Импортные электролитические конденсаторы маркировка. Советские бумажные конденсаторы

Опубліковано 16.05.2011

Маркировка Керамических SMD конденсаторов

Керамические конденсаторы SMD ввиду их малых габаритов иногда маркируются кодом, состоящим из одного или двух символов и цифры. Первый символ, если он есть – код зготовителя (напр. K для Kemet, и т.д.), второй символ – мантисса и цифра показатель степени (множитель) емкости в pF. Например S3 – 4. 7nF (4.7 x 10^3 Pf) конденсатор от неизвестного изготовителя, в то время как KA2 100 pF (1.0 x 10^2 PF) конденсатор от фирмы Kemet.

Letter Mantissa Letter Mantissa Letter Mantissa Letter Mantissa
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.

Температурный диапазон Изменение емкости
Первый символ Нижний предел Второй символ Верхний предел Третий символ Точность
Z +10°C 2 +45°C A ±1.0%
Y -30°C 4 +65°C B ±1.5%
X -55°C 5 +85°C C ±2.2%
6 +105°C D ±3.3%
7 +125°C E ±4.7%
8 +150°C F ±7.5%
9 +200°C P ±10%
R ±15%
S ±22%
T +22,-33%
U +22,-56%
V +22,-82%
В общем случае керамические конденсаторы на
основе диэлектрика с высокой проницаемостью обозначаются
согласно EIA тремя символами, первые два из которых указывают
на нижнюю и верхнюю границы рабочего диапазона температур, а
третий – допустимое изменение емкости в этом диапазоне.
Расшифровка символов кода приведена в
таблице.
Примеры:
Z5U – конденсатор с точностью
+22, -56% в диапазоне температур от +10 до +85°C.X7R – конденсатор с точностью ±15% в диапазоне
температур от -55 до +125°C.

Маркировка Электролитических SMD конденсаторов

Электролитические конденсаторы SMD часто маркируются их емкостью и рабочим напряжением, например 10 6V – 10 µ F 6V. Иногда этот код используется вместо обычного, который состоит из символа и 3 цифр. Символ указывает рабочее напряжение, а 3 цифры (2 цифры и множитель) дают емкость в pF.


Срез или полоса указывает положительный вывод.

Символ Напряжение
e 2.5
G 4
J 6.3
A 10
C 16
D 20
E 25
V 35
H 50

Например, конденсатор маркирован A475 – 4. 7mF 10V

475 = 47 x 10^5pF = 4.7 x 10^6pF = 4. 7mF

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.

A . Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.


В . Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки - емкость в пикофарадах (пф), а последняя цифра - количество нулей.

Возможны 2 варианта кодировки емкости:
а) первые две цифры указывают номинал в пФ, третья - количество нулей;
б) емкость указывают в микрофарадах, знак р выполняет функцию десятичной запятой.

Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С . Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке - рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или 8 пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка - 15, вторая строка - 35V означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

  1. Введение
  2. Корпуса SMD компонентов
  3. Типоразмеры SMD компонентов
    • SMD резисторы
    • SMD конденсаторы
    • SMD катушки и дроссели
  4. SMD транзисторы
  5. Маркировка SMD компонентов
  6. Пайка SMD компонентов

Введение

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются "SMD". По-русски это значит "компоненты поверхностного монтажа". Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово "запекают" и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся.

Для тех, кто впервые столкнулся с SMD-компонентами естественным является смятение. Как разобраться в их многообразии: где резистор, а где конденсатор или транзистор, каких они бывают размеров, какие корпуса smd-деталей существуют? На все эти вопросы ты найдешь ответы ниже. Читай, пригодится!

