций из технологической системы в атмосферу, а также при попадании воздуха в систему аппаратов, что может привести к внутреннему взрыву. К этим потенциально опасным событиям приводят следующие аварийные ситуации: разрыв подводящих трубопроводов; разгерметизация технологического оборудования вследствие разрушения фланцевых соединений (падение тарелок колонны вследствие внутреннего взрыва); трещина, разрушение или разрыв корпуса колонны изнутри (ввиду повышения давления, снижения прочности корпуса и т. д.).[ ...]

В свою очередь, промышленные объекты, на которых происходят такие аварии, по степени потенциальной опасности ранжируются в следующем порядке: ядерные, химические, металлургические и горно-добывающие; плотины; эстакады; нефтехранилища; транспортные системы, перевозящие опасные грузы; магистральные газо-, нефтепроводы; ракетно-космические и авиационные системы с ядерными и обычными зарядами; атомные подводные лодки; крупные склады обычных и химических вооружений.[ ...]

Особое внимание на природную среду оказывают предприятия атомной энергетики. Источником потенциальной опасности является весь процесс ядерного топливного цикла - от добычи делящегося материала до переработки облученного топлива. Отмечается, что в последние годы (1993-1995) производственная деятельность АЭС не оказала заметного влияния на экологическую ситуацию в районах их размещения.[ ...]

Острым является вопрос о так называемых химических «ловушках» - давно забытых захоронениях опасных отходов, на которых построили жилые дома и другие объекты. Они со временем дают о себе знать, в частности, появлением необычных заболеваний среди местного населения. Учет подобных захоронений в США показал, что имеется в наличии не менее 32 тыс. потенциально опасных; в ФРГ - выявлено около 50 тыс. таких участков, в Нидерландах - 4000. Химическими ловушками могут быть и более 80 мест ядерных взрывов под землей, проведенных в интересах экономики на территории России.[ ...]

Актуальность проблемы. Нефтяная промышленность в силу специфики своей деятельности является потенциально опасной для окружающей среды. Это обусловлено токсичностью добываемых углеводородов и веществ, применяемых в технологических процессах.[ ...]

Под экологическим страхованием понимается страхование гражданской ответственности владельцев потенциально опасных объектов по обязательствам, возникающим вследствие причинения вреда жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварийного загрязнения среды.[ ...]

В зависимости от вероятности перехода из возможной в действительную АЗО можно дифференцировать па потенциальную и реальную. Таксе деление имеет, взщюе значение с точка эревея ее профилактики и направленного воздействия ка нее. Потенциально возможная экологическая опасность при отсутствии эффективных мер по ее предотвращению может перейти в реальную. Примером потенциально возможной АЗО является опасность радиоактивных заражений, возникающих при эксплуатаций атомных станций. Потенциальную опасность носят также химические в нефтеперерабатывающие предприятия. Использование надежных мер защиты воспрепятствует переходу потенциальной опасности в резльну®.[ ...]

Источниками суперэкотоксикантов являются установки по сжиганию токсичных отходов. Только в США общее количество опасных отходов, подвергшихся сжиганию, составляет более 4 млн. т в год . Однако несмотря на широкое распространение установок по сжиганию отходов (в частности, с использованием печей цементных заводов), ни одна из технологий не соответствует требованиям экологической безопасности . Главный аргумент против технологий сжигания - загрязнение атмосферного воздуха токсичными веществами и создание новых, потенциально опасных отходов (летучая зола, шламы), требующих, в свою очередь, удаления на свалки. Многие специалисты считают, что печи для сжигания опасных отходов - это те же свалки, но представляющие еще большую экологическую угрозу.[ ...]

Второй пояс санитарно-защитной зоны полигона захоронения должен охватывать территорию, в пределах которой имеется потенциальная опасность химического загрязнения.воды водоносных горизонтов и горных пород, имеющих хозяйственное значение, а также открытых водоемов и поверхности земли. Границы второго пояса должны проходить не только на дневной поверхности, а распространяться и на недра земли. Кроме гидрогеологических условий величина этого пояса зависит от объема удаляемых жидких отходов, а также от состава и концентрации в них загрязняющих веществ.[ ...]

Косов Б.Ф., Любимов Б.П., Никольская И.И. О методике составления карт противоэрозионной устойчивости горных пород для целей учета потенциальной опасности развития линейной эрозии // Эрозия почв и русловые процессы. - М.: Изд-во МГУ. - 1973. - Вып. 3. - С. 116 - 125.[ ...]

В предыдущей главе отмечалось, что ПАВ относятся к группе малотоксичных соединений. Однако при поступлении их в окружающую среду потенциальная опасность для организма животных и человека не ограничивается только непосредственным действием. В большой степени возможность отрицательною действия ПАВ, находящихся в водной среде, связана с их особыми свойствами. В экспериментах показано, что ПАВ в определенных концентрациях (0,5-5,0 мг/л) обладают способностью изменять степень кумуляции различных веществ в организме животных. Механизм действия ПАВ на кумуляцию других соединений можно объяснить повышенной проницаемостью биологических мембран для них и сопутствующих им веществ, в отношении которых ПАВ, по выражению некоторых авторов, являются «буксиром». Причем ПАВ могут увлекать за собой различные вещества как вследствие образования с ними соединений различного типа, так и, возможно, мицелляр-ных структур.[ ...]

При этом следует регламентировать предельную вероятность аварии Япр в единицу времени для того, чтобы аварии с Л ’> Лпрне входили в число потенциальных, и производитель не выплачивал за них расчетный штраф. В случае если авария произойдет, то с производителя не взимается сумма ущерба у1 (t). Таким образом, первая экономическая мера защиты природы представляет собой не что иное, как принудительное страхование производителя от потенциальной опасности окружающей среде.[ ...]

Изучению ПАУ придается особо важное значение ввиду их химической устойчивости и высокой токсичности - £6 незамещенных ПАУ включены в список приоритетных потенциально опасных загрязняющих веществ, которые должны определяться в атмосферном воздухе С5 ].[ ...]

Гигиеническая оценка продукции, товаров и производств - это процедура, осуществляемая специализированными органами и организациями Минздрава России с целью оценки потенциальной опасности продукции и товаров для потребителей. Она проводится с помощью специальных исследований и экспертиз. По их результатам выдается гигиеническое заключение установленного образца, которое вносится в государственный реестр. Гигиеническое заключение является подтверждением соответствия продукции и товаров установленным требованиям безопасности.[ ...]

Токсикологией (от греч. токсикон - яд) называют науку, исследующую взаимодействие организма и яда. Полное определение токсикологии следующее. Токсикология -это наука о потенциальной опасности вредного действия веществ (ядов) на живые организмы и экосистемы, о механизмах действия, диагностике, профилактике и лечении интоксикаций3 .[ ...]

Производство алюминия связано с выбросом двух вредных веществ: хлористого и фтористого алюминия и фтористого водорода, которые могут быть поглощены в скруббере. Другие потенциально опасные соединения, возникающие при обработке цветных металлов, включают соединения мышьяка и летучие соединения свинца и цинка, образующиеся в процессе плавки.[ ...]

Каждому сочетанию выбранных диапазонов Gi, Uk и дискретных значений Sh и Cli¡: (где 1=I,...,L; k=l,...,K; h=l,..H, m=l,...,M - номера диапазонов или дискретных значений) 4-х указанных параметров соответствует зона потенциальной опасности Zij определенных размеров с границами, определяемыми пороговым значением Спор концентрации токсичного газа, соответствующим определенной условной вероятности Рпор поражения заданной степени тяжести потенциального реципиента .[ ...]

Применение минимальной и нулевой обработок практически сводит на нет эрозию, но имеет также и негативный аспект: для борьбы с сорняками и вредителями необходимо применять повышенные дозы пестицидов, что содержит потенциальную опасность химического загрязнения почв. В настоящее время минимизация обработки почвы широко распространяется в США, особенно на Юге и Среднем Западе, при выращивании в первую очередь пропашных культур - кукурузы, сои, хлопка, а также пшеницы, сорго и других культур. Первые шаги в этом направлении делают и некоторые развивающиеся страны.[ ...]

Санитарно-эпидемиологическое заключение. Гигиенический сертификат (в настоящее время - Санитарно-эпидемиологическое заключение) на продукцию как форма согласования производства, внедрения и применения продукции, потенциально опасной для здоровья человека, введен постановлением Госкомсанэпиднадзора России № 1 от 05.01.93 г. Целью гигиенической сертификации является предупреждение неблагоприятного влияния на здоровье человека факторов, связанных с производством и применением в промышленности и быту продукции, потенциально опасной для здоровья человека.[ ...]

Часть высокотоксичных элементов может переходить в труднодоступные для растений соединения, другие элементы, мобильные в данной почвенно-геохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Часть элементов может выноситься за пределы почвенного профиля, хотя в почвах с водозастойным режимом такие биогеохимически активные, легкодоступные вещества могут представлять наибольшую опасность.[ ...]

Широкое распространение эрозия имеет и в нашей стране. Из 220 млн. га пахотных земель более 80 млн. га подвержено водной эрозии и около 40 млн. га ветровой. Кроме того, примерно 50 млн. га сельскохозяйственных земель являются потенциально опасными в отношении эрозионных процессов.[ ...]

