Как магнит действует на организм человека. Что такое магнит

Каждый держал в руках магнит и забавлялся им в детстве. Магниты могут быть самыми разными по форме, размерам, но все магниты имеют общее свойство - они притягивают железо. Похоже, что они и сами сделаны из железа, во всяком случае, из какого-то металла точно. Есть, однако, и «черные магниты» или «камни», они тоже сильно притягивают железки, и особенно друг друга.

Но на металл они не похожи, легко бьются, как стеклянные. В хозяйстве магнитам находится множество полезных дел, например, удобно с их помощью «пришпиливать» бумажные листы к железным поверхностям. Магнитом удобно собирать потерянные иголки, так что, как мы видим, это совсем небесполезная вещь.

Наука 2.0 - Большой скачок - Магниты

Магнит в прошлом

Ещё древние китайцы более 2000 лет назад знали о магнитах, по крайней мере то, что это явление можно использовать для выбора направления при путешествиях. То есть придумали компас. Философы в древней Греции, люди любопытные, собирая различные удивительные факты, столкнулись с магнитами в окрестностях города Магнесса в Малой Азии. Там и обнаружили странные камни, которые могли притягивать железо. По тем временам, это было не менее удивительным, чем могли бы стать в наше время инопланетяне.

Еще более удивительным казалось, что магниты притягивают далеко не все металлы, а только железо, и само железо способно становиться магнитом, хотя и не таким сильным. Можно сказать, что магнит притягивал не только железо, но и любопытство ученых, и сильно двигал вперед такую науку, как физика. Фалес из Милета писал о «душе магнита», а римлянин Тит Лукреций Кар – о «бушующем движении железных опилок и колец», в своем сочинении «О природе вещей». Уже он мог заметить наличие двух полюсов у магнита, которые потом, когда компасом начали пользоваться моряки, получили названия в честь сторон света.

Что такое магнит. Простыми словами. Магнитное поле

За магнит взялись всерьез

Природу магнитов долгое время не могли объяснить. С помощью магнитов открывали новые континенты (моряки до сих пор относятся к компасу с огромным уважением), но о самой природе магнетизма по прежнему никто ничего не знал. Работы велись только по усовершенствованию компаса, чем занимался еще географ и мореплаватель Христофор Колумб.

В 1820 году датский ученый Ганс Христиан Эрстед сделал важнейшее открытие. Он установил действие провода с электрическим током на магнитную стрелку, и как ученый, выяснил опытами как это происходит в разных условиях. В том же году французский физик Анри Ампер выступил с гипотезой об элементарных круговых токах, протекающих в молекулах магнитного вещества. В 1831-ом году англичанин Майкл Фарадей с помощью катушки из изолированного провода и магнита проводит опыты, показывающие, что механическую работу можно превратить в электрический ток. Он же устанавливает закон электромагнитной индукции и вводит в обращение понятие «магнитное поле».

Закон Фарадея устанавливает правило: для замкнутого контура электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур. На этом принципе работают все электрические машины - генераторы, электродвигатели, трансформаторы.

В 1873 году шотландский ученый Джеймс К. Максвелл сводит магнитные и электрические явления в одну теорию, классическую электродинамику.

Вещества, способные намагничиваться, получили название ферромагнетиков. Это название связывает магниты с железом, но кроме него, способность к намагничиванию обнаруживается еще у никеля, кобальта, и некоторых других металлов. Поскольку магнитное поле уже перешло в область практического использования, то и магнитные материалы стали предметом большого внимания.

Начались эксперименты со сплавами из магнитных металлов и различными добавками в них. Стоили получаемые материалы очень дорого, и если бы Вернеру Сименсу не пришла в голову идея заменить магнит сталью, намагничиваемой сравнительно небольшим током, то мир так бы и не увидел электрического трамвая и компании Siemens. Сименс занимался еще телеграфными аппаратами, но тут у него было много конкурентов, а электрический трамвай дал фирме много денег, и в конечном счете, потянул за собой все остальное.

Электромагнитная индукция

Основные величины, связанные с магнитами в технике

Мы будем интересоваться в основном магнитами, то есть ферромагнетиками, и оставим немного в стороне остальную, очень обширную область магнитных (лучше сказать, электромагнитных, в память о Максвелле) явлений. Единицами измерений у нас будут те, которые приняты в СИ (килограмм, метр, секунда, ампер) и их производные:

l Напряженность поля , H, А/м (ампер на метр).

