Гигиена труда и производственная санитария. Микроклимат - это что? Производственный микроклимат

УЧЕБНЫЙ МАТЕРИАЛ ДЛЯ ВЫПОЛНЕНИЯ ЗАДАНИЯ

Микроклимат помещений характеризуется совокупностью таких факторов, как атмосферное давление, температура, влажность, скорость движения воздуха и тепловое излучение.

Влияние микроклимата на организм человека определя­ется характером отдачи тепла в окружающую среду. Отдача тепла человеком в комфортных условиях происходит за счет теплоизлучения (до 45%), теплопроведения - конвекции, кондукции (30%), испарения пота с поверхности кожи (25%). Наиболее часто неблагоприятное влияние микроклимата обусловлено повышением или понижением температуры, влажности или скорости движения воздуха.

Высокая температура воздуха в сочетании с повышенной влажностью и малой скоростью воздуха резко затрудняет отдачу тепла путем конвекции и испарения, в результате чего возможно перегревание организма. При низкой температуре, высокой влажности и скорости воздуха наблюдается противо­положная картина-переохлаждение. При высокой или низ­кой температуре окружающих предметов, стен снижается или увеличивается отдача тепла путем излучения. Возрастание влажности, т. е. насыщенности воздуха помещения водяными парами, приводит к снижению отдачи тепла испарением.

Неблагоприятный микроклимат производственного поме­щения может отрицательно влиять на самочувствие и работо­способность человека, а в определенных случаях может при­вести к расстройству здоровья. Особенно чувствительны к изменению микроклиматических условий лица с сердечно­сосудистыми, нервно-психическими и другими заболева­ниями.

По состоянию микроклимата можно судить об эффектив­ности воздухообмена в помещении, в частности о работе приточно-вытяжной вентиляции.

Микроклиматические условия в лечебно-профилактических учреждениях имеют важное значение в общем комплексе лечебных мероприятий. Для правильной оценки микроклиматических условий в лечебно-профилактических учреждениях врачу необходимо освоить устройство приборов, методические подходы исследования физических свойств воздушной среды и умение даватьим гигиеническую оценку.

ТЕМА 1: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТЕМПЕРАТУРЫ ВОЗДУХА.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение температуры воздуха.

2. Радиационная температура и ее гигиеническое значение.

3. Особенности неблагоприятного воздействия высоких, низких температур и их профилактика.

4. Теплообмен человека с окружающей средой.

5. Требования к температурному режиму (допустимые его колебания в течение суток при центральном и местном отоплении, колебания по вертикали и горизон­тали) в жилых, общественных зданиях и больничных помещениях. Нормы опти­мальных температур в больничных помещениях различного назначения.

6. Приборы, используемые для определения температуры воздуха, радиационной температуры, принципы их устройства и правила работы. Методы измерения температуры воздуха.

7. Отличительные особенности устройства и принцип работы максимального и минимального термометров.

8. Устройство термографа и правила регистрирования температуры данным при­бором.

Наиболее благоприятной температурой воздуха в жилых помещениях для человека, находящегося в покое и одетого в обычный домашний костюм, является 18-20 0 C, а радиационной - 20 0 С при нормальной влажности (40-60%) и подвиж­ности - (0,2 - 0,3 м/сек) воздуха. Температура воздуха выше 24-25 0 C и ниже 14-15 0 С считается неблагоприятной, способной нарушать тепловое равновесие организма и послужить причиной развития различных заболеваний. Однако при выполнении физической работы или при изменении влажности и подвижности воздуха уровни оптимальных температур будут иными. Так, при физической работе средней тяжести оптимальной температурой воздуха считается 10-15 0 C, а при тяжелой - понижается до 5-10 0 С.

При наличии в помещении источников тепловой радиации, а именно: устано­вок или приборов, с поверхности которых возможно излучение пониженной или высокой температуры, а также при наличии в помещениях большой площади остекления следует учитывать совместное воздействие на организм конвекцион­ного и лучистого тепла. В этих условиях человек не только подвергается влиянию температуры воздуха, но и находится в зоне действия лучистого тепла от имею­щихся в обследуемом помещении источников нагретых или охлажденных повер­хностей (поверхность окон и др.).

Особое значение имеет определение радиационной температуры при неравно­мерной тепловой нагрузке на человека в производственных условиях, а также при нерациональном размещении (в непосредственной близости к окнам, дверным проемам и др.) больных в лечебных учреждениях. В этих условиях определяют радиационную температуру, т.е. температуру, показывающую совместное дейст­вие всех видов радиационного воздействия,

В лечебных учреждениях нормативы температуры воздуха, приведенные в таблице 3, и рекомендуемых средних величин общей и радиационной температур в таблице 4, обосновываются производственным назначением помещений, кон­тингентом госпитализированных больных и особенностями их заболеваний.

Таблица 3. Расчетная температура воздуха и допустимые ее перепады по горизонтали и вертикали в отапливаемых помещениях

ПОМЕЩЕНИЯ Темпе­ратура Колебания тем­пературы, 0 С
по го­ризон­тали по вер­тикали
1. Жилая комната квартиры или общежития 2,5
2. Палаты для взрослых терапевтических больных, помещения для матерей детских отделений, помещения гипотерапии 2,5
3. Палаты для туберкулезных больных (взрослых, детей) 2,5
4. Палаты для больных гипотиреозом 2,5
5. Послеоперационные палаты, реанимационные залы, палаты ин­тенсивной терапии, родовые, боксы, операционные, наркозные, палаты для ожоговых больных, барокамеры 2,5
6. Послеродовые палаты 2,5
7. Палаты для недоношенных, грудных, новорожденных и травмированных детей 2,5
8. Боксы, полубоксы, фильтр-боксы, предбоксы 2,5
9. Палатные секции инфекционного отделения 2.5
10. Предродовые, фильтры, приемно-смотровые боксы, перевязочные, манипуляционные. предоперационные процедурные, комнаты для кормления детей в возрасте до одного гола, помещения для прививок 2,5
11. Стерилизационные при операционных 2.5
Вид помещения Средняя темпе­ратура воздуха Радиаци­онная темпе­ратура
1. Жилые помещения 18-20
2. Учебные лаборатории, классы 17-19
3. Аудитории, залы 16-18 16-17
4. Физкультурные залы 12-16
Ванные комнаты, бассейн 20-23 20-22
6. Врачебные кабинеты 22-24 22-24
7. Операционные 25-30 25-30
8. Палаты для соматических больных 20-23 20-22
9. Палаты для температурящих больных 18-20 18-20
10. Палаты для ожоговых больных 26-30 26-30

Измерение температуры воздуха, поверхностей оборудования, предметов в поме­щениях различного назначения производится термометрическими приборами. Термометры по своему назначению разделяются на измеряющие , рассчитанные на определение температуры в момент наблюдения, и фиксирующие , позволяющие полу­чить максимальное или минимальное значение температуры за определенный период контроля (сутки, неделя, месяц и т. д.).

Кроме того, термометры подразделяют­ся на бытовые, аспирационные, минимальные, максимальные. По своему назна­чению термометры подразделяются на пристенные, водяные, почвенные, хими­ческие, технические, медицинские и др.

Бытовой термометр - комнатный или уличный спиртовой термометр, до­статочно точный для наблюдения за температурой воздуха. Ртутные термометры - применяются для измерения температур от -35 0 C до +357 0 C. В пределах высоких температур показания ртутного термометра более точные вследствие постоянства коэффициента расширения ртути.

К измеряющим термометрам относятся спиртовые, ртут­ные и электрические, к фиксирующим - максимальный и минимальный термометры (рис. 2).

Рис. 2. Термометры: а - максимальный; б - минимальный.

Максимальный (ртутный) термометр предназначен для регистрации самой высокой температуры. Это обеспечивается за счет специальной конструкции ртутного резервуара, в дно которого впаян стеклянный штифт, последний одним концом входит в капиллярную трубку, сужая ее просвет.

При повышении температуры воздуха ртуть, расширяясь, поднимается вверх через суженный просвет капилляра. При понижении температуры воздуха находящаяся в капилляре ртуть из-за его сужения не в состоянии возвратиться в ре­зервуар. Перед началом измере­ния, чтобы возвратить ртуть в резервуар, термометр несколько раз встряхивают. Измерение тем­пературы воздуха проводят при горизонтальном положении тер­мометра.

Минимальный термометр (спиртовой) используется для определения самой низкой темпе­ратуры воздуха. Внутри его ка­пиллярной трубки, в спирту, на­ходится стеклянный штифт с утолщениями в виде булавочных головок на концах. При повы­шении температуры воздуха спирт, расширяясь, свободно обтекает штифт, не изменяя его положения. В свою очередь при понижении температуры спирт, сжимаясь, силами поверхностно­го натяжения мениска перемеща­ет штифт в сторону резервуара, устанавливая в положение, соот­ветствующее минимальной тем­пературе в данный момент. Пе­ред измерением температуры штифт необходимо привести в соприкосновение с мениском спирта, подняв резервуар вверх, и затем установить термометр в рабочее, строго горизонтальное положение.

Для непрерывной регистра­ции колебаний температуры воз­духа в течение определенного отрезка времени (сутки, неделя) применяют самопишущие прибо­ры - термографы . Эле­ментом, воспринимающим изменения температуры, у этих приборов служит биметал­лическая пластинка. С повышением или понижением темпе­ратуры воздуха кривизна биметаллической пластинки изме­няется. Эти колебания через систему рычагов передаются на перо с чернилами, которое регистрирует на ленте, закрепленной на вращающемся с определенной скоростью барабане, температурную кривую.

Существуют три системы термометров, отличающихся друг от друга градуировкой шкалы:

1. Термометры Цельсия - 0 на шкале обозначает точку таяния льда, 100 - точку кипения воды.

2. Термометры Реомюра - 0 точка таяния льда, 80 - точка кипения воды.

3. Термометры Фаренгейта - +32 обозначает точку таяния льда, +212 - точку кипения воды. Для перевода градусов температуры с одной системы термометров на другую пользуются следующей таблицей:

1 0 Цельсия (C) = 4/5 градуса Реомюра = 9/5 градуса Фаренгейта.

1 0 Реомюра (R) = 5/4 градуса Цельсия = 9/4 градуса Фаренгейта.

1 0 Фаренгейта (F) = 5/9 градуса Цельсия = 4/9 град. Реомюра.

При переводе градусов Фаренгейта на градусы С и R следует предварительно вычесть из них 32, а при переводе на Фаренгейта к результатам перечисления следует прибавить 32.

ПРАВИЛА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА.

Измерение температуры воздуха в закрытых помещениях, школах, кварти­рах, детских, лечебных учреждениях, производственных помещениях и др. про­водится с соблюдением следующих правил: при измерении температуры воздуха необходимо защищать термометр от действия лучистой энергии печей, ламп и прочих открытых источников энергии. В жилых помещениях измерение темпера­туры воздуха проводят на высоте дыхания (1,5 м от пола) в центре комнаты. Для более точных измерений одновременно термометры устанавливаются в центре комнаты, наружном и внутреннем углах на расстоянии 0,2 м от стен.

В лечебных учреждениях измерение температуры воздуха дополнительно прово­дится и на высоте 70 см от пола. Перепады температуры определяются и оценива­ются по вертикали и горизонтали. Для определения перепада температуры по вертикали, термометры устанавливаются в центре и по углам поме­щения на высоте 0,2; 0,7 и 1,5 м от пола. Для определения перепада температуры по горизонтали вычисляется разница между максимальной и минимальной тем­пературой отдельно по каждому уровню (0,2; 0,7 и 1,5 м) во всех измеренных участках помещения. Суточный перепад температуры в палатах измеряется с помощью максимального и минимального термометров, которые устанавливают­ся в центре помещения на уровне 0,7 и 1,5 м от пола.