Водные растения п рыба способны сорбировать и концентрировать пестициды, присутствующие в воде. Таким образом, но схеме почва-вода-зоофитопланктон-рыбы-человек пестициды могут включиться в пищевую цепь . В связи с потенциальной опасностью пестицидов для человека и животных возникает необходимость в достаточно точных и чувствительных аналитических методах контроля за поступлением и распространением пестицидов и продуктов их разложения в водных источниках, накоплением их в гидробионтах и донных отложениях. Наличие подобной информации является основанием для разработки ряда мероприятий, в том числе и регламентов применения пестицидов, направленных на предотвращение проникновения пестицидов в водные источники.[ ...]

Бесспорно и другое. Многие пестициды, обладая активными биологическими и токсическими свойствами, действуют не только на вредителей и возбудителей болезней сельскохозяйственных культур, сорняки и др., но и представляют потенциальную опасность для человека, домашних и диких животных и т. д. В этой связи закономерен вопрос: «Существуют ли пути и средства, исключающие опасность токсического действия пестицидов на организм тружеников сельского хозяйства». Многолетний опыт успешного применения различных препаратов в нашей стране позволяет утвердительно ответить на этот вопрос: «Да они есть и успешно используются на практике».[ ...]

Благодаря липофильному характеру ТХДД может накапливаться в жировых отложениях организмов, где его содержание может превысить содержание в обычных условиях в природной среде в 100-20 ООО раз. Уже это обстоятельство указывает на потенциальную опасность соединений этой группы.[ ...]

В последнее время в связи с обострением экологической ситуации возникла необходимость учета размещения отходов по составу и степени токсичности, а также регистрации загрязнителей окружающей среды. Объектом регистрации служат все опасные и потенциально опасные вещества, независимо от их происхождения, производимые как на территории России, так и ввозимые из-за рубежа.[ ...]

Для реализации указанных принципов используются следующие правовые инструменты: установление нормативов качества атмосферного воздуха и нормативов выбросов и вредных физических воздействий; государственная регистрация загрязняющих и потенциально опасных веществ; получение разрешения на выброс и оказание вредного физического воздействия; государственный учет вредных воздействий, ведение мониторинга атмосферного воздуха, инвентаризация выбросов вредных физических воздействий и их источников. Соответствующие требования определены применительно к различным стадиям хозяйственной деятельности (проектированию и размещению предприятий, их строительству, вводу в эксплуатацию и эксплуатации), к обращению с опасными веществами (транспортировка и использование пестицидов и агрохимикатов, озоноразрушающих веществ, отходов и т. п.), к функционированию отдельных групп объектов (автомобильного и иного транспорта, опасных производственных объектов, объектов атомной энергетики). Кроме того, российский законодатель устанавливает достаточно жесткую систему ограничений и запретов. Например, запрещаются производство и эксплуатация транспортных и иных передвижных средств, содержание вредных веществ в выбросах которых превышает установленные технические нормативы выбросов, запрещаются проектирование, размещение и строительство не имеющих установок для очистки газов и средств контроля за выбросами объектов, эксплуатация которых может привести к изменениям климата или озонового слоя Земли, и т. п. Правительством РФ принято решение о запрещении с 1 июля 2000 г. создания новых мощностей по производству озоноразрушающих веществ, а их ввоз и вывоз осуществляются по квотам, исходя из расчетных ставок, сроков и других требований Монреальского протокола. Производство же озоноразрушающих веществ в нашей стране начиная с 1 июля 2000 г. осуществляется только в тех случаях, когда они используются исключительное в качестве сырья для производства других химических веществ и в особых случаях, предусмотренных Монреальским протоколом, при транзитных перевозках их через территорию РФ из государств и в государства, являющиеся сторонами Монреальского протокола. Установлен запрет на такие воздействия на погоду, которые могут вызвать неблагоприятные изменения климата. Органы государственной власти субъектов РФ могут вводить ограничения въезда транспортных средств в населенные пункты, места отдыха и туризма.[ ...]

Несмотря на то, что зональные почвозащитные системы земледелия насыщены прот изоэрозионными мероприятиями, в ряде случаев их оказывается недостаточно для предотвращения ветровой эрозии почв. Содержание дополнительных мероприятий зависит от потенциальной опасности ветровой эрозии почв (табл. 9.6). В данном случае ее оценивают полуколичественным методом, основываясь на результатах почвен-но-эрозионного обследования, при котором учитывают и потенциальную подверженность почв ветровой эрозии (с использованием материалов табл. 4.6) и фактическую выраженность эрозионных процессов. Согласно этой схеме потенциальная опасность увеличивается от первой группы к шестой (в табл. 9.6 они выделены римскими цифрами). В пределах каждой группы выделяют три подгруппы, А,Б,В, по характеру фактического проявления ветровой эрозии в момент обследования. А -признаков проявления ветровой эрозии нет или имеются разрозненные пятна наносов высотой до 10 см; наблюдается слабое сглаживание нанорельефа и очаговое осветление поверхности почвы. Б - поверхность почвы светлая; нанорельеф сглажен почти полностью, на поверхности поля эоловая рябь, косы навевания, у препятствий - бугорки наносов высотой до 20 см. В - поверхность почвы светлая, по всей поверхности эоловая рябь, косы навевания, у препятствий - бугорки наносов высотой более 20 см; на поверхности поля чередуются участки выноса мелкозема с участками его накопления.[ ...]

Специально уполномоченный федеральный орган исполнительной власти в области охраны атмосферного воздуха совместно с другими федеральными органами исполнительной власти осуществляет организацию регистрационных испытаний вредных (загрязняющих) веществ и потенциально опасных веществ, которые оказывают или могут оказывать вредное воздействие на человека и окружающую природную среду, и их государственную регистрацию в соответствии с положением, утвержденным правительством РФ.[ ...]

При получении чистого кислорода и азота путем ректификации жидкого воздуха иногда возникают трудности из-за наличия примесей в воздухе. Особенно опасен ацетилен, так как он образует твердые осадки, которые накапливаются в технологическом оборудовании и создают потенциальную опасность самопроизвольного взрыва. В обычной атмосфере содержание ацетилена составляет 1 10 7об. %, в промышленных районах 1 10 4 об. %, а на заводах крекинга нефти оно иногда достигает в короткие промежутки времени 1,5-10-3-3,0 10 3 об. %. Для безопасных условий работы исходный воздух должен содержать ацетилена не более 1-10“4 об. % .[ ...]

Все современные методы интенсификации нефтеотдачи пластов предполагают, как видно, глубокое энергоемкое воздействие на коллектор, содержащийся в нем жидкий углеводород, изменение тонкой, молекулярной структуры флюида, его фазового, агрегатного состояния, а также давления, температуры и т. д. В большинстве случаев даже при нормальном использовании современных методов интенсификации добычи нефхи они оказываются потенциально опасными для загрязнения окружающей среды. Пагубное воздействие их возможно на все экологически значимые объекты: воздух, воду, почву, растительный, животный мир и человека. Это означает, что при использовании всех методов интенсификации необходим соответствующий комплекс природоохранных мероприятий .[ ...]

Страхование является инструментом дополнительного внебюджетного финансирования мероприятий по сохранению качества природной среды и природных ресурсов. Задача страхования в области природопользования состоит в аккумулировании средств предприятий для целевого возмещения затрат на восстановление природной среды, воспроизводство природных ресурсов, возмещения ущерба имуществу и здоровью третьих лиц в результате деятельности потенциально опасных объектов природопользования, а также для проведения превентивных мероприятий, направленных на восстановление и охрану природных ресурсов.[ ...]

Если в подземных водах они практически отсутствуют, то в поверхностных часто наблюдается наличие фората и фозалона - (6 -н 9) 10 6 г/л, фталатов - (24-7) 10 6 г/л и хлорорганических пестицидов - около 10 6 г/л. При современном уровне развития промышленности и сельского хозяйства не исключена потенциальная опасность загрязнения водоемов этими и другими веществами в еще больших масштабах. Таким образом, уже сегодня техника водоподготовки должна гарантировать уничтожение токсичных веществ при случайном или регулярном попадании их в воду, предназначенную для использования в питьевых целях.

1.2. ГИГИЕНА, ТОКСИКОЛОГИЯ, САНИТАРИЯ

МЕТОДИКА КЛАССИФИЦИРОВАНИЯ НАНОТЕХНОЛОГИЙ И ПРОДУКЦИИ НАНОИНДУСТРИИ ПО СТЕПЕНИ ИХ ПОТЕНЦИАЛЬНОЙ ОПАСНОСТИ


Дата введения: с момента утверждения

1. РАЗРАБОТАНЫ:

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека (Г.Г.Онищенко, И.В.Брагина, О.И.Аксёнова, А.А.Волков, Т.Ю.Завистяева, А.Л.Мишина)

НИИ питания РАМН (В.А.Тутельян, И.В.Гмошинский, С.А.Хотимченко, Е.А.Арианова, В.В.Бессонов, Р.В.Распопов, О.И.Передеряев, В.В.Смирнова, О.Н.Тананова, Г.Н.Шатров, А.А.Шумакова)

Государственная корпорация "Роснанотех" (А.Б.Малышев, Ю.Г.Ткачук, О.А.Макарова)

Центр "Биоинженерия" РАН (К.Г.Скрябин, Н.В.Раввин)

Биологический факультет МГУ им. М.В.Ломоносова (М.П.Кирпичников, К.В.Шайтан)

Институт биохимии им. А.Н.Баха РАН (В.О.Попов, Б.Б.Дзантиев)

2. УТВЕРЖДЕНЫ Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г.Онищенко и введены в действие с 27.12.2010.