Корпуса чип-компонентов

Достаточно условно все компоненты поверхностного монтажа можно разбить на группы по количеству выводов и размеру корпуса:

выводы/размер Очень-очень маленькие Очень маленькие Маленькие Средние
2 вывода SOD962 (DSN0603-2) , WLCSP2*, SOD882 (DFN1106-2) , SOD882D (DFN1106D-2) , SOD523, SOD1608 (DFN1608D-2) SOD323, SOD328 SOD123F, SOD123W SOD128
3 вывода SOT883B (DFN1006B-3) , SOT883, SOT663, SOT416 SOT323, SOT1061 (DFN2020-3) SOT23 SOT89, DPAK (TO-252) , D2PAK (TO-263) , D3PAK (TO-268)
4-5 выводов WLCSP4*, SOT1194, WLCSP5*, SOT665 SOT353 SOT143B, SOT753 SOT223, POWER-SO8
6-8 выводов SOT1202, SOT891, SOT886, SOT666, WLCSP6* SOT363, SOT1220 (DFN2020MD-6) , SOT1118 (DFN2020-6) SOT457, SOT505 SOT873-1 (DFN3333-8), SOT96
> 8 выводов WLCSP9*, SOT1157 (DFN17-12-8) , SOT983 (DFN1714U-8) WLCSP16*, SOT1178 (DFN2110-9) , WLCSP24* SOT1176 (DFN2510A-10) , SOT1158 (DFN2512-12) , SOT1156 (DFN2521-12) SOT552, SOT617 (DFN5050-32) , SOT510

Конечно, корпуса в таблице указаны далеко не все, так как реальная промышленность выпускает компоненты в новых корпусах быстрее, чем органы стандартизации поспевают за ними.

Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если выводов нет, то на корпусе есть контактные площадки либо небольшие шарики припоя (BGA). Также в зависимости от фирмы-производителя детали могут могут различаться маркировкой и габаритами. Например, у конденсаторов может различаться высота.

Большинство корпусов SMD-компонентов предназначены для монтажа с помощью специального оборудования, которое радиолюбители не имеют и врядли когда-нибудь будет иметь. Связано это с технологией пайки таких компонентов. Конечно, при определённом упорстве и фанатизме можно и в домашних условиях паять .

Типы корпусов SMD по названиям

Название Расшифровка кол-во выводов
SOT small outline transistor 3
SOD small outline diode 2
SOIC small outline integrated circuit >4, в две линии по бокам
TSOP thin outline package (тонкий SOIC) >4, в две линии по бокам
SSOP усаженый SOIC >4, в две линии по бокам
TSSOP тонкий усаженный SOIC >4, в две линии по бокам
QSOP SOIC четвертного размера >4, в две линии по бокам
VSOP QSOP ещё меньшего размера >4, в две линии по бокам
PLCC ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
CLCC ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
QFP квадратный плоский корпус >4, в четыре линии по бокам
LQFP низкопрофильный QFP >4, в четыре линии по бокам
PQFP пластиковый QFP >4, в четыре линии по бокам
CQFP керамический QFP >4, в четыре линии по бокам
TQFP тоньше QFP >4, в четыре линии по бокам
PQFN силовой QFP без выводов с площадкой под радиатор >4, в четыре линии по бокам
BGA Ball grid array. Массив шариков вместо выводов массив выводов
LFBGA низкопрофильный FBGA массив выводов
CGA корпус с входными и выходными выводами из тугоплавкого припоя массив выводов
CCGA СGA в керамическом корпусе массив выводов
μBGA микро BGA массив выводов
FCBGA Flip-chip ball grid array. М ассив шариков на подложке, к которой припаян кристалл с теплоотводом массив выводов
LLP безвыводной корпус

Из всего этого зоопарка чип-компонентов для применения в любительских целях могут сгодиться: чип-резисторы, чип-конденсаторы, чип-индуктивности, чип-диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC корпусах. Конденсаторы обычно выглядят как простые параллелипипеды или маленькие бочонки. Бочонки -- это электролитические, а параллелипипеды скорей всего будут танталовыми или керамическими конденсаторами.