ПРОТОКОЛ

исследования и оценки температурного режима

в _________________________________________________________________

(наименование объекта)

Дата и время исследования ___________________________________________

Заключение:

Подпись исследователя

ТЕМА 2. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА БАРОМЕТРИЧЕСКОГО ДАВЛЕНИЯ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение атмосферного давления и единицы его измерения.

2. Влияние на организм пониженного атмосферного давления и меры профилак­тики.

3. Влияние на организм повышенного атмосферного давления и меры профилак­тики.

4. Приборы для измерения атмосферного давления, их устройство и правила работы.

Давление атмосферы, способное уравновесить столб ртути высотой 760 мм при температуре 0 0 C на уровне моря и широте 45 0 , принято считать нормальным, равным 1 атмосфере, а в пересчете в гсктопаскали оно будет составлять 1013 гПа.

Для пересчета величины давления, выраженной в мм рт. ст., в гПа, надо дан­ную величину умножить на 4/3, и наоборот, для перевода гПа в мм рт. ст. надо умножить первую величину на 3/4.

Атмосферное давление измеряют с помощью ртутного барометра или барометра-анероида (рис. 3). При необходимо­сти непрерывной регистрации колебаний атмосферного дав­ления используют барограф (рис. 2). Основной частью этого прибора является анероидная коробка, реагирующая на изме­нения давления воздуха. При повышении давления стенки коробки прогибаются внутрь, а при снижении - выпрямля­ются. Эти движения передаются с помощью соединительной системы стрелке. Атмосферное давление в среднем колеблется в пределах 1013 ±26,5 гПа (760 ±20 мм рт. ст.).

A B

Рис. 3. A - барометр-анероид; B – барограф

ОФОРМЛЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Давление атмосферы по барометру-анероиду № ________

Мм рт. ст. или · 4/3 = ____________ мб или гПа

Показания снял (подпись)

ТЕМА 3. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ВЛАЖНОСТИ ВОЗДУХА

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение влажности воздуха.

2. Какие понятия применяются для характеристики влажности воздуха и в каких единицах они выражаются.

3. Гигиенические нормативы влажности в помещениях и мероприятия, направ­ленные на улучшение температурно-влажностного режима помещений.

4. Приборы, используемые для определения влажности воздуха, их устройство, принцип действия и правила работы.

При гигиенической оценке влажности воздуха исполь­зуются следующие ее характеристики: абсолютная, макси­мальная, относительная влажность; физический дефицит влажности и др.

Влажность воздуха зависит от содержания в нем водяных паров. В практике чаще всего для характеристики влажности воздуха пользуются значениями относительной влажности и дефицита насыщения воздуха водяными парами.

Абсолютная влажность - упругость (парциальное давление) водяных паров, находящихся в данное время в воздухе, выраженное в миллиметрах ртутного столба.

Максимальная влажность – упругость водяных паров при полном насыщении воздуха влагой при данной температуре.

Относительная влажность – отношение абсолютной влажности к максимальной, выраженной в процентах (т.е. насыщение воздуха водяными парами в % от максимально возможного)

Дефицит насыщения (физический дефицит) – разность между максимальной и абсолютной влажностью.

Приборы, используемые для определения влажности, называются психрометрами . Бывают станционные психрометры (Августа) и аспирационные (Ассмана).

Психрометр Августа состоит из двух спиртовых термометров, укрепленных рядом в открытом футляре. Резервуар одного из термометров обернут тонкой тканью, конец которой опущен в трубку - сосуд с дистиллированной водой. С поверхности влажного термометра испаряется вода - тем сильнее, чем суше воздух, поэтому он показы­вает более низкую температуру, чем сухой термометр, и разница в показаниях термометров будет тем больше, чем суше воздух.

Психрометр устанавливают на высоте 1,5 м, ограждая от источников лучистой энергии и случайных движений воздуха. Продолжительность наблюдений 10-15 минут.

A = f – a · (t 1 - t 2) · B мм рт. ст. (1)

А - искомая абсолютная влажность,

f - максимальная влажность (по таблице 5) при t 2 ,

а - психрометрический коэффициент (для атмосферного воздуха - 0,00074; для ком­натного - 0,0011).

В - барометрическое давление (мм рт. ст.)

Относительная влажность определяется по таблице (табл. 4) или вычисляетсяпо формуле:

P - искомая влажность (относительная), %

А - абсолютная влажность,

М - максимальная влажность по таблице при температуре сухого термо­метра.

Таблица 3. Максимальная влажность воздуха при различной температуре

Темпе­ратура Напряжение водяных паров в мм рт. ст. Температура Напряжение водяных паров в мм рт.ст. Вес водяных паров, насыщаю­щих воздух, гр/м
-5 3,113 3,360 13,530 13,552
-4 3,387 3,614 14,421 14,391
-3 3,662 3,902 15,357 15,329
-2 3,995 4,194 16,364 16,203
-1 4,267 4,522 17,391 17,164
4,600 4,874 18.495 18,204
4,940 5,210 19,659 19,284
5,302 5,574 20,888 20,450
5,687 5,963 22,184 21,604
6,097 6,370 23,550 22,867
6,534 6,791 24.988 24,190
6,998 7,260 26,505 25,582
7,492 7,734 28,101 27,004
8.017 8,252 29,782 28,529
8,574 8,713 31,584 30,139
9,165 9.372 33,406 31,890
9,792 9,976 35,359 33,640
10,457 10,617 37,411 35,480
11,162 11,284 39.565 37,400
11,908 12,018 41,827 39,410
12,699 12,763 44,201 41,510
46,691 43,710

Аспирационный психрометр (Ассмана) (рис. 4) также состоит из двух, но ртутных термометров, закрепленных в специальной оправе, имеющей заводной механизм с вентилятором, с помощью которого обес­печивается равномерное движение воздуха около резервуаров обоих термомет­ров. Резервуары с ртутью окружены двойными металлическими гильзами, пре­дохраняющими термометры от нагревания лучистым теплом и движения наруж­ного воздуха. Эти условия дают возможность для более точного определения влажности воздуха, и поэтому величина "а" в формуле является постоянной.

Перед наблюдением ткань на одном из резервуаров термометра смачивается водой из пипетки. Затем необходимо завести ключом пружину вентилятора, прибор установить в месте наблюдения (на штатив или крюк), через 3-4 мин. температура обоих термометров устанавливается и можно снять показания при работающем вентиляторе.

Рис. 4. Психрометр Ассмана (аспирационный)

Абсолютная влажность вычисляется по формуле:

Мм рт. ст. (3)

K - искомая абсолютная влажность,

f - максимальная влажность при температуре влажного термометра (по

таблице 3).

0,5 - психрометрический коэффициент,

t 1 - температура сухого термометра,

t 2 - температура влажного термометра,

В - барометрическое давление (вмм рт.ст.) в момент наблюдения,

755 - среднее барометрическое давление

Определение относительной влажности производят путем пересчета по формуле (2), или определяют по таблице для аспирационного психрометра (табл. 5)

Для измерения относительной влажности существует прибор, который носит название гигрометра (рис. 5). Он со­стоит из воспринимающего элемента - обезжиренного воло­са, один конец которого укреплен на верхней части рамы, другой (нижний) перекинут через блок и прикреплен к стрелке. В данном устройстве используется свойство волоса изменять свою длину в зависимости от влажности. С увеличением влажности воздуха волос удлиняется, с уменьшением, наобо­рот, укорачивается, приводя в движение стрелку, которая перемещается по шкале, показывающей относительную влажность в процентах.

Рис. 5. Гигрометр

Для постоянной и систематической записи колебаний влажности воздуха в течение определенного промежутка вре­мени (сутки, неделя), применяют самопишущие приборы – гигрографы (рис. 6), состоя­щие из:

а) датчика влажности - пучок обезжиренных человеческих волос;

б) передаточного механизма;

в) регистрирующей части - стрелка с пером и барабан с часовым механизмом. Диаграммная бумажная лента разделена горизонтальными параллельными ли­ниями времени.

Рис. 6. Гигрограф


Таблица 4. Определение относительной влажности воздуха по психрометру Августа

Показа­ния су­хого термометра Показание влажного термометра, 0 С
5,3 5.7 6,0 6,4 6,8 7,2 7,6 8,0 8,4 8,7 9.1 9,5 9,9 10,3 10,7 11.3 11,7 12,0
5,9 6,4 6.8 7,2 7,6 8.0 8,4 8,8 9.2 9,6 10,0 10,4 10,8 11.1 11.5 11.8 12,2 12,6 13,0
6.6 7.1 7.5 8,0 8,4 8,6 9.2 9.7 10,1 10.5 10.9 11,3 11,7 12.1 12,5 12,8 13,2 13,6 14,0
7,3 7,8 8,7 9,2 9,6 10.0 10,9 11,4 11,8 12,2 12,6 13,0 13,4 14.2 14,6 15.0
8,0 8,5 9.0 9.4 9,9 10,3 10.8 11,3 11,8 12,2 12,6 13,1 13.5 14,0 14,4 14.8 15,6 15.6 16.0
8,6 9,1 9,7 10,2 10,7 11,2 11.6 12,1 12,6 13,0 13,5 13,9 14,4 14,9 15,3 15,8 16.2 16,6 17,0
9,3 9,9 10.4 10,9 11,4 11,9 12,4 12,9 13,4 13,9 14,4 14,8 15,3 15.7 16,2 16.6 17,1 17.5 18.0
10,0 10,6 11,1 11,7 12,2 12,7 13.2 13.8 14,8 14,8 15,3 15,7 16,2 16,7 17,2 17,6 18,1 18,5 19,0
10,6 11,2 11,8 12,4 12,9 13,4 14,0 14,5 15.1 15,6 16,1 16,6 17,1 17,6 18,1 18,5 19.0 19,5 20,0
11,2 11,9 12,6 13.1 13,6 14,2 14.8 15.3 15,9 16,6 17,1 17.5 18,0 18.6 19,1 19,5 20,0 20,5 21,0
11,8 12,5 13.2 13,8 14,4 15.0 15.6 16.1 16.7 17,3 17,9 18,4 18.9 19,5 20,0 20,5 21,0 21,5 22,0
12.5 13.1 13,8 14.4 15.1 15.7 16,4 17.0 17.6 18,2 18,8 19,3 19,8 20,4 20.9 21,5 22,0 22,5 23,0
13,1 13.8 14,5 15,2 15,9 16,5 17,1 17,8 18,4 19,0 19,6 20,1 20,7 21,3 21.9 22,4 23,0 23,0 24,0
13.7 14,5 15.2 15,9 16,6 17,2 17.9 18,5 19,2 19,8 20,5 21.2 21,7 22,2 22,8 23,3 23,9 24.4 25.0
Относит. влажность %

Таблица 5. Определение относительной влажности по показаниям аспирационного психрометра

Показания сухого термометра Показание влажного термометра, 0 C

ПРОТОКОЛ

исследования и оценки относительной влажности воздуха

(наименование объекта)

1. Дата исследованиявремя час

2. Исследование проводилось психрометром_____________________________

3. Показания сухого термометра_________ 0 C

4. Показания влажного термометра________ 0 C

5. Расчет влажности по формуле:

6. Расчет влажности по таблице:

Заключение по влажностному режиму в обследованном помещении:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ТЕМА 4: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ПОДВИЖНОСТИ ВОЗДУХА; ПОСТРОЕНИЕ И ОЦЕНКА РОЗЫ ВЕТРОВ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение подвижности воздуха.