3. Введены впервые.

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. В настоящих методических рекомендациях приведена методика проведения классифицирования нанотехнологий и продукции наноиндустрии по степени их потенциальной опасности для здоровья населения, в том числе для работников нанотехнологических производств, и для среды обитания.

1.2. Методические рекомендации предназначены для органов и организаций Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, а также могут быть использованы специалистами Государственной корпорации "Роснанотех", научно-исследовательских и иных организаций, деятельность которых связана с проведением исследований и экспертиз в области оценки безопасности нанотехнологий и продукции наноиндустрии.

II. НОРМАТИВНЫЕ ССЫЛКИ

2.1. Федеральный закон Российской Федерации от 30 марта 1999 года N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения" .

2.2. Федеральный закон Российской Федерации от 02 января 2000 года N 29-ФЗ "О качестве и безопасности пищевых продуктов" .

2.3. Федеральный закон Российской Федерации от 27 декабря 2002 года N 184-ФЗ "О техническом регулировании" .

2.4. Федеральный закон Российской Федерации от 10 января 2002 года N 7-ФЗ "Об охране окружающей среды" .

2.5. Федеральный закон Российской Федерации от 24 июня 1998 года N 89-ФЗ "Об отходах производства и потребления" .

2.6. Федеральный Закон Российской Федерации от 19 июля 2007 года N 139-ФЗ "О Российской корпорации нанотехнологий" .

2.7. Постановление Правительства Российской Федерации N 988 от 21 декабря 2000 года "О государственной регистрации новых пищевых продуктов, материалов и изделий" .

2.8. Приказ Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека N 224 от 19 июля 2007 года "О санитарно-эпидемиологических экспертизах, обследованиях, исследованиях, испытаниях и токсикологических, гигиенических и иных видах оценок" .

2.9. Постановление Главного государственного санитарного врача Российской Федерации N 54 от 23 июля 2007 года "О надзоре за продукцией, полученной с использованием нанотехнологий и содержащей наноматериалы" .

2.10. Постановление Главного государственного санитарного врача Российской Федерации N 79 от 31 октября 2007 года "Об утверждении Концепции токсикологических исследований, методологии оценки риска, методов идентификации и количественного определения наноматериалов" .

2.11. ГН 2.2.5.1313-03 "Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны".

2.12. ГН 1.2.2633-10 "Гигиенические нормативы содержания приоритетных наноматериалов в объектах окружающей среды".

2.13. Методические рекомендации МР 1.2.2639-10 "Использование методов количественного определения наноматериалов на предприятиях наноиндустрии".

2.14. Методические указания МУ 1.2.2636-10 "Проведение санитарно-эпидемиологической экспертизы продукции, полученной с использованием нанотехнологий и наноматериалов".

2.15. Методические указания МУ 1.2.2520-09 "Токсиколого-гигиеническая оценка безопасности наноматериалов".

2.16. Методические указания 1.2.2634-10 "Микробиологическая и молекулярно генетическая оценка воздействия наноматериалов на представителей микробиоценоза".

2.17. Методические указания 1.2.2635-10 "Медико-биологическая оценка безопасности наноматериалов".

2.18. Методические указания МУ 1.2.2637-10 "Порядок и методы проведения контроля миграции наночастиц из упаковочных материалов".

2.19. Методические указания МУ 1.2.2638-10 "Оценка безопасности контактирующих с пищевыми продуктами упаковочных материалов, полученных с использованием нанотехнологий".

2.20. Методические рекомендации МР 1.2.2522-09 "Выявление наноматериалов, представляющих потенциальную опасность для здоровья человека".

2.21. Методические рекомендации МР 1.2.2640-10 "Методы отбора проб, выявления и определения содержания наночастиц и наноматериалов в составе сельскохозяйственной, пищевой продукции и упаковочных материалов".

2.23. ГОСТ Р ИСО 9001-2008 "Системы менеджмента качества. Требования".

2.24. ГОСТ Р 12.0.006-2002 * "Системы управления охраной здоровья и безопасностью персонала. Требования"
_______________
* На территории Российской Федерации документ не действует. Действует ГОСТ 12.0.230-2007 . - Примечание изготовителя базы данных.

2.25. ГОСТ Р ИСО 14001-2007 "Системы экологического менеджмента. Требования и руководство по применению".

III. ОБЩИЕ ПОЛОЖЕНИЯ

3.1. Классифицирование продукции наноиидустрии и технологий, применяемых при её производстве (далее - нанотехнологий), по степени потенциальной опасности для здоровья населения и среды обитания, в том числе на стадии рассмотрения проектов нанотехнологических производств, осуществляется в целях:

- выявления продукции наноиндустрии, представляющей потенциальную опасность для жизни и здоровья человека, а также возможности причинения вреда здоровью человека при изготовлении, обороте, употреблении (использовании) и утилизации данной продукции;

- определения производств, применяющих в технологическом процессе потенциально опасные наноматериалы и способных, вследствие этого, нанести вред состоянию здоровья работников данных предприятий, населения, в том числе проживающего на прилегающих территориях, и окружающей среде;

- разработки комплекса мер, направленных на обеспечение безопасности продукции наноиндустрии для потребителя (в частности, замена более опасных наноразмерных компонентов менее опасными, нанесение предупредительных надписей на продукцию и её упаковку при маркировке и этикетировании, меры по недопущению ненадлежащего использования и утилизации продукции наноиндустрии и другое);

- минимизации рисков, связанных с применением нанотехнологий и наноматериалов в производственных процессах путём разработки и внедрения комплекса мероприятий по обеспечению безопасных условий труда и предотвращения загрязнения окружающей среды.

3.4.* Результатом классифицирования продукции наноиндустрии по степени потенциальной опасности является отнесение её к продукции с низкой, средней или высокой степенью потенциальной опасности для её потребителя.
________________
* Нумерация соответствует оригиналу. - Примечание изготовителя базы данных.

3.5. Для продукции наноиндустрии с низкой степенью потенциальной опасности не требуется проведения специальных оценок в области её безопасности для потребителей, за исключением случаев, предусмотренных законодательством Российской Федерации для всей продукции данного типа.

3.6. Для продукции наноиндустрии со средней степенью потенциальной опасности рекомендуется проведение токсиколого-гигиенической оценки безопасности наночастиц и наноматериалов, содержащихся в продукции, в соответствии с установленными требованиями (МУ 1.2.2520-09 , МР 1.2.2634-10*, МР 1.2.2566-09 , МУ 1.2.2635-10). Для отдельных видов продукции, такой как упаковочные материалы, контактирующие с пищевой продукцией, дополнительно рекомендуется проведение санитарно-химических исследований миграции наночастиц в продукт (МУ 1.2.2637-10 и МУ 1.2.2638-10). На основании результатов проведенных оценок разрабатывается комплекс мер по снижению рисков, возникающих для потребителей продукции наноиндустрии, включая нанесение предупредительных надписей на продукцию или её упаковку, информирование потребителя о новых свойствах продукции, порядке её безопасного применения, использования и мерах предосторожности при её надлежащей утилизации.
_______________
* Вероятно, ошибка оригинала. Следует читать: МУ 1.2.2634-10 , здесь и далее по тексту. - Примечание изготовителя базы данных.

3.7. Для продукции наноиндустрии с высокой степенью потенциальной опасности рекомендуется проведение токсиколого-гигиенической, медико-биологической и, при необходимости, санитарно-химической оценки на адекватных биологических тест-системах, включая выявление возможного наличия отдалённых неблагоприятных эффектов (мутагенность, репродуктивная токсичность, нейротоксичность, эмбриотоксичность, тератогенность, канцерогенность, аллергенность, иммунотоксичность, органотоксичность), с использованием утверждённых для этих целей методов, предусмотренных МУ 1.2.2520-09 , МР 1.2.2634-10, МР 1.2.2566-09 , МУ 1.2.2635-10 , МУ 1.2.2637-10 и МУ 1.2.2638-10 и другими документами, утверждёнными в установленном порядке. По результатам проведённой оценки разрабатывается комплекс мер по снижению рисков, возникающих для населения, включая возможное изменение технологии и рецептуры продукции, а также меры, указанные в пункте 3.6 настоящих методических рекомендаций.

3.8. Результатом классифицирования нанотехнологии по степени потенциальной опасности является отнесение её к технологии с низкой, средней или высокой степенью потенциальной опасности для работников данных предприятий, населения и окружающей среды.

3.9. Для нанотехнологии с низкой степенью потенциальной опасности не требуется проведения специальных оценок в области безопасности в части эффектов, обусловленных воздействием веществ в форме наночастиц и наноматериалов. Нанотехнологические производства должны соответствовать требованиям законодательства Российской Федерации, установленным для производств аналогичной продукции, полученной по традиционным технологиям, не использующим наночастицы и наноматериалы.