Эта величина характеризует напряженность поля между параллельными проводниками, расстояние между которыми 1 м, и протекающий по ним ток 1 А. Напряженность поля является векторной величиной.

l Магнитная индукция , B, Тесла, плотность магнитного потока (Вебер/м.кв.)

Эта отношение тока через проводник к длине окружности, на том радиусе, на котором нас интересует величина индукции. Окружность лежит в плоскости, которую провод пересекает перпендикулярно. Сюда входит еще множитель, называемый магнитной проницаемостью. Это векторная величина. Если мысленно смотреть в торец провода и считать, что ток течет в направлении от нас, то магнитные силовые окружности «вращаются» по часовой стрелке, а вектор индукции приложен к касательной и совпадает с ними по направлению.

l Магнитная проницаемость , μ (относительная величина)

Если принять магнитную проницаемость вакуума за 1, то для остальных материалов мы получим соответствующие величины. Так, например, для воздуха мы получим величину, практически такую же как и для вакуума. Для железа мы получим существенно большие величины, так что можно образно (и весьма точно) говорить, что железо «втягивает» в себя силовые магнитные линии. Если напряженность поля в катушке без сердечника будет равняться H, то с сердечником мы получаем μH.

l Коэрцитивная сила , А/м.

Коэрцитивная сила показывает, насколько магнитный материал сопротивляется размагничиванию и перемагничиванию. Если ток в катушке совсем убрать, то в сердечнике будет остаточная индукция. Чтобы сделать ее равной нулю, нужно создать поле некоторой напряженности, но обратной, то есть пустить ток в обратном направлении. Эта напряженность и называется коэрцитивной силой.

Поскольку магниты на практике всегда используются в какой-то связи с электричеством, то не стоит удивляться тому, что для описания их свойств используется такая электрическая величина, как ампер.

Из сказанного следует возможность, например, гвоздю, на который подействовали магнитом, самому стать магнитом, хотя и более слабым. На практике выходит, что даже дети, забавляющиеся магнитами, об этом знают.

К магнитам в технике предъявляют разные требования, в зависимости от того, куда идут эти материалы. Ферромагнитные материалы делятся на «мягкие» и «жесткие». Первые идут на изготовление сердечников для приборов, где магнитный поток постоянный или переменный. Хорошего самостоятельного магнита из мягких материалов не сделаешь. Они слишком легко размагничиваются и здесь это как раз их ценное свойство, поскольку реле должно «отпустить» если ток выключен, а электрический мотор не должен греться - на перемагничивание расходуется лишняя энергия, которая выделяется в форме тепла.

КАК ВЫГЛЯДИТ МАГНИТНОЕ ПОЛЕ НА САМОМ ДЕЛЕ? Игорь Белецкий

Постоянные магниты, то есть те, которые магнитами и называют, требуют для своего изготовления жестких материалов. Жесткость имеется в виду магнитная, то есть большая остаточная индукция и большая коэрцитивная сила, поскольку, как мы видели, эти величины тесно связаны между собой. На такие магниты идут углеродистые, вольфрамовые, хромистые и кобальтовые стали. Их коэрцитивная сила достигает значений около 6500 А/м.

Есть особые сплавы, которые называются альни, альниси, альнико и множество других, как можно догадаться в них входят алюминий, никель, кремний, кобальт в разных сочетаниях, которые обладают большей коэрцитивной силой - до 20000…60000 А/м. Такой магнит не так-то просто оторвать от железа.

Есть магниты, специально предназначенные для работы на повышенной частоте. Это многим известный «круглый магнит». Его «добывают» из негодного динамика из колонки музыкального центра, или автомагнитолы или даже телевизора прошлых лет. Этот магнит изготовлен путем спекания окислов железа и специальных добавок. Такой материал называется ферритом, но не каждый феррит специально так намагничивается. А в динамиках его применяют из соображений уменьшения бесполезных потерь.

Магниты. Discovery. Как это работает?

Что происходит внутри магнита?

Благодаря тому, что атомы вещества являются своеобразными «сгустками» электричества, они могут создавать свое магнитное поле, но только у некоторых металлов, имеющих сходное атомное строение, эта способность выражена очень сильно. И железо, и кобальт, и никель стоят в периодической системе Менделеева рядом, и имеют похожие строения электронных оболочек, которое превращает атомы этих элементов в микроскопические магниты.