2. Что такое "роза ветров", каково ее гигиеническое значение?

3. Гигиенические нормы подвижности воздуха в жилых помещениях и больнич­ной палате.

4. Профилактика неблагоприятного воздействия на человека больших и малых скоростей движения воздуха.

5. Какими способами определяют направление воздушных течений в открытой атмосфере и в помещении?

6. Какими приборами определяют подвижность воздуха в открытой атмосфере и в помещении, их устройство и правила работы?

Движение воздуха принято характеризовать направлением и скоростью . На­правление движения воздуха определяется точкой горизонта, откуда дует ветер, а скорость движения - расстоянием, пройденным массой воздуха в единицу вре­мени и выражается в м/сек.

Оба эти показателя имеют большое физиолого-гигиеническое значение, т.к. из­менение направления ветра служит показателем перемены погоды, а движение воздуха:

1) обеспечивает проветривание населенных мест, способствует рассеиванию и снижению атмосферных загрязнений;

2) является важнейшим показателем формирования микроклимата в открытой атмосфере и в помещениях;

3) оказывает большое воздействие на состояние теплового ощущения, нервно-психической сферы организма, процессы терморегуляции и функции дыхания.

Наиболее благоприятной скоростью ветра в наружной атмосфере в летнее время при обычной легкой одежде считается 1-4 м/сек. Раздражающее действие ветра проявляется при скорости выше 6-7 м/сек.

В жилых помещениях, классах, групповых комнатах, детских, лечебных учреж­дениях оптимальной считается подвижность воздуха в пределах 0,2-0,4 м/сек; при меньшей скорости имеет место недостаточный воздухообмен, а при движени­ях воздуха выше 0,4 м/сек отмечается неприятное ощущение сквозняка. В спор­тивных залах допускается скорость движения воздуха до 0.5-0,6 м/сек.

Способы определения направления воздушных течений. Направление ветра в открытой атмосфере измеряется с помощью специального прибора - флюгера и обозначается начальными буквами наименований сторон све­та: С -север, Ю - юг, В - восток, 3 - запад. Кроме четырех главных румбов, использу­ются промежуточные, находящиеся между ними, и в таких условиях направле­ние ветра определяется восемью румбами.

В помещении направление движения воздуха можно определить по отклонению пламени свечи, по отклонению листков папиросной бумаги, подвешенных на нитке; по дыму, исходящему от зажженного кусочка ваты, пропитанного раство­ром четыреххлористого титана (TiCl 4) и укрепленного на конце проволоки. В гигиенической практике имеет значение не только одномоментное направление, как таковое. Велика роль господствующего направления ветра, которое устанавливается на основании обобщения многолетних метеорологических наблюдений повторяемости ветра по румбам, характерной для данной мест­ности.

СОСТАВЛЕНИЕ "РОЗЫ ВЕТРОВ". "Роза ветров" - это графическое изображение повторяемости ветров по румбам (сторонам света), за определенный период (месяц, сезон, год) или за несколько лет.

Для составления "розы ветров" надо сложить число всех случаев ветра и штиля за известный срок, полученная сумма принимается за 100, а число случаев ветра по каждому румбу (и штиля) вычисляется в процентах по отношению к сумме всех случаев ветра и штиля, принятой за 100.

После этого строят график. Для этого из центра проводят 8 линий, обозначающих 8 румбов (С, В, СВ, В, ЮВ, Ю, ЮЗ, 3, СЗ). Затем откладывают по всем линиям в одинаковом масштабе отрезки вычисленных процентных величин ветра всех 8 румбов и штиля, и соединяют последовательно вершины соседних между собой прямыми линиями. Из центра графика описывают окружность с радиусом, соот­ветствующим процентному числу штиля (рис.7).

Рис. 7. Роза ветров

Учитывая розу ветров, можно правильно разместить жилые, медицинские, аптечные и другие учреждения по отношению к источникам загрязнения воздуха (промышленные предприятия и др.). На рис. 7 роза ветров указывает на преимущественное северо-восточное направле­ние ветров в течение года, поэтому жилые дома, аптеки, больницы и т. д. следует размещать в северо-восточном направлении (наветренная сторона), а промышленные предприятия и другие источ­ники загрязнения - в юго-западном (подветренная сторона)

Приборы для измерения скорости движения воздуха (рис. 8.)

Скорость движения воздуха определяют с помощью анемометров (прямой способ) или кататермометров (косвенный способ). Чашечный анемометр (рис. 8A) предназначен для измерения скорости ветра от 1 до 50 метров в секунду. Воспринимающей частью прибора служит чашечная мельница, полусферы которой обращены в одну сторону. Вращение полусфер передается счетчику оборотов, который являясь регистрирующей частью прибора, ведет от­счет на циферблатах расстояния, пройденного воздушными массами.

Прибор имеет несколько циферблатов, где фиксируются единицы, десятки, сотни и тысячи метров расстояния изучаемого ветра.

A B C

Рис. 8. Анемометры: A – чашечный, B – крыльчатый, C – кататермометры

Крыльчатый анемометр (рис. 8B) предназначен для измерения скорости движения воздуха в пределах от 0,5 до 10 метров в секунду. Воспринимающей частью прибора является колесико с легкими алюминевыми крыльями, огражденными металли­ческим кольцом. Регистрирующая часть аналогично чашечному анемометру представлена тремя циферблатами.

Рабочее положение перечисленных анемометров должно быть таким, чтобы ло­пасти мельницы всегда были перпендикулярными направлению воздушного по­тока. Измерение скорости движения воздуха чашечным и крыльчатым анемомет­рами проводят в течение 1-2 мин. после чего счетчик выключают и записывают показания. Разность конечного и начального показаний делят на количество секунд работы анемометра.

ОПРЕДЕЛЕНИЕ СКОРОСТИ ДВИЖЕНИЯ ВОЗДУХА.

Чашечный и крыльчатый анемометры подносят к работающему вентилятору (открытой форточке) в выключенном состоянии, предварительно записав поло­жение стрелок на циферблатах, и после разгона полушарий одновременно вклю­чают анемометр и секундомер на 1-2 минуты, после чего выключают прибор и записывают показания циферблатов. Опре­деление производят 3 раза и берут среднее из трех измерений.

ПРОТОКОЛ

исследования и оценки подвижности воздуха

в ___________________________________________________________________

(наименование помещения)

1. Дата исследования ___________________________________________

2. Замеры движения воздуха проводились анемометром _____________

3. Результаты первого замера __________________________ м/сек

4 .Результаты второго замера __________________________ м/сек

5. Результаты третьего замера _________________________ м/сек

6. Среднее из всех замеров ____________________________ м/сек

ЗАКЛЮЧЕНИЕ: Указать, соответствуют ли полученные данные гигиениче­ским нормативам. Обосновать мероприятия по оптимизации подвижности возду­ха в обследованном помещении.

Исследование проводил (подпись)

ТЕМА 5: МЕТОДЫ ИЗУЧЕНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА КОМПЛЕКСНОГО ДЕЙСТВИЯ МЕТЕОФАКТОРОВ НА ОРГАНИЗМ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Механизмы терморегуляции в организме

2. Физическая терморегуляция. Характеристика путей отдачи тепла и обуслав­ливающих их факторов.

3. Погода, ее определение и определяющие ее факторы. Влияние погоды на орга­низм человека.

4. Метеотропные реакции, заболевания и их профилактика.

5. Клиническая классификация погод, их характеристика и использование в работе врача.

6. Понятие о климате и климатообразующих факторах; классификация климатов и их физиолого-гигиеническая характеристика.

7. Влияние климата на здоровье, формирование, течение заболеваний и их про­филактика.

8. Проблема акклиматизации на современном этапе, и пути ее реализации.

9. Основные принципы закаливания организма, способы и методы закаливания организма.

10. Методы изучения комплексного влияния метеофакторов на организм,ихотличительные особенности, преимущества и недостатки.

11. Сущность метода определения охлаждающей способности воздуха; использу­емые для этого приборы,их устройство и правила работы.

12. Учение об эффективных температурах. Зона, линия комфорта.

Тепловое равновесие в организме человека, как и всех животных, возможно только при условии, если приход тепла равен расходу; в противном случае наблю­дается или перегревание или переохлаждение тела. В зависимости от характера питания, выполняемой работы, одежды, возраста, состояния здоровья и физиче­ских факторов окружающей среды (температуры, влажности, подвижности воз­духа, лучистой энергии) величины теплопродукции и теплоотдачи изменяются в широких пределах. Экспериментально установлено, что для поддержания тем­пературы тела на нормальном уровне необходимо, чтобы одетый человек терял при легкой работе 1,2-1,4 милликалории тепла в секунду с 1 см 2 поверхности тела; при средней и тяжелой работе теплопотери возрастают в 2-3 и более раз. Непос­редственное определение величины теплопотерь организмом крайне сложно, поэтому пользуются различными косвенными способами их определения. Одним из данных способов является метод кататермометрии, позволяющий определить величину потери тепла физическим телом в зависимости от температуры и ско­рости движения воздуха. Хотя он и не может воспроизвести условия потери тепла с поверхности тела человека, которые, как известно, зависят не только от охлаж­дающей способности воздуха, но и от работы терморегуляторных систем организ­ма. С помощью данного метода установлено, что оптимальное тепловое самочув­ствие у лиц "сидячих" профессий при обычной одежде в помещениях наблюдается при величине охлаждения кататермометра в пределах 5,5-7,0 милликалории в секунду. При более высоких показаниях кататермометра данные группы людей будут испытывать холод, а при меньших - духоту; при показаниях кататермомет­ра 3,2 милликалории в секунду повышается потоотделение.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ. Кататермометры бывают двух типов: кататермометр Хилла, имеющий ци­линдрический резервуар и шаровой кататермометр. У кататермометраХиллашкала термометра разделена на градусы от 35 0 до 38 0 , у шарового – от 33 0 до 40 0 (рис. 8С)

ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ

Если нагреть кататермометр до температуры выше температуры окружающего воздуха, то при охлаждении он потеряет, главным образом, под влиянием наруж­ной температуры и движения воздуха, некоторое количество тепла. Вследствие постоянства теплоемкости спирта и стекла, из которых сделан прибор, он теряет при охлаждении с 38 0 до 35 0 строго определенное количество тепла, которое устанавливается лабораторным путем отдельно для каждого кататермометра. Эта потеря тепла с 1 см 2 поверхности резервуара кататермометра выражается в милликалориях и обозначается на каждом кататермометре в виде его постоянного фактора - F.

ПОРЯДОК РАБОТЫ С КАТАТЕРМОМЕТРОМ

A. Прибор нагревают в горячей воде (65-70°) до тех пор, пока спирт не заполнит половины верхнего резервуара; вынув из воды, кататермометр вытирают насухо и помещают на штативе в исследуемое место, защищая при этом от действия лучистой энергии; фиксируют время опускания спирта с 38 0 до 35 0 . Производят расчет по следующей формуле:

H - величина охлаждения прибора, характеризующая охлаждающую спо­собность воздуха при данных условиях мкал/см /сек;

F - фактор прибора;

a - количество секунд, в течение которых спирт опустился 38 0 до 35 0 .

B. Определение скорости движения слабых потоков воздуха производится по эмпирическим формулам:

2 = (менее 1 м/сек)

2 = (более 1 м/сек),

V - скорость движения воздуха в м/сек;

H - величина охлаждения кататермометра;

Q - разность между средней температурой тела 36,5° и температурой воздуха в комнате в момент исследования;

0,20 и 0,40, а также 0,1,3 и 0,47 - коэффициенты.