3.10. Для нанотехнологии со средней степенью потенциальной опасности в дополнение к пункту 3.9. рекомендуется проведение общетоксикологической оценки безопасности наночастиц и наноматериалов, используемых в производственном процессе с использованием соответствующих методов, утверждённых в установленном порядке. По результатам проведённых тестов разрабатывается комплекс мер по снижению рисков, обусловленных воздействием наночастиц и наноматериалов, на производстве, включая установление критических контрольных точек производства, связанных с возможным поступлением наночастиц и нанообъектов в воздух производственных помещений, атмосферный воздух прилегающей к предприятию территории и промышленные сточные воды, использование индивидуальных и коллективных средств защиты, внедрение технологии очистки газообразных и жидких промышленных выбросов и стоков от наночастиц и нанообъектов, разработку правил надлежащей утилизации (захоронения) твёрдых отходов производства и другое.

3.11. Для нанотехнологии с высокой степенью потенциальной опасности в дополнение к указанному в пунктах 3.9. и 3.10 рекомендуется проведение развёрнутой токсиколого-гигиенической и медико-биологической оценки в соответствии с методическими документами, утвержденными в установленном порядке. По результатам проведённой оценки разрабатывается комплекс мер по снижению рисков для работников данных предприятий, населения и окружающей среды (проведение стадий производственного процесса, характеризуемых высоким риском, в изолированных камерах или аппаратах, применение систем вентиляции и очистки воздуха и другое), а также меры, указанные в пункте 3.10.

3.12. Классифицирование нанотехнологий и продукции наноиндустрии по степени потенциальной опасности проводится организациями независимо от их вида, организационно-правовых форм и форм собственности, в том числе научно-исследовательскими организациями, испытательными лабораториями и центрами, которые соответствуют требованиям, предъявляемым к организациям, проводящим санитарно-эпидемиологическую экспертизу продукции, полученной с использованием нанотехнологии и наноматериалов (МУ 1.2.2636-10).

3.13. Классифицирование продукции наноиндустрии и нанотехнологии по степени потенциальной опасности осуществляется на основании:

3.13.1. документации, предоставленной производителем или поставщиком продукции наноиндустрии;

3.13.2. литературных источников, содержащих сведения о физико-химических и биологических свойствах наноматериалов и признаваемых достоверными в соответствии с п.3.17 настоящих методических рекомендаций;

3.13.3. собственных данных организации (лаборатории), полученных с использованием методов оценки безопасности наноматериалов, утверждённых в установленном порядке (включая данные о размере, форме частиц, химическом составе, кристаллической структуре, общетоксическом и раздражающем действии, аллергенности, канцерогенности, мутагенности, репродуктивной токсичности, эмбриотоксичности, тератогенности, иммунотоксичности, воздействии продукции наноиндустрии на окружающую среду и другое).

3.14. В документации, предоставляемой производителем (поставщиком) продукции наноиндустрии для целей классификации этой продукции и технологии её производства по степени потенциальной опасности, должны содержаться сведения о:

3.14.2. назначении продукции наноиндустрии, области её использования, предполагаемых потребителях (пользователях) продукции;

3.14.3. способах применения (использования) продукции по её назначению;

3.14.4. устойчивости продукции по показателю миграции из неё наночастиц и наноматериалов, как в нормальных условиях эксплуатации, так и в экстремальных условиях (при воздействии высоких температур, пламени, горения, при механическом разрушении продукции, криодеструкции и воздействии других факторов, приводящих к разрушению продукции);

3.14.5. перечне стадий технологического процесса, в которых возможно использование или образование наночастиц и нанообъектов;

3.14.6 предусмотренных технологией производства мерах по обеспечению безопасности производства, охране окружающей среды и поддержанию надлежащего качества продукции в соответствии с установленными законодательством Российской Федерации требованиями, в том числе требованиями ГОСТ Р ИСО 9001-2008 и ГОСТ Р ИСО 14001-2007 ;

3.14.7. других данных (при их наличии) о продукции и технологии, приведенных в МУ 1.2.2636-10 .

3.15. Организация, проводящая классифицирование, также может запрашивать у производителя (поставщика) продукции наноиндустрии дополнительные сведения, необходимые для проведения классифицирования, в случае, если предоставленная информация не позволяет выработать обоснованное заключение о степени потенциальной опасности продукции и технологии.

3.16. Сведения представляются производителем (поставщиком) продукции наноиндустрии в организацию, проводящую классифицирования нанотехнологий и продукции наноиндустрии, на государственном (русском) языке. Материалы на иностранных языках должны сопровождаться переводом на русский язык, заверенным в установленном порядке.

3.17. Достоверными литературными источниками, которые могут быть использованы при проведении классифицирования нанотехнологий и продукции наноиндустрии по степени их потенциальной опасности, считаются:

3.17.1. статьи в рецензируемых научных журналах (отечественных и зарубежных), содержащие результаты научных экспериментальных работ, выполненных в соответствии с требованиями надлежащей лабораторной практики (GLP) с использованием современных, адекватных целям и задачам исследования методов, содержащие детализированное описание изучаемого наноматериала, применяемых экспериментальных моделей, лабораторных животных, реактивов и оборудования. В случае расхождения или несоответствия данных, содержащихся в разных источниках, приоритет отдаётся источнику с более поздней датой публикации;

3.17.2. публикации в трудах международных и национальных конгрессов, съездов, конференций и симпозиумов, специализирующихся на вопросах нанотоксикологии и безопасности наноматериалов, содержащие информацию о свойствах наноматериалов, оказывающих влияние на их потенциальную опасность для здоровья человека;

3.17.3. монографии, обзорно-аналитические статьи и мета-анализы научных данных, опубликованные в ведущих научных издательствах, рецензируемых научных журналах и на интернет-сайтах, специализирующихся на вопросах нанотоксикологии и безопасности наноматериалов. Перечень Интернет-ресурсов, содержащих соответствующие сведения, приведён в приложении 1 к МР 1.2.2522-09 ;

3.17.4. патенты и патентные приложения Российской Федерации и других стран, содержащие сведения о физико-химических свойствах и биологических эффектах нанотехнологической продукции и способах её получения;

3.17.5. нормативные и методические документы Российской Федерации и других стран, регламентирующие безопасное использование и методы контроля наноматериалов и продукции наноиндустрии.

3.18. В ходе классифицирования продукции наноиндустрии и нанотехнологии по степени их потенциальной опасности производится выявление наночастиц и наноматериалов, представляющих потенциальную опасность для здоровья человека, в соответствии с МР 1.2.2522-09 . При этом для каждого вида наночастиц и нанообъектов, содержащихся в продукции, определяется критерий потенциальной опасности наноматериала и коэффициент неполноты , позволяющий оценить достоверность приводимой оценки.

3.19. Для определения показателя , характеризующего степень близости (контакта) продукции наноиндустрии к потребителю, организацией, производящей классифицирование, формируется группа экспертов численностью не менее 10 человек. Определение проводится анкетно-опросным ("дельфийским") методом. В состав группы экспертов включаются имеющие высшее образование специалисты в области нанобезопасности, которые могут не являться штатными сотрудниками организации, проводящей классифицирование. Сотрудники организации, проводящей классифицирование, не участвуют в проведении экспертных опросов о величине критерия близости продукции наноиндустрии к человеку. Методика определения критерия близости продукции наноиндустрии к человеку на основании данных экспертного опроса приведена в приложении 3 к настоящим методическим рекомендациям.

3.20. Данные и первичная документация по проводимому классифицированию нанотехнологии и продукции наноиндустрии по степени их потенциальной опасности должны иметь идентификационный номер, позволяющий однозначно прослеживать наименование заявки, использованные источники, список сотрудников организации, принимавших участие в работе.

Первичные данные, полученные в ходе работы, должны быть зарегистрированы с обязательным указанием даты регистрации и подписаны сотрудниками, проводящими классифицирование. Не допускается уничтожение указанных первичных данных, их подмена или перезапись. Данные на электронных носителях обязательно дублируются в бумажном варианте.

Исправления первичных данных оформляются в виде дополнений, которые подписываются и датируются ответственными исполнителями с указанием причин ошибок и утверждаются руководителем организации.

После проведения исследования копии материалов, передаваемых заказчику работ, направляются в архив. Условия архива должны обеспечивать безопасное и конфиденциальное хранение всех материалов исследования в течение не менее трёх лет с момента сдачи материалов заказчику.

3.21. По окончании классифицирования нанотехнологии и продукции наноиндустрии по степени их потенциальной опасности оформляется заключение по его результатам, в котором должны быть представлены:

- название заявки на русском языке, его идентификационный номер;



- описание продукции, содержащее параметры, используемые при определении потенциальной опасности продукции для потребителя;

- описание нанотехнологии, содержащее параметры, используемые при определении потенциальной опасности технологии для работников предприятия, здоровья населения и среды обитания;

- результаты определения критерия потенциальной опасности наночастиц и наноматериалов, содержащихся в продукции или используемых в технологии;

- результаты расчёта критериев, характеризующих безопасность продукции и технологии и результаты сравнения полученных значений с классификационными таблицами (см. таблицы 4, 5, пп.4.1.8, 4.2.6 настоящих методических рекомендаций);

- выводы и рекомендации по результатам проведенной работы.

Заключение подписывается экспертом и утверждается руководителем организации, проводившей классифицирование, или его заместителем. Форма заключения приведена в приложении 1 к настоящим методическим рекомендациям.