Поскольку металлы можно назвать застывшей смесью различных кристаллов очень маленького размера, то понятно, что магнитных свойств у таких сплавов может быть очень много. Многие группы атомов могут «разворачивать» свои собственные магниты под влиянием соседей и внешних полей. Такие «сообщества» называются магнитными доменами, и образуют весьма причудливые структуры, которые до сих пор с интересом изучаются физиками. Это имеет большое практическое значение.

Как уже говорилось, магниты могут иметь почти атомные размеры, поэтому наименьший размер магнитного домена ограничивается размером кристалла, в который встроены атомы магнитного металла. Этим объясняется, например, почти фантастическая плотность записи на современные жесткие диски компьютеров, которая, видимо, еще будет расти, пока у дисков не появятся конкуренты посерьезнее.

Гравитация, магнетизм и электричество

Где применяются магниты?

Сердечники которых являются магнитами из магнитов, хотя обычно их называют просто сердечниками, магниты находят еще множество применений. Есть канцелярские магниты, магниты для защелкивания мебельных дверей, магниты в шахматах для путешественников. Это известные всем магниты.

К более редким видам относятся магниты для ускорителей заряженных частиц, это очень внушительные сооружения, которые могут весить десятки тонн и больше. Хотя сейчас экспериментальная физика поросла травой, за исключением той части, которая тут же приносит сверхприбыли на рынке, а сама почти ничего не стоит.

Еще один любопытный магнит установлен в медицинском навороченном приборе, который называется магнитно-резонансным томографом. (Вообще-то метод называется ЯМР, ядерный магнитный резонанс, но чтобы не пугать народ, который в массе не силен в физике, его переименовали.) Для прибора требуется помещение наблюдаемого объекта (пациента) в сильное магнитное поле, и соответствующий магнит имеет устрашающие размеры и форму дьявольского гроба.

Человека кладут на кушетку, и прокатывают через тоннель в этом магните, пока датчики сканируют место, интересующее врачей. В общем, ничего страшного, но у некоторых клаустрофобия доходит до степени паники. Такие охотно дадут себя резать живьем, но не согласятся на обследование МРТ. Впрочем, кто знает, как человек чувствует себя в необычно сильном магнитном поле с индукцией до 3 Тесла, после того, как заплатил за это хорошие деньги.

Чтобы получить такое сильное поле, часто используют сверхпроводимость, охлаждая катушку магнита жидким водородом. Это дает возможность «накачивать» поле без опасений, что нагрев проводов сильным током ограничит возможности магнита. Это совсем недешевая установка. Но магниты из специальных сплавов, которые не требуют подмагничивания током, стоят значительно дороже.

Наша Земля тоже является большим, хотя и не очень сильным магнитом. Он помогает не только владельцам магнитного компаса, но и спасает нас от гибели. Без него мы были бы убиты солнечной радиацией. Картина магнитного поля Земли, смоделированная компьютерами по данным наблюдений из космоса выглядит очень внушительно.

Вот небольшой ответ на вопрос, о том, что такое магнит в физике и технике.

В широком смысле магнит представляет собой элемент, обладающий собственным магнитным полем . Это кусок стали или железной руды с примесями алюминия, кобальта и никеля. В состав магнита входит огромное число компонентов, которые называются доменами, у каждого из которых есть южный и северный полюс. В объединенном состоянии домены образуют единую магнитную массу с множеством сориентированных полюсов. Если домены находятся в беспорядочном состоянии, то они теряют свойство притягивать железо, а их магнитная сила теряется полностью.

Благодаря специфике соединения доменов, каждый магнит имеет два полюса – южный и северный. Если магнит разрезать, то их полярность также сохранится. Всего существует три разновидности магнитов: природные, электромагниты и временные магниты. Природные магниты – это железная руда. Временные – это элементы, которые подвержены влиянию магнитного поля (гвозди, скрепки, гайки, монеты). Электромагниты — это магниты с индукционной катушкой и проводимым через нее электрическим током.

Почему магниты притягивают железо?

Каждый домен магнита представляет собой отдельный маленький магнитик микроскопического размера. При приближении к ним железа, элементы меняют свое положение и выстраиваются в своеобразный ряд. Полюсы при этом направлены в одну сторону, за счет чего создается единство магнитного поля. Элементы железа сразу вступают в контакт с доменами магнита и начинают притягиваться.