Однако производить все вычисления по данным формулам нет необходимости. Нужно предварительно определить, чему равно выражение H/Q, а затем по таб­лицам 6 и 7 найти соответствующую этой величине скорость движения воздуха в обследуемом помещении.

Таблица 6. Скорость движения воздуха меньше 1 метра в секунду с учетом поправок на температуру

Н Q Температура воздуха в градусах
10,0 12,5 15,0 17,5 20.0 22,5 25,0 26,0
0,27 - - - - 0,047 0,051 0,059
0,28 - - - 0,049 0,051 0,061 0,070 0,070
0,29 0,041 0,050 0,051 0,060 0,067 0,076 0,085 0,089
0,30 0,051 0,060 0,065 0,073 0,082 0,091 0,101 0,104
0,31 0,061 0,070 0,079 0,088 0,096 0,107 0,116 0,119
0,32 0,076 0,085 0,094 0,104 0,113 0,124 0,136 0,140
0,33 0,091 0,101 0,110 0,119 0,128 0,140 0,153 0,159
0,34 0,107 0,115 0,129 0,139 0,148 0,160 0,174 0,179
0,35 0,127 0.136 0,145 0,154 0,167 0,180 0,196 0,203
0,36 0,142 0,151 0,165 0,179 0.192 0,206 0,220 0,225
0,37 0,163 0,172 0,185 0.198 0,212 0,226 0,240 0.245
0,38 0,183 0,197 0,210 0,222 0,239 0,249 0,266 0,273
0,39 0,208 0,222 0,232 0,244 0,257 0,274 0,293 0,300
0,40 0,229 0,242 0,256 0,269 0,287 0,305 0,323 0,330
0,41 0,254 0,267 0,282 0,299 0,314 0.330 0.349 0,364
0,42 0,280 0,293 0,311 0,325 0,343 0,361 0,379 0,386
0,43 0,310 0,324 0,342 0,356 0,373 0,392 0,410 0,417
0,44 0,340 0,354 0,368 0,385 0,401 0.417 0,445 0,449
0,45 0,366 0,351 0,398 0,412 0,429 0,449 0,471 0.478
0,46 0,396 0,415 0,429 0,446 0,465 0,483 0,501 0,508
0,47 0,427 0,445 0,464 0,482 0,500 0,518 0,537 0,544
0,48 0,468 0,481 0,499 0,513 0,531 0,551 0,572 0.579
0,49 0,503 0,516 0,535 0,566 0,571 0,590 0,608 0.615
0,50 0,539 0,557 0,571 0.589 0,604 0,622 0,640 0,651
0,51 0,574 0,593 0.607 0,628 0,648 0.666 0,684 0,691
0,52 0,615 0.633 0,644 0,665 0,683 0,701 0,720 0,727
0,53 0,656 0,674 0,688 0,705 0,724 0,742 0,760 0,768
0,54 0,696 0,715 0,729 0,746 0,783 0,801 0,808
0,55 0,737 0,755 0,770 0,790 0,807 0,807 0,844 0,851
0,56 0,788 0,801 0,815 0,833 0.851 0,867 0,884 0.894
0,57 0,834 0,852 0,867 0,882 0,898 0,915 0,940
0,58 0,879 0,898 0,912 0,929 0,911 0,959 0,972 0,977
0,59 0,930 0,943 0,957 0,971 0,985 1,001 1,018 1,023
0,60 0,981 0,994 1,008 1,022 1,033 1,014 1,056 1,060

Таблица 7. Скорость движения воздуха больше 1 метра в секунду.

Н Q Скорость м/сек Н Q Скорость м/сек Н Q Скорость м/сек
0,60 1,00 0,83 2,22 1,15 4,71
0,61 1,04 0,84 2,28 1,18 4,99
0,62 1,09 0,85 2,34 1,20 5,30
0,63 1,13 0,86 2,41 1,23 5,43
0,64 1,18 0,87 2,48 1,25 5,69
0.65 1,22 0,88 2,54 1,28 5,95
0,66 1,27 0.89 2,61 1,30 6,24
0,67 1,32 0,90 2,68 1,35 6,73
0,68 1,37 0,91 2,75 1,40 7,30
0,69 1,42 0,92 2,82 1,45 7,88
0,70 1,47 0.93 2,90 1,50 8,49
0,71 1.7

Здоровье и работоспособность человека во многом зависит от усло­вий микроклимата внутренних помещений от условий микроклимата внутрен­них помещений.

Под микроклиматом помещений понимается физическое состояние воз­духа, являющееся совокупностью четырех элементов - температуры, влаж­ности, скорости движения воздуха, лучистого тепла, определяющих тепло­ощущения человека.

Элементы микроклимата могут находиться между собой в разнообраз­ных сочетаниях и принципиально определяют три вида состояния человека в виде перегревания, теплового комфорта и охлаждения.

Гигиеническая оценка микроклимата по отдельным метеорологическим показателям (t, влажность, подвижность воздуха и лучистое тепло) не всегда дает полное представление о возможном тепловом воздействии ок­ружающей среды на организм человека, так как они, как правило, оказы­вают влияние не раздельно, а совместно. Известно также, что одинаковое субъективное восприятие окружающей среды может наблюдаться при различ­ных значениях и сочетаниях параметров отдельных метеорологических по­казателей. Поэтому для гигиенической оценки микроклимата, оценки физи­ческих условий теплообмена и тепловой нагрузки на человека были пред­ложены комплексные показатели. Теоретическое обоснование их заключает­ся в разной степени уточнениях основного уравнения теплового баланса. В основном уравнении теплового баланса учтены главные факторы, оказывающие влияние на изменение содержания тепла в организме человека:

где Q - тепловая нагрузка на организм; М - метаболическое тепло, сос­тавляющее 67-75% от уровня энергозатарат, С - конвекционный теплообмен организма с окружающей средой, Е - отдача тепла организма с испаряемым потом.

Следовательно, тепловая нагрузка определяется уровнем метаболиз­ма, интенсивностью пототделения и метеорологическими условиями, от которых, в свою очередь, зависят характер и степень функциональных сдви­гов, предпатологических и патологических изменений в организме. Тепловой комфорт организма в обычных условиях соответствует нулевому значению Q. Положительная тепловая нагрузка (+Q) ведет к развитию теплового напряжения, физиологическим пределом накопления тепла в ор­ганизме является 600 кДж; отрицательная - (-Q) к переохлаждению орга­низма - теплоотдача свыше 5000 кДж приводит к замерзанию организма.

В комплесных показателей оценки микроклимата учтены в той или иной мере коэффициенты основного уравнения теплового баланса (М, С, R, Е), а так же факторы, прямо или косвенно их отражающие (температура воздуха, температура влажного термометра, средняя радиационная темпе­ратура, характер одежды и работы, температура кожи и др.).

В настоящее время известно более 50 показателей суммарной оценки тепловой нагрузки на организм человека. Это свидетельствует о продол­жающихся поисках универсального критерия.

Комплексные показатели оценки микроклимата основаны на разработке различных номограмм, таблиц и формул, отражающих связь между комплек­сом метеорологических факторов (иногда с учетом степени адаптации, одежды, тяжести работы) и физиологическими реакциями организма. Так возникли методы эффективных и результирующих температур, индексов предвидимой 4-часовой интенсивности потоотделения (ПЧП), влажной шаро­вой температуры (ВШТ) - WBGT индекса и т.д.

Эффективная температура (ЭТ) учитывает температуру и влажность воздуха. В дальнейшем в этот показатель была включена скорость возду­ха. Эффективная температура - это условный показатель, основанный на сравнении теплоощущения обнаженных до пояса людей или обычно одетых людей, выполняющих работу определенной степени тяжести при определен­ном микроклимате с их теплоощущениями в условиях неподвижного пол­ностью насыщенного водяными парами воздуха при заданной температу­ре. Для условий покоя или легкой физической работы установлены линия комфорта (18,1 - 18,9 50 0ЭТ) и зона комфорта (17,2 - 21,7 50 0ЭТ), при сред­ней и тяжелой работе зона комфорта снижается соответственно на 1 и 2,5 50 0ЭТ. Метод ЭТ больше всего подходит для оценки таких метеорологических условий, когда радиационное тепло не играет роли, например, в помещениях с повышенной влажностью воздуха. Основные недостатки шкалы ЭТ состоят в том, что она не учитывает радиационного тепла и физиологи­ческих реакций. Кроме того, ее использование в условиях очень высоких температур и относительной влажности может привести к неправильным результатам.

Для учета радиационного компонента микроклимата было предложено заменить в шкале ЭТ температуру по сухому термометру на температуру по черному шаровому термометру. Этот показатель получил название корреги­рованной эффективной температуры (КЭТ).

Конец работы -

Эта тема принадлежит разделу:

Гигиена, как медицинская наука, профилактической направленности

Лекция.. введение в гигиену детей и подростков.. гигиена детей и подростков как научная дисциплина и практическая область здравоохранения призвана обосновывать и..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛЕКЦИЯ №1
Целью медицины является восстановление, сохранение и укрепление здоровья людей. Эта цель достигается двумя методами: первый - лечение заболевания людей, второй - предупреждение болезней и преждевре

Цель, предмет, объект и метод гигиены
Цель гигиены как науки - охрана и укрепление общественного и лич­ного здоровья путем оздоровления природной и социальной окружающей среды, слагающейся из конкретных условий труда, быта и поведения

Гигиена как фундаментальная наука
Науки принято делить по отношению к практике на фундаментальные и прикладные. Слово "фундаментальный" от латинского Fundamentus - осно­ва) имеет два значения: основной, главный и основате

Законы гигиены
Впервые фундаментальная профилактическая наука с многовековой ис­торией, предметом изучения которой является система "Здоровый человек - окружающая среда", сформулировала свои законы.

Дифференциация гигиены как учебной дисциплины
Разделами гигиенической науки являются гигиена труда, коммуналь­ная гигиена, гигиена детей и подростков, гигиена питания, радиационная гигиена, военная гигиена применительно к изучаемым объектам: п

История развития гигиены. Связь гигиены с лечебной медициной
Начиная с глубокой древности гигиена обладала монополией на изу­чение факторов внешней среды и их влияния на здоровье людей. Еще древ­ние греки наделили мифического обожествленного врача Асклепия (

Концепция гигиенической диагностики на современном этапе
Понятие "диагностика" (распознавание) обычно связывают с клини­ческой, т.е. лечебной медициной. Очевидно, это понятие может быть распространено и на другие явления природы и общества, в т

Заключение
Завершая вводную лекцию о месте и значении гигиены в системе ме­дицинских наук, следует подчеркнуть, что гигиена - наука профилакти­ческая. Именно в настоящее время мы находимся на том этапе развит

ЛЕКЦИЯ № 2
На первой лекции мы рассмотрели цель, предмет, объект изучения гигиены. Сегодня мы более подробно остановимся на методологических ос­новах гигиены. Под методологией следует понимать совоку

Концепция факторов риска как научная основа современных представлений о профилактике заболеваний
С понятием здоровья связаны представления о факторах риска - сос­тояниях, способствующих возникновению и развитию заболеваний. К числу определяющих здоровье, или главных факторов риска, относят: фа

Группировка факторов риска
Согласно международной формуле здоровья, основная часть факторов риска относится к условиям жизни, т.е. к социально-экономической сфе­ре, определяющих образ жизни. К этой группе факторов риска след

Алгоритм гигиенической донозологической диагностики
Основной задачей гигиенической диагностики является установление причин изменения здоровья человека (популяции) на основе определения вклада различных факторов и выявления их источников с учетом пр