3.22. Организация, проводящая классифицирование, информирует заказчика работы о её результатах письмом на бланке организации за подписью руководителя. В письме приводится:

- наименование заявки;

- сведения о производителе (поставщике) продукции;

- сведения об использованных при классифицировании документах производителя (поставщика) продукции и нормативно-методических документах;

- краткие сведения о нанотехнологических составляющих продукции и технологии;

- выводы;

- предложения и рекомендации.

Приложением к письму является заключение по результатам проведенной работы, оформленное в соответствии с приложением 1 к настоящим методическим рекомендациям.

3.23. Сотрудники, принимающие участие в классифицировании продукции наноиндустрии и нанотехнологии, обязаны соблюдать конфиденциальность в отношении любых данных в рамках принятых ею обязательств и в соответствии с законодательством Российской Федерации.

При использовании, в случае необходимости, при проведении исследования закрытых источников информации, порядок их использования и хранения регламентируется в соответствии с законодательством Российской Федерации.

3.24. Качество работы по классифицированию нанотехнологий и продукции наноиндустрии обеспечивается осуществляемой со стороны руководителя организации систематической проверкой документации и соответствия процедур сбора, обработки и представления данных требованиям законодательства Российской Федерации и настоящих методических рекомендаций.

3.25. Контроль за качеством проведения работ включает в себя оформление перечня заявок с указанием для каждого исследования эксперта (ответственного исполнителя), названия заявки, идентификационного номера, списка источников, применяемых при анализе заявки, даты начала работ и их состояния на текущий момент времени; составление отчета о проведенных проверках и рекомендации по устранению недостатков.

3.26. Для осуществления контроля качества руководитель организации назначает лиц, ответственных за мониторинг работ, из числа сотрудников, не участвующих в работах.

IV. ПРОВЕДЕНИЕ КЛАССИФИЦИРОВАНИЯ НАНОТЕХНОЛОГИЙ И ПРОДУКЦИИ НАНОИНДУСТРИИ ПО СТЕПЕНИ ИХ ПОТЕНЦИАЛЬНОЙ ОПАСНОСТИ

4.1. Алгоритм определения уровня потенциальной опасности продукции для потребителя

4.1.1. На основании экспертизы данных, представленных производителем продукции наноиндустрии в соответствии с пунктом 3.14 настоящих методических рекомендаций, определяется наличие наноматериалов (нанообъектов, наночастиц) в составе продукции. Учитывается наличие любых нанообъектов, независимо от их химической природы и формы. Соответственно этому, устанавливается значение ограничительного критерия :

=0, если наноматериалы в продукции отсутствуют;

=1, если наноматериалы в продукции присутствуют.

4.1.2. На основании экспертизы данных, представленных производителем (поставщиком) продукции наноиндустрии в соответствии с пунктом 3.14 настоящих методических рекомендаций, определяется, является ли наноматериал, представленный в составе продукции ансамблем индивидуальных (не связанных или слабо связанных между собой) нанообъектов.

=0, если наноматериал не является системой не связанных или слабо связанных между собой и со структурными элементами продукции нанообъектов;

=1, если наноматериал является системой не связанных или слабо связанных между собой и со структурными элементами продукции нанообъектов.

Примечание: степень связанности нанообъектов (включая наночастицы) в составе наноматериалов определяется на основании данных, представленных производителем (поставщиком) продукции согласно пункту 3.14 настоящих методических рекомендаций, сведений, содержащихся в источниках информации согласно пункту 3.17 настоящих методических рекомендаций и собственных данных организации, производящей классифицирование согласно пункту 3.15 настоящих методических рекомендаций в соответствии со следующим критерием:

4.1.3. На основании экспертизы данных, представленных производителем (поставщиком) продукции наноиндустрии в соответствии с пунктом 3.14 настоящих методических рекомендаций, определяется возможность экспонирования потребителя продукции содержащимися в ней нанообъектами, в том числе наночастицами (при их наличии) в нормальных (соответствующих назначению продукции) условиях эксплуатации. Соответственно этому устанавливается значение ограничительного критерия .

=0, если экспонирование потребителя нанообъектами, в том числе наночастицами, при нормальных условиях эксплуатации продукции невозможно;

=1, если экспонирование потребителя нанообъектами, в том числе наночастицами, при нормальных условиях эксплуатации продукции возможно;


а) характер нормальных условий эксплуатации в соответствии с назначением продукции;

б) структурные особенности продукции (материала, изделия), в частности, наличие корпусов и оболочек, изолирующих наноматериал от внешней среды.

4.1.4. На основании данных, представленных производителем (поставщиком) продукции согласно п.3.14 настоящих методических рекомендаций, определяется возможность экспонирования потребителя содержащимися в ней нанообъектами, в том числе наночастицами, или их производными в условиях воздействия на продукцию факторов внешней среды (термодеструкция, горение, плавление, криодеструкция, фотодеструкция, ветровая эрозия и так далее).

Соответственно этому устанавливается значение ограничительного критерия :

=0, если экспонирование потребителя нанообъектами (в том числе наночастицами) при воздействии на продукцию факторов внешней среды невозможно;

=1, если экспонирование потребителя нанообъектами (в том числе наночастицами) при воздействии на продукцию факторов внешней среды возможно.

Примечание: при установлении значения ограничительного критерия следует принимать во внимание:

а) устойчивость продукции к воздействию факторов внешней среды (воспламеняемость, горючесть, растворимость или диспергируемость в воде, подверженность криодеструкции, фотодеструкции, ветровой эрозии и так далее);

б) наличие в составе продукции наноматериалов, способных (или неспособных) приводить к образованию под воздействием факторов внешней среды золя (аэрозоля) наночастиц.

4.1.5. Установление критерия, характеризующего степень близости продукции к человеку ().

Критерий изменяется в пределах от 0,000 до 10,000 и показывает степень близости продукции в целом (а не только её наноразмерного компонента) к человеку. Например, продукция, представляющая собой фармацевтический препарат для парентерального введения в организм человека, характеризуется 10,000, а продукция, представляющая собой технические устройства, автономно функционирующие в безлюдной зоне (например, оборудование для буровых или глубоководных работ, космическая техника) характеризуется

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Альберт Вонг , старший инженер по обеспечению надежности, «Сахалин Энерджи»

Потенциально опасная ситуация - это происшествие, которое не привело к травмам, ущербу здоровья людей или повреждению имущества, но потенциально могло повлечь за собой все перечисленные последствия. В таких случаях травм, гибели имущества, а иногда и летального исхода удается избежать лишь по счастливой случайности - иными словами, ситуация была на грани фола. Часто говорят о том, что в основе таких ситуаций лежит человеческий фактор, но не стоит забывать и о том, что недоработки в технологии или неисправности оборудования могут спровоцировать или усугубить такое развитие событий, в связи с чем этому аспекту следует уделять особое внимание.

Примерами таких ситуаций изобилуют все сферы бизнеса и производства. Неисправность оборудования может и не привести к негативным последствиям в каком-то конкретном случае, но несет в себе при этом потенциальную угрозу серьезного ЧП. Можно сказать, что такое ЧП почти произошло. Впрочем, такие ситуации характерны не только для производственной сферы. Приведу пример из статьи «Как избежать катастрофы», опубликованной в журнале Harvard Business Review, в которой рассказывается о том, с чем пришлось столкнуться компании Apple после выпуска на рынок iPhone 4 в июне 2010 года. Практически сразу после начала продаж покупатели стали жаловаться на слабый сигнал и некачественную связь. Первоначально компания заявила, что во всем виноваты сами пользователи - они, дескать, неправильно держат телефон и перекрывают внешнюю антенну ладонью, и посоветовала им не держать телефон за нижний левый угол. Когда на одном из интернет-форумов у Стива Джобса спросили, как он собирается решать проблему, глава Apple категорично заявил, что проблемы попросту не существует. Многие пользователи сочли это надменным и оскорбительным, о чем не замедлили сообщить в социальных сетях и средствах массовой информации. Против Apple был подан ряд коллективных исков, при этом в одном из исковых заявлений компании инкриминировались «недобросовестные действия, выразившиеся в сокрытии фактов, невыполнении своих обязанностей, намеренном искажении информации и недоработке конструкции изделия». Мощнейший удар по репутации Apple был нанесен в середине июля, когда влиятельный журнал Consumer Reports отказался дать положительную рекомендацию четвертому «айфону» (такие рекомендации получили все предыдущие модели). В конце концов, компания пошла на попятную, признав наличие ошибок в программном коде и предложив пользователям новые версии прошивки и бесплатные чехлы для устранения проблем с антенной.

Причины этого кризиса существовали задолго до того, как он разразился. Тот факт, что потребители долгие годы мирились с проблемами - не показатель успешной стратегии, а всего лишь пример работы «на грани фола». Как только для этого появились необходимые предпосылки - разгромная статья в Consumer Reports, о которой стало известно миллионам, и распространение информации в социальных сетях и интернет-форумах - кризис не заставил себя ждать.

Из потенциально опасных ситуаций всегда можно извлечь соответствующие уроки. В «Сахалин Энерджи» мы проводим учет и анализ потенциально опасных ситуаций и происшествий в рамках процесса повышения надежности и целостности производственной деятельности. Понятно, что выявление первопричин происшествий, приведших к остановке производства, проводится особенно тщательно с применением специальных аналитических инструментов, но при этом не стоит забывать и о других сбоях и потенциально опасных ситуациях, пока они не переросли в серьезные ЧП.