Процесс притягивания магнитом железа и других магнитов обусловлен законами физики . Домены магнита, представляющие собой электроды, обладают собственной массой и зарядом. При совпадении зарядов домены начинают передвигаться с небольшой скоростью. Элементы железа в магните и кусок чистого железа без примесей обладают сходствами в своем составе. Такой нюанс становится главной причиной притягивания электродов друг к другу.

Магнит не будет притягивать дерево, пластик или другие неметаллические материалы. Свойством упорядоченного движения и расположения электродов отличаются только сталь и железо. В силу таких факторов, единственными материалами, которые притягивает магнит, становятся сталь и железо.

Отдельный кусок стали или железа можно превратить во временный магнит . Если долго держать соединенными магнит и один из указанных элементов, то электроды в стали иди железе начнут образовывать собственное магнитное поле. Атомы при этом будут увеличивать свой размер. В течение некоторого времени способность магнититься сохранится и кусок стали или железа можно будет использовать в качестве самостоятельного магнита.

Когда магнит притягивает к себе металлические предметы, это кажется волшебством, но в действительности «волшебные» свойства магнитов связаны всего лишь с особой организацией их электронной структуры. Поскольку электрон, вращающийся вокруг атома, создает магнитное поле, все атомы являются маленькими магнитами; однако в большинстве веществ неупорядоченные магнитные эффекты атомов уравновешивают друг друга.

По иному дело обстоит в магнитах, атомные магнитные поля которых выстраиваются в упорядоченные области, называющиеся доменами. Каждая такая область имеет северный и южный полюс. Направление и интенсивность магнитного поля характеризуется так называемыми силовыми линиями {на рисунке показаны зеленым цветом), которые выходят из северного полюса магнита и входят в южный. Чем гуще силовые линии, тем концентрированнее магнетизм. Северный полюс одного магнита притягивает южный полюс другого, в то время как два одноименных полюса отталкивают друг друга. Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками. Хотя ферромагнетики и не являются естественными магнитами, их атомы перестраиваются в присутствии магнита таким образом, что у ферромагнитных тел появляются магнитные полюса.

Магнитная цепочка

Касание конца магнита к металлическим скрепкам приводит к возникновению у каждой скрепки северного и южного полюса. Эти полюса ориентируются в том же направлении, что и у магнита. Каждая скрепка стала магнитом.

Бесчисленные маленькие магнитики

Некоторые металлы имеют кристаллическую структуру, образованную атомами, сгруппированными в магнитные домены. Магнитные полюса доменов обычно имеют различное направление (красные стрелки) и не оказывают суммарного магнитного воздействия.

Образование постоянного магнита

  1. Обычно магнитные домены железа ориентированы бессистемно (розовые стрелки), и естественный магнетизм металла не проявляется.
  2. Если к железу приблизить магнит (розовый брусок), магнитные домены железа начинают выстраиваться вдоль магнитного поля (зеленые линии).
  3. Большинство магнитных доменов железа быстро выстраивается вдоль силовых линий магнитного поля. В результате железо само становится постоянным магнитом.


Сложно найти такую сферу, в которой бы не нашлось применения магнитам. Развивающие игрушки, полезные аксессуары и сложное промышленное оборудование - это лишь малая доля от поистине огромного количества вариантов их использования. При этом мало кто знает, как устроены магниты и в чем секрет их силы притяжения. Чтобы ответить на эти вопросы, нужно погрузиться в основы физики, но не переживайте – погружение будет недолгим и неглубоким. Зато после знакомства с теорией вы узнаете, из чего состоит магнит, и природа его магнитной силы станет для вас намного понятнее.


Электрон – самый маленький и самый простой магнит


Любое вещество состоит из атомов, а атомы в свою очередь состоят из ядра, вокруг которого вращаются положительно и отрицательно заряженные частицы – протоны и электроны. Предмет нашего интереса представляют собой именно электроны. Их движение и создает электрический ток в проводниках. Кроме того, каждый электрон является миниатюрным источником магнитного поля и, по сути, простейшим магнитом. Вот только в составе большинства материалов направление движения этих частиц является хаотичным. Как результат – их заряды уравновешивают друг друга. А когда направление вращения большого количества электронов на своих орбитах совпадает, то возникает постоянная магнитная сила.