Гигиеническое нормирование воздействия на организм человека факторов окружающей среды
Гигиена устанавливает характер действия факторов на организм че­ловека, определяет границы их отрицательного и положительного влияния, то есть гигиенические нормы, а также разрабатывает предложения

Принципы гигиенического нормирования
В настоящее время основы гигиенического нормирования разработаны и сформулированы Н.Ф. Кошелевым, П.В. Рамзаевым и В.П. Михайловым в виде универсальной, то есть обеспечивающей нормирование всех фак

Заключение
До недавнего времени основной задачей гигиены являлось изучение факторов окружающей среды, влияющих на состояние здоровья населения с последующим устранением, либо уменьшением их негативного действ

Физические и биологические основы действия ионизирующих излучений
В лекции будут рассмотрены следующие вопросы: 1. Стадии формирования лучевого повреждения. 2. Взаимодействие ионизирующих излучений с веществом. 3. Прямое и косвенное дей

Действие ИИ на белки
До 20% поглощённой энергии будет локализоваться в белках. Под действием ИИ из молекулы белка выбивается электрон.Образуется дефектный участок, лишённый электрона - "дырка".Эта &q

Действие ИИ на нуклеиновые кислоты
Около 7% поглощённой дозы приходится на ядерную ДНК. Механизм повреждения сходен с повреждением белка: выбивание электрона и образование "дырки", миграция её по полинуклеотидной

Действие ИИ на липиды
Под влиянием облучения происходит образование свободных радикалов ненасыщенных жирных кислот, которые при взаимодействии с кислородом образуют перекисные радикалы, а они, в свою очередь, реагируют

Действие на углеводы
Под действием ИИ происходит отрыв атома водорода от кольца, обра­зуются свободные радикалы, а затем перекиси. Из продукта распада углеводов - глицеринового альдегида - синте­зируется метил

ЛЕКЦИЯ №4
Рассматривая во вступительной лекции проблему определения гигие­ны, мы пришли к выводу, что гигиена является наукой о здоровье здоро­вого человека, о способах его укрепления и приумножения.

Гигиеническая характеристика физических факторов воздушной среды
. Классификация физических факторов среды. Для гигиены воздушной среды представляется оправданным традицион­ное деление физических факторов на три основные группы: микроклима

Физические свойства атмосферного воздуха. Метеорологические факторы
Физическое состояние атмосферного воздуха характеризует метеоро­логические факторы, к которым относятся лучистое тепло, температура, влажность и скорость движения воздуха, барометрическое (атмосфер

Температура воздуха
Температура воздуха является основным метеорологическим показате­лем, характеризующим тепловое состояние воздушной среды.[Температура воздуха выражается в градусах шкалы Цельсия (50 0С]. Температу

Влажность воздуха
Источником образования водяных паров, определяющих влажность ат­мосферного воздуха, являются реки, озера, моря и океаны, а также почваи растительный покров. Различают влажность абсолютную

Движение воздуха
Атмосферный воздух находится в состоянии постоянного движения. Причина этого явления - разное давление воздуха в различных районах суши и моря, облусловленное, в свою очередь, различием теплового б

Ионизация воздуха и атмосферное электричество
В воздухе всегда содержится определенное количество ионизирован­ных атомов и молекул газа (аэроионы) или твердые частицы в виде тума­на, дыма или пыли (аэродисперсии), заряженных положительным или

Принципы гигиенического нормирования микроклимата помещений
При установлении гигиенических нормативов микроклимата помещений исходят из того, что они должны обеспечивать тепловой комфорт для че­ловека. В случае нормальных микроклиматических условий около 10

ЗАКЛЮЧЕНИЕ
Воздушная среда играет исключительную роль в профилактике донозо­логических состояний и многих болезней человека. Врач должен знать, что на здоровье человека известное влияние оказывает ми

Комплексная оценка состояния здоровья детей
Для оценки здоровья детей и подростков необходимо использовать как минимум четыре критерия, а именно: 1) наличие или отсутствие в мо­мент обследования хронических заболеваний; 2) уровень достигнуто

Гигиенические основы режима дня и учебно-воспитательного процесса
В понятие суточный режим входит длительность, организация и расп­ределение в течение суток всех видов деятельности, отдыха и приемов пищи. Рациональный режим предполагает соответствие его содержани

ЗАКЛЮЧЕНИЕ
Актуальность проблемы охраны здоровья детей и подростков возрас­тает с каждым годом, так как с 1986 г. в Беларуси наблюдается снижение рождаемости, а с 1989 г. - увеличение смертности населения, вс

ЛЕКЦИЯ №6
Больничная гигиена разрабатывает гигиенические нормы и требования к размещению, планировке и санитарно-техническому обеспечению лечеб­но-профилактических учреждений с целью создания оптимальных усл

Гигиеническая характеристика систем больничного строительства
Гигиена больницы излагается на примере основного медицинского учреждения - больницы общего типа. В больницу общего типа входят: 1) приемное отделение; 2) стационар, в структуре ко

Гигиенические требования к размещению и планировке лечебно-профилактических учреждений
От месторасположения и других особенностей больничного участка во многом зависит возможность создания в больнице гигиенического ком­форта. Поэтому для лечебно-профилактических учреждений отводятся

Поликлиника
Поликлиники следует размещать в отдельно стоящих зданиях, примы­кающих к стационару в местах размещения общих для стационара и полик­линики лечебно-диагностических отделений. Около 40% все

Профилактика внутрибольничных инфекций
Термином "внутрибольничная инфекция" обозначают разнообразные ин­фекционные заболевания, которыми заболевают больные в связи с лечением в стационарах или лица, заболевшие в связи с врачеб

ЗАКЛЮЧЕНИЕ
Лечебные учреждения нередко оказываются без должного внимания со стороны органов санитарного надзора, что отрицательно влияет на порядок и полноту проведения в них санитарно- гигиенических и против

Рационального водоснабжения
Проблема гигиены водоснабжения затрагивает интересы большого кру­га людей. Эта ее особенность вытекает из той роли, которую играет вода в физиологии человека. Как известно, тело человека с

Эпидемиологическое значение воды
Централизованное водоснабжение позволяет резко поднять уровень санитарной культуры населения, способствует уменьшению заболеваемости лишь при бесперебойной подаче достаточного количества воды опред

Химический состав воды и его влияние на здоровье населения
В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она посто­янно имеет большое количество различных элементов и соединений,

Гигиенические требования к качеству питьевой воды
Стандартизация качества воды имеет большую историю. Критерии бе­зопасности воды для здоровья менялись с расширением медицинских и био­логических знаний. Соответственно менялись и гигиенические треб


Одним из главных принципиальных вопросов гигиены питьевой воды является выбор водоисточника. Этот выбор проводится путем техгни­ко-экономического сравнения вариантов источников водоснабжения, кото­


С целью охраны источников водоснабжения от загрязнения организу­ются зоны санитарной охраны (ЗСО), которые имею три пояса. Первый пояс ЗСО подземных и поверхностных источников водоснабже­н

Методы улучшения качества питьевой воды
Основными методами улучшения качества питьевой воды являются ос­ветление, обесцвечивание и обеззараживание. Осветление и обесцвечива­ние воды достигаются с помощью коагуляции, отстаивания и фильтра

ЗАКЛЮЧЕНИЕ
Врач общей практики должен помнить, что 80% от всех заболеваний в мире связано с неудовлетворительным качеством питьевой воды. Основными профилактическими мероприятиями являются стандартизация каче

Законы рационального питания и их практическая значимость
В настоящее время установлено, что рациональным можно считать та­кое питание, которое соответствует основному принципу энергомассообме­на человека со средой обитания, который для всего срока жизни

Теория адекватного питания
Теория адекватного питания возникла на основе крупных открытий и наблюдений - обнаружение ранее неизвестных типов пищеварения - лизосо­мального и мембранного, механизма транспорта нутриентов.

Нормы физиологических потребностей в пищевых веществах и энергиидля различных групп населения и их гигиеническая оценка
Новые нормы, разработанные институтом питания АМН в 1991 году, служат критерием для оценки фактического индивидуального питания и при необходимости, для обоснования рекомендаций, направленных на ег

ЛЕКЦИЯ №9
Диетическое (лечебное) питание является важной частью лечеб­но-профилактических мероприятий, направленных на снижение заболеваний, повышение эффективности лечения, уменьшение трудопотерь и повторно

Основные принципы диетического питания
Диетическое питание организуется в соответствии с общими принци­пами сбалансированного (рационального) питания с учетом нарушений ме­таболических процессов. Современная тактика лечения питания исхо

Учет особенностей биохимических и физиологических процессов
превращения и ассимиляции пищевых веществ у больного человека. . Приме­ром может служить назначение индивидуализированной диеты больным ате­росклерозом, которым ограничивают легкоусвояемые углеводы

Лечебные свойства пищевых продуктов и отдельных блюд
Необходимо рассматривать пищу не только как источник энергии и пластических веществ, но и как сложный фармакологический комплекс. А.А. Покровский указывает, что пища - это комплекс многих сотен тыс

Белковый обмен и белки пищи
Белковый обмен в организме протекает интенсивно. Так, белки мозга об­новляются приблизительно за 10 дней, белки печени - за 3 дня, белки кишечника - за 2 дня. Естественно, для этого нужны различные

Жировой обмен и жиры пищи
Жировому обмену долгое время уделялось относительно мало внимания и функциональное его значение оценивалось только с точки зрения 2 одного из энергетических ресурсов организма. Действительно, при с

Витамины и их роль в питании человека
Физиологическая ценность питания тесно связано с содержанием в нем витаминов. Советская медицина рассматривает витамины прежде всего как пищевой фактор, жизненно необходимый для обеспечения здоровь

Минеральные вещества и их роль в питании человека
В живом организме и в продуктах питания встречаются почти все элементы таблицы Менделеева. В зависимости от содержания их в теле и потреблености в них различают макро- и микроэлементы. Суточная пот

Характеристика основных диет
Диетотерапия в нашей стране завоевала прочное место с начала 20-х годов с организацией диетического отделения при курортной клинике, возглавляемой М.И. Певзнером и диет. станции при больнице им. Ос

ЛЕКЦИЯ № 10
Текущий санитарный надзор за биотической адекватностью (безвред­ностью) питания призван в основном обеспечивать безвредность питания, т.е. предупредить загрязнение внутренней среды организма абиот

Токсикоинфекции
Токсикоинфекции непосредственно связаны с пероральным поступлени­ем большого количества живых возбудителей, размножившихся в пищевых продуктах или готовых блюдах, что позволяет рассматривать их как

Бактериотоксикозы
Бактериотоксикозы связаны с употреблением пищи, содержащей экзо­токсины, накопившиеся в результате жизнедеятельности некоторых видов микроорганизмов. Это прежде всего палочка ботулизма и стафилокок

Микотоксикозы
Микотоксикозы - заболевания, вызываемые грибами. В настоящее вре­мя изучено и систематизировано несколько тысяч микроскопических гри­бов, синтезирующих вещество протоплазмы из готовых органических

Отравления немикробного происхождения
возникают при употреблении продуктов растительного или животного происхождения, ядовитых по своей природе, продуктов, ставших ядовитыми при определенных условиях, а также продуктов с примесями хими

ЗАКЛЮЧЕНИЕ
Врач общей практики чаще всего бывает первым медицинским работни­ком при оказании помощи в случае пищевого отравления в семье. От зна­ния врачом клинических симптомов, особенностей течения болезни,

Особенности службы в армии
В течение нескольких последних 10-летий наука продвигалась далеко вперед, появились новые химические вещества и соединения, новые спла­вы, иные решения многих технических вопросов. Все это привело