Выявление первопричин - это лишь полдела. Не менее ответственный подход следует применять и при разработке мер по их устранению, при этом ожидаемые результаты должны быть четко сформулированы и измеримы; следует поставить конкретные сроки и прописать, кто именно должен обеспечить достижение результатов. И, наконец, самый главный момент: руководители обязаны четко осознавать, что они несут ответственность за возникновение потенциально опасных ситуаций.

Стоит перечислить основные шаги, которые необходимо предпринять в случае их возникновения: первое - это определить, имеются ли отклонения от нормы; далее - проанализировать такие отклонения для выявления первопричин; затем разработать меры по устранению первопричин потенциально опасной ситуации и назначить ответственных за реализацию таких мер. Также следует выявлять потенциальные опасности, маскирующиеся под достижения. Успешная работа в данном направлении - залог того, что потенциально опасная ситуация не перерастет в серьезное ЧП.

В заключение приведу еще одну цитату из статьи «Как избежать катастрофы»: «Большинству кризисов в деловой сфере (включая ошибки проектировщиков, постоянные отказы оборудования, а также репутационные кризисы) предшествует работа «на грани фола» - то есть ситуации, которые могли бы перерасти в ЧП, если бы не удачное стечение обстоятельств. Руководители зачастую не слышат этих тревожных сигналов из-за того, что неадекватно воспринимают происходящее, считая, что такая ситуация - показатель того, что все идет по плану, либо вовсе ее не замечая». Запомните эти слова и старайтесь избегать подобных ошибок в своей работе.

Анализ чрезвычайных ситуаций техногенного характера показывает, что значительная доля их, особенно таких, которые приводят к поражению людей и большим материальным потерям, возника­ет в результате аварий и катастроф на промышленных объектах.

Для облегчения работы по определению и осуществлению мер по предупреждению возникно­вения чрезвычайных ситуаций, уменьшению тяжести их последствий и создания условий для их лик­видации важно систематизировать объекты по признаку, наиболее влияющему на возникновение ЧС на этих объектах. Этим признаком является опасность, которая в случае производственной аварии на данном объекте: выброса в окружающую среду вредных веществ (РВ, СДЯВ, БОВ), взрыва, пожара, катастрофического затопления.

Объект экономики или иного назначения, при аварии на котором может произойти гибель лю­лек, сельскохозяйственных животных и растений, возникнуть угроза здоровью людей либо будет нанесен ущерб народному хозяйству и окружающей природной среде называется потенциально опасным объектом.

По своей потенциальной опасности объекты экономики подразделяются на четыре группы:

первая - химически опасные объекты (ХОО);

вторая - радиационно-опасные объекты (РОО);

третья - пожаро- и взрывоопасные объекты (ПВО);

четвертая - гидродинамически опасные объекты (ГДОО).

В настоящее время только крупных предприятий, представляющих опасность регионального или даже глобального характера, на территории России насчитывается более 2 тысяч. В основном это химически опасные объекты.

Химически опасные объекты (ХОО) - это объект, при аварии на котором или разрушении кото­рого может произойти поражение людей, с/х животных и растений, либо химическое заражение ок­ружающей природной среды опасными химическими веществами в концентрациях или количествах, превышающий естественный уровень их содержания в среде.

Главный поражающий фактор при аварии на ХОО - химическое заражение приземного слоя ат­мосферы; вместе с тем возможно заражение водных источников, почвы, растительности. Эти аварии нередко сопровождаются пожарами и взрывами.

Если в городе, районе, области имеются ХОО, то данная административно-территориальная единица (ATE) также может быть отнесена к химически опасной. Критерии характеризующие сте­пень такой опасности, определены в следующих нормативных документах.

Для объектов - это количество, для ATE - доля (%) населения, которое может оказаться в зоне возможного заражения.

По масштабу распространения поражающих факторов аварии на ХОО подразделяют на:

* локальные (частные) - если она не выходит за границу его санитарно-защитной зоны;

* местные - охватывает также отдельные участки близлежащей жилой застройки;

* региональные - когда в нее попадают обширные территории города, района, области с высо­кой плотностью населения;

* глобальные - полное разрушение крупного химического объекта.

Типовые ХОО, использующие наиболее распространенные СДЯВ - хлор и аммиак:

* станции водоочистки;

* холодильные установки;

* предприятия химической, нефтехимической оборонной промышленности;

* железнодорожные цистерны со СДЯВ, продуктопроводы, газопроводы.

Радиационно-опасные объекты (РОО) - любой объект, в т.ч. ядерный реактор, завод, исполь­зующий ядерное топливо или перерабатывающий ядерный материал, а также место хранения ядер­ного материала и транспортное средство, перевозящее ядерный материал или источник ионизирующего излучения, при аварии на которых или разрушении которых может произойти облу­чение или радиоактивное загрязнение людей, с/х животных и растений, а также окружающей при­родной среды.

К типовым РОО относятся:

* атомные станции;

*предприятия по переработке отработанного ядерного топлива и захоронению р/а отходов;

* предприятия по изготовлению ядерного топлива;

* научно-исследовательские и проектные организации, имеющие ядерные установки и стенды;

* транспортные ядерные энергетические установки;

* военные объекты.

Потенциальная опасность РОО определяется количеством р/а веществ, которое может посту­пить в окружающую среду в результате аварии на РОО. А это в свою очередь зависит от мощности ядерной установки. Наибольшую опасность представляют АС и НИИ с ядерными установками и стендами. Аварии на них классифицируются как по возможным масштабам последствий: локальная, местная, общая, региональная, глобальная, так и по нормам эксплуатации (проектные, проектные с наибольшими последствиями, запроектные).

1 Пожаро-взрывоопасный объект (П BOO ) - это объект, на котором производятся, хранятся, ис­пользуются или транспортируются продукты и вещества, приобретающие при определенных услови­ях (авариях, инициировании) способность к возгоранию (взрыву).

По своей потенциальной опасности эти объекты подразделяются на 5 категорий:

А - объекты нефтяной, газовой, нефтеперерабатывающей, химической, нефтехимической промышленности, склады нефтепродуктов;

Б - производства угольной пыли, древесной муки, сахарной пудры, синт. каучука;

В - лесопильные, деревообрабатывающие, столярные и т.п. цеха, склады масла;

Г - металлургические производства, термические цеха, котельные;

Д - объекты переработки и хранения несгораемых материалов в холодном виде.

Особенно опасные объекты категорий А, Б и В.

Пожары и взрывы приводят к разрушению зданий и сооружений вследствие сгорания или де­формации их элементов, оборудования, возникновении воздушной ударной волны (при взрыве), об­разованию облаков ТВС и ГВС, токсических веществ, взрыву трубопроводов и сосудов с перегретой жидкостью.

Гидродинамический опасный объект (ГДОО) - это гидротехническое сооружение или естест­венное образование, создающее разницу уровней воды до и после этого объекта.

К гидротехническиопасным объектам относятся: естественные плотины и гидротехнические сооружения напорного фронта. При их прорыве появляется волна прорыва, обладающая большой разрушительной силой и образуются обширные зоны затопления.

Типовые ГДОО:

Плотины; - напорные бассейны ГЭС и ТЭС;

Подпорные стены; - водоприемники. Критерии потенциальной опасности ГДОО:

1. Сооружения ГЭС и ТЭС (по электрической мощности):

* 1 класс - мощность 1,5 млн. квт. и более;

* 2-4 класс -/- до 1,5 млн. квт.

2. Сооружения мелиоративных систем при площади орошения или осушения (тысяч Га): 1 класс - > 300; 2 класс -100-300; 3 класс - 50-100; 4 класс - < 50.

Идентификация, т.е. установление степени опасности объектов включает:

*первичное (начальное) определение степени опасности объекта экономики, основанное на анализе возможных видов ущерба, наносимого человеку и окружающей среде;

*выделение приоритетных для последующего анализа объектов.

При проведении идентификации учитывается две категории опасностей

*опасности, возникающие в процессе нормальной эксплуатации объекта;

*опасности аварийной природы, в т.ч. нештатные ситуации, при которых имеет место значи­тельное повышение уровня риска.

Процедура начального определения степени опасности объекта реализуется с помощью состав­ляемой таблицы, характеризующей возможный ущерб от функционирования объекта, а также ин­формации о количестве вредных веществ и материалов, которые производятся, перерабатываются, хранятся на объекте или транспортируются.

Качественная оценка возможных видов ущерба от функционирования опасных объектов экономики

Таблица заполняется с привлечением экспертов. В графе соответств. Ущербов (видов его) запи­сываются утверждения (ответы): "Да", "Нет", "Возможно" в зависимости от оценки экспертов. Виды возможного ущерба,. Приведенные в таблице, могут быть изменены и дополнены. Опасность объекта оценивается по трем категориям:

1) количеству утверждений "Да" и "Возможно" относящимся к тем или иным видам возможно­го техногенного воздействия (индексам опасности);

2) количеству производимых, перерабатываемых, транспортируемых или хранимых вредных материалов и веществ;

3) безопасному радиусу, характеризующему зону безопасности.

В качестве критериальных (пороговых) значений количеств вредных веществ, при повышении которых объект считается потенциально-опасным, могут быть приняты данные из Директивы Евро­пейского экономического сообщества (ЕЭС) по основным опасным веществам. Эти данные, а также размеры безопасных зон для объектов с опасными веществами даны в Зтоме "Руководства по анали­зу и управлению риском в промышленном регионе", Москва, ГКЧС РФ год.