Типоразмеры SMD-компонентов

Чип-компоненты одного номинала могут иметь разные габариты. Габариты SMD-компонента определяются по его "типоразмеру". Например, чип-резисторы имеют типоразмеры от "0201" до "2512". Этими четырьмя цифрами закодированы ширина и длина чип-резистора в дюймах. Ниже в таблицах можно посмотреть типоразмеры в миллиметрах.

smd резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) H, мм (дюйм) A, мм Вт
0201 0.6 (0.02) 0.3 (0.01) 0.23 (0.01) 0.13 1/20
0402 1.0 (0.04) 0.5 (0.01) 0.35 (0.014) 0.25 1/16
0603 1.6 (0.06) 0.8 (0.03) 0.45 (0.018) 0.3 1/10
0805 2.0 (0.08) 1.2 (0.05) 0.4 (0.018) 0.4 1/8
1206 3.2 (0.12) 1.6 (0.06) 0.5 (0.022) 0.5 1/4
1210 5.0 (0.12) 2.5 (0.10) 0.55 (0.022) 0.5 1/2
1218 5.0 (0.12) 2.5 (0.18) 0.55 (0.022) 0.5 1
2010 5.0 (0.20) 2.5 (0.10) 0.55 (0.024) 0.5 3/4
2512 6.35 (0.25) 3.2 (0.12) 0.55 (0.024) 0.5 1
Цилиндрические чип-резисторы и диоды
Типоразмер Ø, мм (дюйм) L, мм (дюйм) Вт
0102 1.1 (0.01) 2.2 (0.02) 1/4
0204 1.4 (0.02) 3.6 (0.04) 1/2
0207 2.2 (0.02) 5.8 (0.07) 1

smd конденсаторы

Керамические чип-конденсаторы совпадают по типоразмеру с чип-резисторами, а вот танталовые чип-конденсаторы имеют своют систему типоразмеров:

Танталовые конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) T, мм (дюйм) B, мм A, мм
A 3.2 (0.126) 1.6 (0.063) 1.6 (0.063) 1.2 0.8
B 3.5 (0.138) 2.8 (0.110) 1.9 (0.075) 2.2 0.8
C 6.0 (0.236) 3.2 (0.126) 2.5 (0.098) 2.2 1.3
D 7.3 (0.287) 4.3 (0.170) 2.8 (0.110) 2.4 1.3
E 7.3 (0.287) 4.3 (0.170) 4.0 (0.158) 2.4 1.2

smd катушки индуктивности и дроссели

Индуктивности встречаются во множестве видов корпусов, но корпуса подчиняются все тому же закону типоразмеров. Это облегачает автоматический монтаж. Да и нам, радиолюбителям, позволяет легче ориентироваться.

Всякие катушки, дроссели и трансформаторы называются "моточные изделия". Обычно мы их мотаем сами, но иногда можно и прикупить готовые изделия. Тем более, если требуются SMD варианты, которые выпускаются со множестом бонусов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокая добротность, электромагнитное экранирование, широкий диапазон рабочих температур.

Подбирать требующуюся катушку лучше по каталогам и требуемому типоразмеру. Типоразмеры, как и для чип-резисторов задаются спомощью кода из четырех чисел (0805). При этом "08" обозначает длину, а "05" ширину в дюймах. Реальный размер такого SMD-компонента будет 0.08х0.05 дюйма.

smd диоды и стабилитроны

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелипипедов. Цилиндрические корпуса диодов чаще всего предсавтлены корпусами MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Типоразмеры у них задаются также как у катушек, резисторов, конденсаторов.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпуса L* (мм) D* (мм) F* (мм) S* (мм) Примечание
DO-213AA (SOD80) 3.5 1.65 048 0.03 JEDEC
DO-213AB (MELF) 5.0 2.52 0.48 0.03 JEDEC
DO-213AC 3.45 1.4 0.42 - JEDEC
ERD03LL 1.6 1.0 0.2 0.05 PANASONIC
ER021L 2.0 1.25 0.3 0.07 PANASONIC
ERSM 5.9 2.2 0.6 0.15 PANASONIC, ГОСТ Р1-11
MELF 5.0 2.5 0.5 0.1 CENTS
SOD80 (miniMELF) 3.5 1.6 0.3 0.075 PHILIPS
SOD80C 3.6 1.52 0.3 0.075 PHILIPS
SOD87 3.5 2.05 0.3 0.075 PHILIPS

smd транзисторы

Транзисторы для поверхностного монтажа могут быть также малой, средней и большой мощности. Они также имеют соответствующие корпуса. Корпуса транзисторов можно условно разбить на две группы: SOT, DPAK.

Хочу обратить внимание, что в таких корпусах могут быть также сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки.