Роль и место санитарно-гигиенических мероприятий в общей системе медицинского обеспечения войск
Известно, что лечебная медицина все свое внимание сосредоточивает на больном человеке, у гигиены же объектом изучения и наблюдения явля­ется здоровый человек и чаще всего не один, а целый коллектив

Силы и средства медицинской службы по гигиеническому обеспечению войск
Подразделения Силы Средства РОТА Санинструктор, в каждо

Особенности санитарно-гигиенического обеспечения полевого размещения войск
Как в мирное, так и в военное время широко используется полевое размещение войск, имеющее много разновидностей. Одной из таких разно­видностей является размещение в населенных пунктах, используемое

Гигиена воды и водоснабжение в военное время
Не останавливаясь на физиологической роли воды, следует подчерк­нуть ее эпидемиологическое значение. Через воду могут передаваться ин­фекционные заболевания желудочно-кишечной группы, полиомиелит и

Организация водоснабжения войск в военное время
В военное время полевое водоснабжение состоит из нескольких эта­пов: а) разведка водоисточника; б) выбор водоисточника; в) добыча воды; г) обработка ее, хранение и распре

Требования к качеству воды в полевых условиях
Прежде, чем говорить о качестве воды, необходимо указать, что в полевых условиях вода может быть трех видов: 1. Вода для приготовления пищи и питья. 2. Вода для хозяйственно-бытов

Табельные средства по организации водоснабжения в полевых условиях
Для добычи воды, ее обработки, в том числе и специальной (дезак­тивация, обезвреживание и обеззараживание) в ведении инженерной службы имеются табельные средства. Все средства по организации водосн

Табельные средства для хранения и транспортировки воды
Для хранения воды используются резиново-тканевые резервуары, из­готовленные из прорезиненной капроновой ткани. Эти резервуары для воды (РВД) бывают различной емкости: РДВ-12, РДВ-1500, РДВ-5000.

Обязанности медицинской службы по контролю за водоснабжением в 0 2полевых условиях
Медицинская служба в полевых условиях осуществляет контроль за содержанием табельных средств, находящихся в ведении инженерной служ­бы. Особое внимание при этом уделяется табельным средствам для хр

Индивидуальные средства обеззараживания воды
Если вопрос в отношении обеззараживания больших запасов воды в полевых условиях в основном решен, то обеззараживание индивидуальных запасов, когда приходится использовать воду из необследованных ис

Хлорирование воды по способу профессора Драчева
Хлорирование воды по способу профессора Драчева производится нор­мальными дозами хлора. Все воды органолептически разделяются на две группы: 1) бесцветные, прозрачные; 2) мутные,

Хлорирование воды по способу профессора Черкинского
Хлорирование по способу Черкинского представляет собой упрощенный метод перехлорирования. Все воды разделяют собой упрощенный метод пе­рехлорирования. Все воды разделяют на три группы: 1 -

ЗАКЛЮЧЕНИЕ
Рассмотрение материала по организации санитарного надзора за во­доснабжением войск в полевых условиях свидетельствует, что медицинской службе приходиться решать многие вопросы, деятельность ее мног

Гигиена труда в армии
Развитие военной науки и техники ставит много новых проблем по ее обслуживанию. Даже в мирные дни, когда оружие не применяется, в ряде случаев встает вопрос защиты военнослужащих от вредных и опасн

Гигиена труда в артиллерии и ракетных войсках
Условия труда в артиллерии делятся на на две группы: при подго­товке к стрельбе и во время стрельбы. Подготовка к стрельбе (передви­жение, развертывание оружия, оборудование позиций - рытье окопо

Особенности службы и медицинского обеспечения в бронетанковых и мотострелковых войсках
В настоящее время бронетанковые войска являются главной ударной силой сухопутных войск. Наш танк Т-34 признан лучшей боевой машиной времени Великой Отечественной войны и естественно, что дальнейшая

Особенности санитарно-гигиенического обеспечения передвижения войск
Современные боевые действия отличаются высокой маневренностью. Войска могут передвигаться железнодорожным, автомобильным, авиацион­ным, водным транспортом, в пешем строю в различных географических

Гигиена труда в радиотехнических войсках
Первая радиолокационная станция (РЛС) была создана у нас и испы­тана под Ленинградом в 1934 году. Она могла обнаружить летящий самолет на расстоянии нескольких десятков километров. В настоящее врем

Глубина проникновения поля свч в организм
Глубина проникновения Диапазон Длина волны миллиметровый 1 – 10 мм 0,1 – 1,0 мм

ЗАКЛЮЧЕНИЕ
Изложенный материал свидетельствует, что при обслуживании боевой техники на организм военнослужащих могут воздействовать различные фак­торы, многие из которых обладают высокой биологической активно

Гигиена питания войск
Питание относится к ряду факторов, которые в первую очередь опре­деляют здоровье военнослужащих и боеспособность личного состава. Глав­ная задача, особенно в полевых условиях - обеспечение доброкач

Медицинской службы
Организацией питания в Армии занимаются несколько служб, среди которых можно выделить следующие: 1. Служба продовольственного снабжения. Она занимается получени­ем, доставкой, хранением, п

Организация питания войск в военное время
Продовольствие в действующую армию будет доставляться в концент­рированном виде и в виде готовых или полуготовых блюд с тем, чтобы время на приготовление пищи было минимальным. В полевых условиях п

Защита продуктов питания от отравляющих, радиоактивных веществ и бактериальных средств
Для защиты продовольствия от отравляющих, радиоактивных веществ и бактериальных средств используются два этапа. Первый этап: создание запасов концентрированных и консервирован­ных п

Защитные свойства тары и упаковки для продовольствия
N п/п Наименование тары и упаковки Степень защиты от средств массового поражения от РВ ОВ от

При экспертизе продовольствия выделяют несколько этапов
Первый этап - санитарно-гигиеническое обследование объекта продо­вольственной службы. Оно может проводиться самой продовольственной службой или в ходе разведки с целью установления вида прим

Методы дезактивации и обезвреживания продовольствия и тары
Под дезактивацией понимают либо полное удаление радиоактивных ве­ществ, либо снижение их до предельно допустимого уровня. Поскольку полностью удалить РВ бывает довольно трудно, то чаще используют в

ЗАКЛЮЧЕНИЕ
Как явствует из разбора материала по организации питания личного состава воинских подразделений в полевых условиях, перед различными службами, в том числе и перед медицинской, встает ряд довольно с

Прочитайте:
  1. Plathelmintes. Тип Плоские черви. Классификация. Характерные черты организации. Медицинское значение.
  2. V2: Кости нижней конечности, их соединения. Особенности строения стопы человека. Рентгеноанатомия суствов нижней конечности. Разбор лекционного материала.
  3. VI. Соотношения и взаимное влияние духовных и душевных переживаний при аффективных психозах
  4. Адсорбционные равновесия и процессы на подвижной и неподвижной границах раздела фаз. Влияние различных факторов на величину адсорбции.
  5. Акселерация, ретардация, децелерация. Социально-гигиеническое значение изменения темпов возрастного развития.

Микроклимат – комплекс физических свойств воздуха в определенный момент времени и в конкретном помещении или на другой строго ограниченной территории. На формирование микроклимата влияют: технологический процесс, климат местности, сезон года и условия отопления и вентиляции. Показателями, характеризующими микроклимат в помещениях, являются: температура воздуха, температура поверхностей ограждающих конструкций, относительная влажность воздуха, скорость движения воздуха.

Следует отметить, что при небольших отклонениях физических факторов воздушной среды от зоны комфорта самочувствие здоровых людей может не измениться, тогда как у больных людей часто возникают, так называемые, метеотропные реакции. Особенно чувствительны к изменению метеорологических факторов внешней среды люди, страдающие сердечно-сосудистыми, нервно-психическими и простудными заболеваниями.

При гигиенической оценке влияния физических факторов воздушной среды на организм человека необходимо учитывать весь комплекс их: атмосферное давление, температуру воздуха, влажность и скорость движения. Для создания комфортных условий самочувствия людей рекомендуются следующие параметры факторов в помещениях (микроклимат помещений):

1) средняя температура воздуха 18-200 (для детей 20-220), в палатах для недоношенных детей - 250, в перевязочных и процедурных кабинетах - 220, операционных - 210, родовых - 250. Перепады температуры воздуха в горизонтальном направлении от наружной стены до внутренней не должны превышать 20, в вертикальном - 2,50 на каждый метр высоты. В течение суток колебания температуры воздуха в помещении при центральном отоплении не должны превышать 30;

2) величина относительной влажности воздуха при указанных температурах может колебаться в пределах 40-60 % (зимой - 30- 50%);

3) скорость движения воздуха в помещениях должна быть 0,2 - 0,4 м/с, на выходе из приточных отверстий вентиляционных каналов больничных палат - не более 1 м/с, а в ванных, душевых, физиотерапевтических кабинетах - 0,7 м/с. Особенно важно соблюдение этих условий в больницах.

Все жизненные процессы в организме сопровождаются непрерывным выделением теплоты в окружающую среду. Для нормального протекания физиологических процессов необходимо, чтобы выделяемая организмом теплота полностью отводилась в окружающую среду. Нарушение теплового баланса может привести к перегреву или переохлаждению.

Различают монотонный микроклимат, когда его параметры мало изменяются в течение рабочей смены (ткацкие, швейные цеха, обувное производство, машиностроение и т.п.), и динамичный - быстрое и значительное изменение параметров микроклимата (сталеплавильные, литейные цеха и т.п.).

По степени воздействия на тепловое состояние человека параметры микроклимата подразделяются на оптимальный (нейтральный), нагревающий и охлаждающий.

Оптимальный (нейтральный) микроклимат - такое сочетание его параметров, которое при воздействии на человека в течение длительного времени обеспечивает тепловой баланс организма, точнее примерное равенство между величиной теплопродукции организма человека и его теплоотдачей в окружающую среду. Оптимальный микроклимат обеспечивает ощущение комфорта и создает предпосылки для высокого уровня работоспособности.

Охлаждающий микроклимат - сочетание параметров, при котором суммарная теплоотдача человека в окружающую среду превышает величину теплопродукции организма, что приводит к образованию общего и/или локального дефицита тепла в теле человека.

Нагревающий микроклимат - сочетание его параметров, при котором суммарная теплоотдача человека в окружающую среду меньше величины теплопродукции организма, что приводит к накоплению тепла в организме.

Отрицательное влияние микроклимата

Охлаждающий микроклимат способствует возникновению сердечно-сосудистых заболеваний, заболеваний органов дыхания, опорно-двигательного аппарата, приводит к обострению язвенной болезни, радикулита. Даже при кратковременном влиянии холода в организме происходит перестройка регуляторных и гомеостатических систем, изменяется иммунный статус организма. При выраженном охлаждении организма повышается возможность тромбообразования.

Влияние нагревающего микроклимата связано с напряжением функциональных систем организма человека, что приводит к нарушению состояния здоровья, уменьшения работоспособности и производительности труда. При определенных значениях параметров нагревающий микроклимат может привести к заболеваниям общего характера: наблюдаются головные боли, повышенная потливость и утомляемость, увеличивается риск смерти от сердечно-сосудистой патологии (гипертонической и ишемической болезни сердца,болезней артерий и капилляров). Особенно подвержены тепловым ударам лица, имеющие массу тела выше нормы.

Дата добавления: 2015-02-06 | Просмотры: 3960 | Нарушение авторских прав


| | | | | | | 8 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Микроклимат помещений

План лекции:

1. Влияние микроклимата на организм человека.

2. Гигиеническая оценка микроклимата и принципы его

нормирования.

3. Средства улучшения микроклимата помещений.