Если количество вредных веществ равно или больше указанного, то применяется утверждение

Если количество веществ менее табличного, проводится дополнительный анализ опасности объекта по рассматриваемому признаку с целью у становления возможности принятия утверждения "возможно".

При этом используется упрощенная оценка опасности объектов, основанная на данных по поро­говым количествам трех классов веществ: горючих, взрывчатых и высокотоксичных.

Считается, что опасность объекта следует оценить меткой "возможно" если количество веществ на OIIX превышает:

a) горючих -10 кг.

b) взрывчатых - 1 кг.

c) для высокотоксичных веществ (ОВ и СДЯВ) дополнительная оценка порогового количества может быть произведена с помощью такой токсической характеристики вещества, как кон­центрация, при которой наблюдается поражения у 50 % реципиентов (ЛК 50).

Данные по пороговым количествам данного класса веществ, при которых возможно формиро­вание облака зараженного воздуха ЛК 50, приведены в Руководстве. При наличии на объекте высокотоксичных веществ в количествах, равных или превышающих эти данные, для объекта принимается метка "возможно".

При оценке опасности транспортных объектов меткой "Да" обозначаются все транспортные средства, перевозящие или передающие материалы специфических категорий: канцерогенные, мутагенные, тератогенные.

Оценка опасности объектов по критерию "Зона безопасности" производится с учетом их местоположения, характера окружающей среды, близости населенных пунктов и т.д.

По всем рассмотренным выше признакам, ОНХ получают соответствующие метки (да, возможно

нет). При наличии меток "да" или "возможно" по одному из признаков объект считается, в принципе, опасным и его необходимо принимать во внимание при проведении анализа. При большом количестве опасных объектов возникает необходимость выделения наиболее опасных из них. Для него выполняются следующие расчеты и оценки:

* вычисляется и анализируется дополнительный критерий (потенциальный индекс опасности смер­тельных поражений людей в ближайшем от объекта населенном пункте при аварийных ситуациях - ПИО);

* оценивается максимальное количество людей, подвергающихся поражающему воздействию, мас­штабы возможных разрушений и ухудшение качества окружающей среды при наиболее тяжелом варианте аварии;

* для условий нормальной регламентной работы объекта производится сравнительная оценка кон­центраций вредных веществ, выбрасываемых в атмосферу и сбрасываемых в другие среды, с пре­дельно допустимыми уровнями загрязнений.

Для вычисления потенциального индекса опасности (ПИО) рекомендуются формулы:

а) для объектов с горючими материалами

ПИO = 10 * Q r/d

Q r - количество горючего материала (вещества) на объекте,кг.

d - расстояние до ближайшего населенного пункта, гл.

б) для объектов со взрывчатыми веществами

ПИО = 100 * Q ВВ / d

q BB - количество ВВ на ОНХ, кг,

d - в прежнем состоянии, м,

в) для объектов с высокотоксичными веществами

ПИО = 1000 * Q T /Q T П d

Q т - количество высокотоксичного вещества объекте, кг.

Q тп - пороговое количество этого вещества, которое формирует облако зараженного воздуха с концентрациями ЛК 50, кг.

d - в прежнем обозначении, м.

В число самых опасных ОНХ включаются объекты, для которых ПИО > 1.

Как видим, анализ потенциальной опасности объектов при авариях, катастрофах и стихийных бедствиях (т.е. в чрезвычайных ситуациях) предполагает проведение процедуры оценки риска, кото­рая включает в себя определение численных значений вероятности реализации этих событий, по­строение сценариев развития ЧС и оценку на этой основе возможных последствий.

Процедура оценки риска затруднена необходимостью проведения большого количества слож­ных расчетов и отсутствием в настоящее время достоверных исходных данных.

В этой связи возникает потребность иметь простые расчетные соотношения, позволяющие опе­ративно проводить оценку потенциальной опасности объектов экономики при авариях, катастрофах, стихийных бедствиях.

Такая методика определения потенциальной опасности объектов была разработана сотрудни­ками штаба ГО СССР, научно-техническим комитетом ГО СССР но результатам научно-исследовательских работ и предназначена для органов гражданской обороны.

Методика предназначена для оперативной оценки потенциальной опасности объектов экономи­ки при авариях, катастрофах и стихийных бедствиях, на основе учета образующихся в этих случаях полей поражающих факторов и последствий их воздействия на людей,

Опасность объекта характеризуется максимальной потенциальной угрозой, создаваемой мас­сой находящихся на объекте опасных веществ.

Под опасным веществом понимается такое вещество, определенное количество которого способно инициировать явления или процессы, поражающие людей, наносящие ущерб основным произ­водственным фондам или окружающей среде.

В качестве опасных веществ в Методике рассматриваются:

a) взрывчатые вещества (ВВ);

b) сильнодействующие ядовитые вещества (СДЯВ);

c) топливовоздушные смеси (вещества, способные образовывать в ЧС взрывоопасные облака -ожиженные нефтяные или природные газы).

В качестве меры опасности объекта с пожаро-взрывоопасными производствами принимается количество несчастных случаев со смертельным исходом в результате инцидента, вызванного чрез­вычайным событием.

Пороговый уровень смертности - 10 погибших при инциденте - принимается в качестве крите­рия опасности ОПХ. (Данный критерий опасности является общепринятым за рубежом и введен В. Маршалом " основные опасности химического производства". М. Мир, 1989 г.)

Под потенциально опасным объектом понимается такой объект, ЧС на котором приведет к ги­бели не менее 10 человек (из числа персонала объекта или населения) или границы зон действия по­ражающих факторов при ЧС выходя] за территорию объекта или территорию его санитарно-защитной зоны.

В качестве основных поражающих факторов на объектах с пожаро-взрывоопасными производ­ствами рассматриваются:

*воздушная ударная волна (ВУВ) взрывов ВВ;

*воздушная ударная волна взрывов ТВС;

*токсическое действие СДЯВ, находящихся на объекте или образующихся в ходе неконтроли­руемых химических реакций в процессе инцидента.

В качестве нормированных показателей поражающей опасности объекта приняты:

*удельная смертность (число погибших в результате инцидента, отнесенное к количеству опас­ного вещества, т/чел.);

*радиус поражения (радиус круга с центром в точке реализации инцидента).

Для ВУВ взрывов ВВ, облаков ТВС в качестве границы радиуса смертельного поражения при­нимается избыточное давление, приводящее к гибели человека.

Для токсического действия СДЯВ в качестве границы радиуса смертельного поражения приня­та глубина зоны летательной концентрации СДЯВ.

Расчет радиуса поражения при инциденте проводится из предположения, что все направления реализации опасности равновероятны. При одновременной реализации на ОНХ нескольких инциден­тов, ожидаемое количество погибших определяется:

*в случае наложения зон действия поражающих факторов - по фактору наиболее опасному для человека;

*в случае раздельного положения зон действия поражающих факторов - как сумма погибших от каждого фактора.

Основные расчетные соотношения:

1. Взрыв конденсированных ВВ

a) число погибших при взрыве n bb = Р * q bb 0,666

b) радиус смертельного поражения R BB = 18,4 * q bb 0,333

n bb - среднее число погибших, чел.

r bb - радиус смертельного поражения при взрыве ВВ, м.

Р - плотность населения, тыс. чел./км 2

q bb - масса заряда ВВ, т.

Определение nbb и rbb можно осуществить также с помощью таблиц.

2. Взрыв облака топливовоздушной смеси

a) число погибших n tbc = 3PQ tbc 0,666

b) радиус смертельного поражения r tbc = 30 q tbc 0,333

q tbc - масса прореагировавшей части облака ТВС, г. Для оценочных расчетов принимают:

Для облака образовавшегося при полном разрушении резервуара хранения (мгновенное разруше­ние qtbc = q (полная масса).

Для облака, образовавшегося в результате испарения разлития (при наличии в резервуаре пробоин, трещин и т.д.)

q tbc = 50 % Q разлития

n tbc и r tbc можно определять также и по таблицам Методики. 3. Выброс сильнодействующих ядовитых веществ.

Число погибших при выбросе СДЯВ Nсдяв = М* Qсдяв, где:

М - средняя удельная смертность при воздействии данного СДЯВ,ч/т Qсдяв - масса выброса СДЯВ, т.

Численные значения М для промышленных опасных веществ берут в таблице Методики результаты анализа последствий ряда аварий и по Маршалу "Основные опасности химического производства", М. Мир, 1989 г.).

В основу определения глубины определения опасной зоны при мгновенном или продолжительном выбросах СДЯВ положены результаты работ применительно к хлору.

При определении глубин зон для других СДЯВ используются коэффициенты перерасчета Кл и Кп:

L Л = К Л * L Л ХЛ

L П = К П * L П ХЛ

значения Кл и Кп для промышленных опасных веществ даны в таблицах (Приложение к Мето­дике).

Приведенная ниже классификация отражена в отчётах Российской академии естественных наук и Московского института пожарной безопасности

Классификация потенциально опасных объектов осуществлена по иерархическому методу последовательным делением объектов на классификационные группировки.
В качестве признака деления объектов на классы использован основной вид опасности объекта (радиационная, химическая и т.д.). Объекты разделены на следующие классы: 1. Радиационно опасные объекты
2. Химически опасные объекты
3. Взрыво- и пожароопасные объекты
4. Опасные транспортные средства
5. Опасные технические сооружения.