Устройство магнита


Итак, с электронами разобрались. И теперь мы вплотную приближаемся к ответу на вопрос, как устроены магниты. Чтобы материал мог притягивать железный кусок породы, направление электронов в его структуре должно совпадать. В этом случае атомы формируют собой упорядоченные области, которые называются домены. У каждого домена есть пара полюсов: северный и южный. Через них проходит постоянная линия движения магнитных сил. Они входят в южный полюс и выходят из северного. Такое устройство означает, что северный полюс всегда будет притягивать южный полюс другого магнита, тогда как одноименные полюса будут отталкиваться.

Как магнит притягивает металлы


Магнитная сила действует не на все вещества. Только некоторые материалы можно притягивать: железо, никель, кобальт и редкоземельные металлы. Железный кусок породы не является природным магнитом, но при воздействии магнитного поля его структура перестраивается в домены с северными и южными полюсами. Таким образом, сталь может намагничиваться и сохранять свою измененную структуру на протяжении длительного времени.



Как делают магниты


Мы уже разобрались, из чего состоит магнит. Он представляет собой материал, в котором направленность доменов совпадает. Для придания породе таких свойств может использоваться сильное магнитное поле или электрический ток. В настоящий момент люди научились изготавливать очень мощные магниты, сила притяжения которых в десятки раз превышает собственный вес и сохраняется на протяжении сотен лет. Речь идет о редкоземельных супермагнитах на основе неодимового сплава. Такие изделия весом в 2-3 кг могут удерживать объекты весом в 300 кг и более. Из чего состоит неодимовый магнит и чем же обусловлены такие удивительные свойства?



Простая сталь не подойдет для того, чтобы успешно изготавливать изделия с мощнейшей силой притяжения. Для этого нужен особый состав, который позволит максимально эффективно упорядочить домены и сохранить стойкость новой структуры. Чтобы понять, из чего состоит неодимовый магнит, представьте себе металлический порошок неодима, железа и бора, который с помощью промышленных установок будет намагничиваться сильным полем и спекаться в жесткую структуру. Чтобы защитить этот материал, его покрывают прочной оцинкованной оболочкой. Такая технология производства позволяет получить изделия различных размеров и форм. В ассортименте интернет-магазина «Мир магнитов» вы найдете огромное разнообразие магнитных товаров для работы, развлечений и быта.

Магнит содержит в себе миллионы частиц, обладающих крохотной магнитной силой. Эти частицы, выстраиваясь в определенном порядке, создают однонаправленную силу, способную притягивать либо отталкивать некоторые металлы, оказавшиеся в пределах досягаемости магнита или магнитного поля.

Лишь немногие металлы, такие как железо, содержат магнитные частицы. В железе эти частицы легко можно выстроить в нужном порядке, создав, таким образом, магнит. Если вы ударите его молотком, «строй» магнитных частиц нарушится, и железо утратит свою магнитную силу, то есть размагнитится.

Частицы внутри железного магнита
Размагниченные частицы
Гвозди, притянутые к магниту

Как работает магнит на свалке?

Мощные магниты, которые можно включать и выключать, используют на свалках для переноски тяжелых металлических предметов. Эти магниты, именуемые электромагнитами, работают благодаря электрическому току, который, .протекая по проволоке, создает магнитное поле. Это явление называется электромагнетизмом. По такому же принципу устроены многие машины, работающие на предприятиях и в ваших домах.

Чтобы изготовить электромагнит, достаточно обмотать электрический провод вокруг бруска легко намагничивающегося металла, например, железа. При пропускании электрического тока магнетизм металлического бруска и обмотанной вокруг него проволоки соединяется, создавая мощное магнитное поле.

Таким образом, когда оператор работающего на свалке магнита хочет поднять с земли кусок металла, он включает ток. Затем оператор приводит в движение подвешенный гигантский магнит и перемещает груз. Чтобы опустить груз оператор отключает ток, и кусок металла падает на землю.

Как работает электромотор?

Если катушку проволоки поместить внутрь магнитного поля и пропустить через нее электрический ток, то магнитное поле, окружающее катушку, будет притягивать ее, заставляя вращаться. Вращательное движение проволочной катушки может передаваться машине, то есть заводить ее. Такое устройство называется электромотором. Электромоторы применяются во многих приборах, таких, как, к примеру, электрический вентилятор или миксер.



Просмотров