стр. 59-73

Влияние микроклимата на организм человека.

Микроклимат представляет собой комплекс физических факторов , оказывающих влияние на теплообмен человека с окружающей средой , его тепловое состояние , самочувствие , работоспособность и здоровье .

Показателями микроклимата являются: температура воздуха и его относительная влажность,

скорость движения воздуха,

тепловое излуче­ние от внутренних поверхностей помещения (стены, потолок, пол, техни­ческое оборудование).

Микроклимат определяет климатические условия на ограниченной территории: в пределах одного и того же населенного пункта, улицы, в

помещениях.

По степени его влияния на тепловой баланс человека микроклимат подразделяется на комфортный или нейтральный и дискомфортный на­ гревающий или охлаждающий .

Пребывание в условиях дискомфортного микроклимата в зависи­мости от степени этого дискомфорта, возраста человека и ряда других факторов может привести к возникновению острой или хронической формы тепловой патологии.

Влияние нагревающего микроклимата на организм человека

При остром действии перегрева может возникать острая гипертер­мия, гиперпиретическая и судорожная формы этой патологии.

Острая гипертермия характеризуется повышением температуры тела до 38-40°С, потоотделением (часто профузным), тахикардией (до 100 ударов в 1 мин. и более), учащением дыхания, головокружением, наруше­нием зрительного восприятия.

Гиперпиретическая форма (тепловой удар) обычно возникает при сочетании высокой температуры воздуха с очень высокой влажностью. При легкой форме наблюдается адинамия, вялость, головная боль, влаж­ная кожа, нормальная или субфебрильная температура тела, тахикардия,

тахипноэ.

При средней тяжести теплового удара пострадавший апатичен, неподвижен, температура тела 39-40°С, учащенный пульс, влажная гипе-

ремированная кожа, головная боль, тошнота, рвота, возможно периоди­ческое сопорозное состояние.

Для тяжелой формы гипертермии характерно острое внезапное начало, быстрое нарастание неврологической симптоматики (психомо­торное возбуждение, коматозное состояние, галлюцинации и др.), уча­щенное аритмичное дыхание, нитевидный пульс, тахикардия 140 и более уд./мин., сухая бледноцианотичная кожа, температура тела 40-41°С.

Судорожная форма острой гипертермии развивается в результа­те обильного потения, приводящего к потере большого количества ми­неральных солей и возникновению электролитного дисбаланса.

Хронический перегрев может возникать при длительном пребыва­нии, особенно во время работы, в микроклимате с температурой возду­ха 26-28°С, высокой влажностью (более 80%) и скоростью движения воздуха менее 0,3 м/сек. Хроническая гипертермия проявляется в по­ражении ряда физиологических систем. Нарушение водно-солевого обмена и функций ЦНС приводят к понижению желудочной секреции, развитию гипоацидного гастрита, ахилии. Расширение сосудов увеличи­вает нагрузку на сердечную мышцу, вызывает тахикардию, гипертрофию и дистрофию миокарда. Страдает и ряд других систем.

Влияние охлаждающего микроклимата на организм человека

Острая гипотермия возможна при температуре воздуха ниже 0°С, но может быть и при более высокой температуре в сочетании с высокой влажностью и подвижностью воздуха. Так, во время Великой Отече­ственной войны известны случаи отморожения ног у солдат при темпе­ратуре воздуха, близкой к нулю, когда длительное вынужденное поло­жение в окопах приводило к нарушению кровообращения в конечнос­тях. Ноги быстро охлаждались в результате интенсивной теплоотдачи излучением в сторону холодных и сырых стен окопов. Переохлаждение конечностей усугублялось увлажнением одежды и обуви, которые ста­новились более теплопроводными. Такая ситуация приводила к отморо­жению стоп (так называемая «окопная» или «траншейная» стопа).

Локальное охлаждение частей тела может вызвать местные воспали­тельные процессы (невралгии, миозиты), а также заболевания в резуль­тате рефлекторной реакции на воздействие холода (острые респира­торные заболевания, ангина, гломерулонефрит и др.).

Общее охлаждение вызывает снижение защитных сил организма в отношении инфекционных агентов, способствует аллергическим заболе­ваниям (при переохлаждении образуются гистаминоподобные вещества), падает работоспособность. При глубокой общей гипотермии возможен летальный исход.

В связи со сказанным актуальное значение приобретают вопросы унифицированных подходов к гигиенической оценке микроклимата и теплового состояния человека, а также нормирования микроклимата помещений.

Гигиеническая оценка микроклимата и принципы его нормирования.

Осуществляется путем субъективной и объективной оценки микро­ климата и объективной оценки фактического теплового самочувствия

человека .

1.Субъективная оценка основывается на результатах опроса одно­родной группы людей, находящихся в данных микроклиматических ус­ловиях. Существует 7 характеристик теплоощущений - от «очень хо­лодно» до «очень жарко».

2.Объективная оценка микроклимата заключается в инструменталь­ном исследовании всех физических параметров микроклимата и срав­нении полученных данных с их нормативными значениями для помеще­ний различного назначения.

При объективной оценке фактического теплового самочувствия человека чаще всего используются методы, основанные на применении и оценке температуры и влажности поверхности кожи испытуемого. На­пример, весьма информативным и доступным является сравнение темпе­ратур кожи лба и кисти. В условиях теплового комфорта у здорового человека температура кожи лба составляет 32,5-33,5°С, кисти - 29- 30°С, а разница между ними в норме - 3-4°С.

Нормирование микроклимата помещений

Важнейшая роль микроклимата в жизнедеятельности человека зак­лючается в сохранении температурного гомеостаза организма. Однако термостабильность организма, обеспечиваемая равенством теплопродук­ции и теплоотдачи, не является единственным условием теплового ком­форта человека. Должны быть соблюдены и другие условия, например: доля теплоотдачи за счет испарения влаги с поверхности кожи должна составлять не более 30% от суммарной теплоотдачи; разница средне­взвешенной температуры кожи и температуры кожи на отдельных учас­тках поверхности тела должна иметь определенные значения и т.д.

Основными принципами гигиенического нормирования парамет­ ров микроклимата в помещениях жилых и общественных зданий явля­ ются :

а ) гигиеническое нормирование дифференцированных величин оптимальных и допустимых параметров микроклимата , учет суточной и сезонной ритмики колебаний физиологических функций, а также акклиматизации человека к определенным климатическим поясам.

Допустимые параметры, при их комплексном воздействии, могут вы­зывать изменения теплового состояния, незначительные дискомфорт­ные тепловые ощущения. При этом может снижаться работоспособность человека, но не нарушается его здоровье;

б ) дифференцированное нормирование параметров микроклимата
в
отношении возрастных групп населения ;

в ) учет при гигиеническом нормировании оптимальных и допусти­
мых
параметров микроклимата , уровня энерготрат ( активности ) и теп­
лозащитных
показателей одежды соответствующих групп населения .

Иллюстрацией к сказанному является следующее. Многообразие климатических условий в РФ исключает возможность установления еди­ных параметров для всей территории страны. Например, в зимний пери­од года оптимальными величинами температуры воздуха в жилых поме­щениях считаются следующие стандарты: для северных районов 21 - 22°С, для зоны умеренного климата - 18-20°С, для южных широт 17- 18°С.

Безусловно, приведенные стандарты температуры воздуха рассчита­ны на «среднего» человека, т.к. для мужчин и женщин, особенно для стариков и детей, лиц с ослабленной функцией терморегуляции, опти­мальные температуры воздуха в помещениях будут различными.

Для установления определенного уровня теплового комфорта име­ет большое значение характер одежды. Известно, например, что более высокие нормы температуры, принятые для жилых зданий в США по сравнению с Англией, в значительной мере объясняются различием в тканях одежды, которую носят зимой в этих странах.

В целом гигиеническое нормирование тепловых факторов должно обеспечивать :

комплексность ;

дифференцированность ;

гарантированность .

Последний принцип обозначает, что нормируемые параметры мик­роклимата должны гарантировать сохранение здоровья и работоспо­собности даже человеку с пониженной переносимостью колебаний фак­торов окружающей среды.

Например, верхняя граница скорости движения воздуха лимитирует­ся и по той причине, что при скорости 0,5 м/сек. и более увеличивается число жалоб на дискомфортные ощущения в области глаз и верхних дыхательных путей (отмечались сухость слизистых оболочек, резь в гла­зах, слезотечение, затруднение носового дыхания).

Нижняя граница скорости движения воздуха определяется тем, что легкое движение воздуха не только сдувает обволакивающий человека насыщенный водяными парами и перегретый слой воздуха, но и являет­ся тактильным стимулятором сложнорефлекторных процессов термо­регуляции. Поэтому оптимальной величиной скорости движения возду­ха в жилых помещениях является 0,1 м / сек . Допустимая величина дан­ного фактора составляет 0,25 м/сек. Многие авторы оценивают величи­ну 0,25 м/сек. как верхнюю границу оптимальных значений данного

фактора микроклимата.

Нормирование влажности воздуха обусловлено в том числе ее зна­чимостью в обеспечении должного уровня влажности кожи человека , слизистых глаз и верхних дыхательных путей . Установлено также, что «сухой» воздух способствует увеличению бактериальной и химической загрязненности воздушной среды (например, за счет увеличения испаре­ния и летучести химических веществ). Перечисленные причины обус­ловливают как оптимальную величину относительной влажности возду­ха 40-60%. Допустимой является относительная влажность 30-70%. Как отмечалось выше, оптимальные значения температуры воздуха в помещениях зависят от многих причин и будут обеспечивать комфорт­ное состояние человека только при сочетании этих температур с други­ми факторами микроклимата, имеющими также оптимальные значения. Следует отметить, что по данным разных авторов оптимальные ве­личины температуры и скорости движения воздуха имеют определен­ные различия, Величины температуры,

относительной влажности и скорости движения воздуха

в жилых, общественных и административных помещениях,

В ряде случаев климатические условия (жаркий или холодный кли­мат), технологические несовершенства жилых и общественных зданий, недостатки в использовании факторов, регулирующих микроклимат в помещениях, требую нормирования допустимых параметров микрокли­мата, изложенных в таблице 5.

Таблица 5 Величины факторов микроклимата в жилых, общественных и административных помещениях, рекомендуемые в качестве допустимых

Проблема нормирования микроклимата помещений в летнее вре­мя наиболее актуальна для районов с жарким климатом.

Так, одни исследователи считают, что оптимальные параметры тем­пературы воздуха в условиях жаркого сухого климата колеблются в пределах от 21 до 28°С, при относительной влажности 25-60% и скоро­сти движения воздуха 0,1-0,25 м/с. Другие ученые принимают за вер­хнюю границу оптимальных условий температуру воздуха 24-25°С.

Вместе с тем очевидно, что при высокой температуре и влажности воздуха значительно уменьшается теплоотдача путем испарения, и пере­гревание организма наступает при более низкой температуре воздуха. Отсюда следует, что повышение температуры воздуха требует соответ­ствующего снижения его влажности.

Нормирование микроклимата производственных помещений отли­чается большей дифференцированностью и большей разницей опти­мальных значений основных физических факторов микроклимата . Эти отличия зависят от категорий работ по уровню энерготрат (5 категорий) и теплового излучения от внутренних поверхностей конструкций (таб­лица 6).

В тех случаях, когда особенности технологии производства, техни­ческие трудности и большие экономические затраты не позволяют обес­печить оптимальные величины параметров микроклимата, устанавлива­ются допустимые значения микроклимата на рабочих местах. Это озна­чает, что при таких условиях тепловое состояние людей сохранится на допустимом уровне в течение 8-часовой рабочей смены (таблица 7).