Деление на классы является чисто условным, поскольку чрезвычайные ситуации на многих объектах носят комплексный характер и порождают различные поражающие факторы. Поэтому некоторые из объектов можно отнести к одному из двух разных классов. При классификации объектов с несколькими поражающими факторами следует учитывать прежде всего доминирующий фактор.

1 00 Радиационно опасные объекты
101 АЭС с водо-водяными реакторами с водой под давлением
102 АЭС с водо-водяными реакторами с водой кипящей
104 АЭС с графитовыми реакторами с водой кипящей
105 АЭС с реакторами на быстрых нейтронах
106 АЭС с реакторами прочими
107 Атомные станции теплоснабжения и теплоэлектроцентрали с водо-водяными реакторами с водой кипящей
108 Исследовательские ядерные реакторы
111 Заводы по производству ядерного топлива
112 Заводы по переработке и обогащению ядерного топлива
113 Заводы по обработке ядерных отходов
114 Заводы ядерной энергетики прочие
121 Урановые рудники
122 Склады радиоактивной руды
123 Хранилища радиоактивных отходов
124 Хранилища ядерных боеприпасов
131 Морские суда и подводные лодки с ядерными двигательными установками
132 Транспортные средства с радиоактивными грузами
137 Полигоны для испытаний ядерных боеприпасов
138 Радиоционно опасная военная техника
141 Радиационно опасные объекты прочие
К подклассу 101 относятся Балаковская, Нововоронежская, Калининская, Кольская, Костромская, Ростовская АЭС; к подклассу 104 - Курская, Ленинградская, Смоленская АЭС, к подклассу 105 - Белоярская, Южно-уральская АЭС, к подклассу 107 - Воронежская, Горьковская, Томская, Хабаровская атомная станция теплоснабжения и т.д.

200 Химически опасные объекты
201 Заводы нефтеперерабатывающие
202 Заводы нефтеоргсинтеза
203 Заводы нефтехимические
204 Заводы сланцеперерабатывающие
205 Заводы по производству искусственных волокон и нитей
206 Заводы по производству каучука синтетического
207 Заводы по производству пластмасс
211 Заводы по производству материалов лакокрасочных
212 Заводы по производству изделий резинотехнических
213 Заводы по производству стекловолокон и стеклопластиков
214 Заводы по производству оргстекла
215 Заводы по производству электротехнических материалов
216 Заводы по производству кино-, фото- и магнитных материалов
221 Заводы по производству химических реактивов
222 Заводы по производству химикатов
223 Заводы по производству красителей синтетических
224 Заводы по производству материалов пленочных
225 Заводы по производству полимеров
231 Заводы по производству минеральных удобрений
232 Заводы по производству химических средств защиты растений
233 Заводы по производству соды
241 Заводы по производству медицинских препаратов
242 Заводы по производству товаров бытовой химии
249 Заводы химические прочие
251 Хранилища химически опасных веществ
252 Железнодорожные транспортные средства с химически опасными
веществами
253 Автомобильные транспортные средства с химически
опасными веществами
254 Морские суда с химически опасными веществами
255 Речные суда с химически опасными веществами
259 Химически опасные объекты прочие
В класс 3 включены взрывоопасные объекты (имеющие взрывчатые вещества), пожароопасные и пожаровзрывоопасные объекты.
Классификация многих пожаро- и пожаровзрывоопасных зданий определяется принятым на практике категорированием помещений.
Кроме промышленных объектов, имеющих здания, к пожаровзрывоопасным объектам следует отнести стационарные и подвижные цистерны и суда для перевозки легковоспламеняющихся жидкостей (ЛВЖ) и сжиженных горючих газов (ГГ), морские нефтехранилища, танкеры с ЛВЖ, нефтепроводы, газопроводы, морские нефтедобывающие платформы, нефтяные и газовые скважины, угольные шахты и другие объекты.
К пожароопасным относят объекты, имеющие в своем составе горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), которые могут гореть самостоятельно после удаления источника зажигания. Это помещения, здания, сооружения, транспортные средства, леса, торфяники, посевы созревших зерновых культур и многое другое.

300 Взрыво- и пожароопасные объекты
301 Предприятия нефтяной промышленности
302 Предприятия газовой промышленности
303 Предприятия угольной промышленности
304 Предприятия сланцевой промышленности
305 Газовые и нефтяные скважины
306 Угольные шахты
307 Морские нефтедобывающие платформы
309 Предприятия добывающей промышленности прочие
311 Предприятия нефтеперерабатывающей промышленности
312 Предприятия нефтехимической промышленности
313 Предприятия газоперерабатывающей промышленности
314 Предприятия химической промышленности
315 Предприятия медицинской промышленности
316 Предприятия металлургической промышленности
317 Предприятия машиностроения
321 Объекты ядерной энергетики
322 Теплоэлектростанции и теплоэлектроцентрали
323 Энергетические объекты коммунального хозяйства
329 Энергетические объекты прочие
331 Предприятия целлюлозно-бумажной промышленности
332 Предприятия деревообрабатывающей промышленности
333 Цеха изготовления древесной пыли
334 Цеха изготовления угольной пыли
335 Цеха изготовления сахарной пудры
336 Размолочные отделения мельниц
337 Элеваторы
338 Предприятия по производству боеприпасов, взрывчатых веществ, порохов и твёрдотопливных ракетных двигателей
339 Предприятия промышленности прочие
341 Склады нефти и жидких нефтепродуктов
342 Склады горюче-смазочных материалов
343 Наземные, подземные и полуподземные резервуары с ЛВЖ и ГГ
344 Морские эстакадные, полупогруженные и подводные нефтехранилища
345 Железнодорожные эстакады для слива и налива ЛВЖ
346 Открытые нефтеловушки и пруды-отстойники с плавающей нефтяной пленкой
347 Автозаправочные станции
348 Газозаправочные станции
351 Склады химических реактивов
352 Склады химических средств защиты растений
353 Склады кинопленки
357 Ракетные комплексы
358 Склады боеприпасов, взрывчатых веществ и твёрдотопливных ракетных двигателей
359 Склады взрыво- и пожаровзрывоопасной продукции прочие
361 Железнодорожные цистерны с ЛВЖ и ГГ
362 Автомобильные цистерны с ЛВЖ и ГГ
363 Морские суда с нефтью и нефтепродуктами
364 Речные суда с нефтью и нефтепродуктами
365 Морские суда со сжиженными газами
366 Транспортные средства с боеприпасами, ВВ и ракетной техникой
368 Боевые корабли и подводные лодки
369 Транспортные средства с ЛВЖ и ГГ прочие
371 Нефтепроводы
372 Газопроводы
373 Базы сжиженного газа
374 Продуктопроводы прочие
379 Взрыво- и пожаровзрывоопасные объекты прочие
381 Пожароопасные объекты с большим количеством людей
(крупные производственные, административные, общественные и жилые здания, зрительные залы и т.д.)
382 Пожароопасные объекты с большими материальными ценностями (музеи, библиотеки, выставочные залы и т.д.)
383 Пожароопасные объекты с большим количеством домашних животных и птицы
384 Склады пожароопасной продукции
385 Большие лесные массивы
386 Большие торфяники
387 Посевы созревших зерновых на больших площадях
389 Пожароопасные объекты прочие
В классы 1 - 3 включены транспортные средства, перевозящие радиационно-, химически-, взрыво- и пожароопасные грузы. Поэтому в класс 4 включены в основном те транспортные средства, которые перевозят большое количество пассажиров или дорогостоящие неопасные грузы, а также опасные транспортные сооружения.

400 Опасные транспортные средства
401 Суда морские пассажирские
402 Суда морские грузопассажирские
403 Паромы морские железнодорожные и автомобильно-транспортные
404 Суда морские контейнеровозы, трайлеровозы,
лихтеровозы
405 Суда речные пассажирские и грузопассажирские
409 Суда морские и речные прочие
411 Самолеты пассажирские магистральные
412 Самолеты транспортно-грузовые
419 Авиационная техника прочая
421 Поезда железнодорожные пассажирские
422 Поезда железнодорожные товарные
423 Поезда метрополитена
424 Мосты железнодорожные
425 Тоннели железнодорожные
426 Тоннели метрополитена
427 Эскалаторы метрополитена
429 Средства железнодорожные прочие
431 Автобусы
432 Троллейбусы
433 Мосты автодорожные
441 Опасные транспортные средства прочие

500 Опасные технические сооружения
501 Плотины гидроэлектростанций
502 Плотины искусственных водохранилищ
503 Водозащитные дамбы
504 Селезащитные сооружения
505 Лавинозащитные сооружения
506 Системы централизованного водоснабжения
507 Системы централизованного газоснабжения
508 Системы централизованного теплоснабжения
509 Системы централизованного электроснабжения
511 Системы канализации
512 Стадионы, ледовые дворцы, плавательные комплексы и другие крупные спортивные сооружения
513 Зрительные и танцевальные залы, цирки и другие зрелищные и увеселительные сооружения с массовым пребыванием людей
514 Крупные многоэтажные торговые центры
519 Опасные технические сооружения прочие



Просмотров