Маркировка SMD-компонентов

Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали.

Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку.

Пайка чип-компонентов

В домашних условиях чип-компоненты можно паять только до определённых размеров, более-менее комфортным для ручного монтажа считается типоразмер 0805. Более миниатюрные компоненты паяются уже с помощью печки. При этом для качественной пропайки в домашних условиях следует соблюдать целый комплекс мер.

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

    Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.

    Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

    Третье, что указывается в маркировке, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) - 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47H C. Данная запись соответствует 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте .

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C - 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов .

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK , 220nM , 470nJ .

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Д опуск в % Б уквенное обозначение
лат. рус.
± 0,05p A
± 0,1p B Ж
± 0,25p C У
± 0,5p D Д
± 1,0 F Р
± 2,0 G Л
± 2,5 H
± 5,0 J И
± 10 K С
± 15 L
± 20 M В
± 30 N Ф
-0...+100 P
-10...+30 Q
± 22 S
-0...+50 T
-0...+75 U Э
-10...+100 W Ю
-20...+5 Y Б
-20...+80 Z А

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Н оминальное рабочее напряжение , B Б уквенный код
1,0 I
1,6 R
2,5 M
3,2 A
4,0 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
350 T
400 Y
450 U
500 V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

При работе с SMD-конденсаторами многие радиолюбители сталкиваются с определёнными трудностями, поскольку с первой попытки разобраться с имеющимися на них обозначениями очень непросто. Существуют и такие конденсаторные изделия, на которых вообще нет маркировки.

Вследствие этого вопрос о том, как определить smd конденсатор без маркировки, представляется очень важным для всех любителей монтажа радиоаппаратуры. Но прежде чем научиться идентифицировать лишённые маркировки отечественные и импортные ёмкости, желательно ознакомиться с их разновидностями.

Различные наименования SMD-конденсаторов по своему функциональному назначению делятся на три класса:

  • Керамические или плёночные неполярные изделия с номиналами от 10 пикофарад до 10 микрофарад, которые обычно не маркируются;
  • Электролитические конденсаторы, имеющие форму алюминиевого бочонка, предназначенного для поверхностного монтажа;
  • Танталовые конденсаторные детали, имеющие прямоугольный корпус различного размера. Выпускаются с цветовой (черной, желтой или оранжевой) маркировкой, дополненной специальным кодом.

Все перечисленные изделия должны иметь обозначение, выполненное в виде соответствующей стандарту маркировки. Но нередко она по той или иной причине отсутствует (стирается, смывается или не была нанесена при кустарном производстве). В этом случае необходимо предпринять какие-то шаги по их полной идентификации.

Как определить номинал и напряжение

Каждый миниатюрный конденсатор характеризуется двумя основными параметрами: номинальной ёмкостью и предельным напряжением, при котором он ещё может работать. Рассмотрим порядок выявления каждого из этих показателей более подробно.

Номинальное значение

Для определения первого из параметров можно воспользоваться следующими методами:

  • Попытаться измерить их номинальную ёмкость посредством прибора (мультиметра), имеющего соответствующую функцию;
  • Использовать для этих целей специальный измеритель RLC.

Обратите внимание! Оба эти способа предполагают удаление конденсатора из платы или отпаивание хотя бы одной контактной площадки.

С порядком измерения SMD-конденсаторов тем и другим прибором можно ознакомиться в инструкции по их применению.

Рабочее напряжение

Для того чтобы проявить ситуацию с предельным рабочим напряжением данного элемента, существует всего лишь один надёжный способ. Он состоит в том, чтобы попытаться измерить напряжение между контактами, куда запаян неизвестный конденсатор (при включённой аппаратуре естественно).

После определения этого показателя можно предположить, что сам конденсатор рассчитан на напряжение, примерно в полтора раза превышающее полученное после измерения значение.

Электролитические компоненты

Известно, что маркировка электролитического конденсатора имеет свои особенности, проявляющиеся в указании ещё одного дополнительного параметра – полярности включения. В случае отсутствия этого обозначения единственный способ восстановить утерянную информацию – выпаять его из схемы и определить полярность напряжения на данном участке посредством мультиметра.



Просмотров