С точки зрения обеспечения теплового комфорта человека важное значение имеет величина перепадов температуры воздуха. Градиент по высоте помещения не должен превышать 2°С на каждый метр высоты. Повышение вертикального перепада более 3°С может привести к ох­лаждению конечностей и рефлекторным изменениям температуры вер­хних дыхательных путей.

Разница температур в горизонтальном направлении должна состав­лять не более 2-3°С от наружной до внутренней стены.

Нормативы температуры воздуха помещений удовлетворяют гигие­ническим требованиям только в том случае, если температура внутрен­них поверхностей стен ниже температуры комнатного воздуха не бо­лее чем на 2-3°С. Более низкая температура стен и окружающих пред­метов повышает радиационные потери тепла, что вызывает ощущение дискомфорта.

Особую ответственность и сложность представляет гигиеническое нормирование микроклимата больничных помещений.

Нормативы факторов микроклимата больничных помещений должны учитывать осо­ бенности теплового состояния больного , его возраст , характер и стадию патологического процесса , время суток и сезон года , климатическое районирование региона .

Средства улучшения микроклимата помещений

Комфортные условия микроклимата обеспечиваются, прежде всего, системами отопления и вентиляции, устройствами кондиционирования воздуха. Для отопления жилищ, школ, дошкольных учреждений, больниц и большинства общественных зданий наиболее используемым является центральное водяное отопление. Схема такого отопления включает: генератор тепла (котел, бойлер), разводящие трубы и стояки, обогрева­тельные приборы (радиаторы). Во избежание ожогов и возгорания пыли температура поверхности радиаторов (батарей) водяного отопления не должна превышать 80°С. Тепло от радиаторов отдается в помещение путем контакта их поверхности с воздухом. Поэтому подобное отопле­ние называется конвекционным.

Паровое отопление из-за высокой температуры поверхности ради­аторов не пригодно для обогрева жилых и общественных зданий.

В последние годы все чаще используется центральное панельно-лучистое отопление. При этой системе отопительные приборы пред­ставляют собой систему нагревательных труб в бетонных панелях, кото-

рые могут встраиваться в стены, пол или потолок. Через трубы пропуска­ют горячую воду. Панели образуют большую теплоизлучающую поверх­ность, отдающую лучистое тепло всем другим поверхностям в помеще­нии. Панели в стенах нагревают до 30-45°С, в полу - до 24-2б°С, в потолке до 24-28°С. При панельном отоплении обеспечивается равно­мерная температура воздуха по вертикали и горизонтали. Лучистое ото­пление качественно изменяет теплообмен человека: уменьшаются по­тери излучением и соответственно могут повыситься потери конвекци­ей. Благодаря этому тепловой комфорт достигается при более низких температурах воздуха. Это позволяет лучше и чаще проветривать поме­щения. Возможность пониженных температур воздуха (менее 18°С) при лучистом отоплении, имеет существенное значение для некоторых кате­горий больных (с сердечно-сосудистой патологией, нарушением функ­ций внешнего дыхания, для дерматологических и др.).

Возможность дышать более холодным воздухом, чем при конвекцион­ном отоплении, является одним из основных физиологических преиму­ществ лучистого отопления, т.к. при снижении температуры увеличивает­ся парциальное давление кислорода. Кроме того, лучистое тепло прони­кает вглубь тканей и, воздействуя непосредственно на их клеточные эле­менты, благоприятно влияет на обменные процессы в организме.

Летом лучистая система отопления может использоваться для про­пускания холодной воды для радиационного охлаждения помещения. Все большее применение находят централизованные и локальные системы кондиционирования. Автономные кондиционеры позволя­ют в помещениях объемом до 150-180 м 3 поддерживать температуру воздуха в пределах 18-25°С, относительную влажность 40-60%, ско­рость движения воздуха - до 0,3 м/сек.

В районах с жарким климатом актуальной является борьба с пере­гревом помещений. Для этого используется правильная ориентация окон по сторонам света. Ориентация окон на юго-запад не рекомендуются в условиях жаркого и теплого климата из-за перегрева помещений.

Наиболее благоприятной является ориентация окон на восток , юго - восток и юг . Защита помещений от солнечной радиации и перегрева достигается также за счет :

1) увеличения толщины сильно инсолируемых стен до 0,7 м и бо­лее ;

2) увеличения высоты помещений - до 3,2 м;

3) защиты стен и окон от солнечных лучей верандами и зелеными насаждениями ;

4) окраски наружных стен в белый цвет для лучшего отражения

солнечных лучей ;

5) устройства над окнами козырьков и других солнцезащитных со -

оружений ;

6) применения ставен , жалюзи или штор , что снижает температуру воздуха в помещении на 3-4,5 °С ;

7) сквозного проветривания ;

8) использования внутри помещений вентиляторов для охлаждения тела движущимся воздухом ;

9) применения кондиционеров .

В закрытых помещениях различного типа во время пребывания там людей меняются химический состав и физические свойства воздуха: нарастает количество углекислого газа, водяных паров, тяжелых ионов, уменьшается содержание кислорода, легких ионов, повышаются темпе­ратура, запыленность и бактериальная загрязненность, появляются орга­нические примеси.

Для улучшения микроклимата и сохранения чистоты воздуха важ­нейшим средством является вентиляция и естественное проветрива­ние (аэрация) помещений.

Естественная вентиляция помещений обусловливается разностью температур наружного и комнатного воздуха и силой ветра. Нагретый в помещении воздух поднимается вверх и уходит из комнаты через окон­ные и дверные проемы. На его место в нижнюю часть помещения уст­ремляется холодный атмосферный воздух.

Механическая вентиляция может быть приточной, вытяжной или приточно-вытяжной.

Приточная вентиляция подает свежий воздух в помещение венти­лятором, загрязненный воздух удаляется естественным путем. Одну при­точную вентиляцию устраивают редко (например, на производстве для улучшения условий микроклимата).

При вытяжной вентиляции воздух из помещений отсасывается с помощью вентилятора, а свежий воздух поступает естественным путем. Вытяжную вентиляцию применяют тогда, когда помещения загрязняют­ся вредными газами, пылью или водяными парами.

Приточно - вытяжная вентиляция позволяет вентилятором засасы­вать атмосферный воздух и после очистки, подогрева и увлажнения он подается через приточные каналы в помещение. Через вытяжные кана­лы воздух отсасывается из помещения другим вентилятором и выбрасы­вается наружу.

Приточно-вытяжная вентиляция устраивается в больницах, производ­ственных помещениях, зрелищных учреждениях и др.

Чрезвычайно ответственно правильное устройство вентиляции в лечебно-профилактических учреждениях. Для очистки наружного воз­духа от пыли применяются масляные и волокнистые фильтры (первая ступень очистки воздуха). Воздух, подаваемый в операционные, наркоз­ные, родовые, послеоперационные палаты, реанимационные, ожоговые, палаты для новорожденных, грудных, недоношенных и травмированных

детей, дополнительно очищается в бактериальных фильтрах (вторая сту­пень очистки воздуха).

К организации воздухообмена операционных блоков предъявляют­ся особые требования, целью которых является исключение возможно­сти переноса инфекции из палатных и других смежных с операционным блоком помещений. В операционной приток должен преобладать над вытяжкой. Это направляет движение воздушных потоков из операцион­ной в прилегающие к ней помещения, а из этих помещений в коридор. В коридорах необходимо устройство вытяжной вентиляции.

Необходимо предусматривать изолированные системы вентиляции для чистых и гнойных операционных, для родовых блоков, реанимаци­онных отделений, перевязочных, рентгеновских кабинетов и др.

В детских учреждениях широкое распространение получило со­ четание центральной вытяжной вентиляции с местным притоком неиз­ мененного атмосферного воздуха - с аэрацией . В теплое и переход­ное время года должна проводиться непрерывная аэрация помещений в присутствии детей. Приток воздуха осуществляется через фрамуги, створки окон. При правильном устройстве фрамуг наружный воздух направляет­ся к потолку.

При низкой наружной температуре воздуха аэрация групповых и игральных комнат дошкольных учреждений должна проводиться до прихода детей и заканчиваться за 30 минут до их появления.

В помещениях спален и спален-веранд фрамуги закрывают за 30 минут до сна детей, затем открывают во время сна и вновь закрывают за 30 минут до подъема.

Учебные помещения в школах должны проветриваться во время пе­ремен, а рекреационные - во время уроков. До начала занятий в школах и после их окончания необходимо осуществлять сквозное проветрива­ние учебных помещений. Длительность сквозного проветривания опре­деляется погодными условиями и в зависимости от этого составляет от 1-й до 30 минут. Уроки физкультуры следует проводить в хорошо аэри­руемых залах. Для этого необходимо во время занятий открывать одно-два окна с подветренной стороны при температуре наружного воздуха выше +5°С и слабом ветре. При более низкой температуре и большей скорости ветра занятия в зале проводятся при открытых фрамугах, а сквоз­ное проветривание - во время перемен. При достижении в помещении температуры воздуха до 14-15°С проветривание зала прекращается.

Таким образом, использование средств по оптимизации микрокли­мата помещений является совершенно необходимым, т.к. с их помощью улучшается теплоощущение, значительно повышается работоспособность, улучшается состояние больных и т.д. В ряде климатических районов, а также в холодное или жаркое время года, вне зависимости от климата отопление и вентиляция помещений являются непременными фактора­ми для нормальной жизнедеятельности людей.

Требования к вентиляции и отоплению, естественному и искусственному освещению.
Основные источники загрязнения воздуха закрытых помещений. Роль полимерных материалов. Химическое и бактериальное загрязнение воздуха помещений, санитарно-показательное значение содержания двуокиси углерода, формальдегида, фенола и др. в воздухе помещений.

4. Требования к отоплению, вентиляции, микроклимату и воздушной среде помещений

Выдержка из Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.2.1002-00

"Санитарно-эпидемиологические требования к жилым зданиям и помещениям"

4.1. Системы отопления и вентиляции должны обеспечивать допустимые условия микроклимата и воздушной среды помещений.

Оптимальные и допустимые параметры микроклимата в помещениях жилых зданий приведены в прилож.1.

4.2. Нагревательные приборы должны быть легко доступны для уборки. При водяном отоплении температура поверхности нагревательных приборов не должна превышать 90°С. Для приборов с температурой нагревательной поверхности более 75°С необходимо предусматривать защитные ограждения.

4.3. Помещения первых этажей жилых зданий, расположенных в 1 климатическом районе, должны иметь системы отопления для равномерного прогрева поверхности полов.

4.4. Устройство автономных котельных для теплоснабжения жилых зданий допускается при наличии положительного заключения органов и учреждений государственной санитарно-эпидемиологической службы.

4.5. Естественная вентиляция жилых помещений должна осуществляться путем притока воздуха через форточки, либо через специальные отверстия в оконных створках и вентиляционные каналы. Вытяжные отверстия каналов должны предусматриваться на кухнях, в ванных комнатах, уборных и сушильных шкафах.

Устройство вентиляционной системы должно исключать поступление воздуха из одной квартиры в другую.

Не допускается объединение вентиляционных каналов кухонь и санитарных узлов с жилыми комнатами.

4.7. Концентрация химических веществ в воздухе жилых помещений при сдаче их в эксплуатацию не должна превышать среднесуточных предельно допустимых концентраций (ПДК) загрязняющих веществ, установленных для атмосферного воздуха населенных мест, а при отсутствии среднесуточных ПДК не превышать максимальные разовые ПДК.

5. Требования к естественному и искусственному освещению и инсоляции

5.1. Жилые комнаты и кухни должны иметь непосредственное естественное освещение.

5.2. Коэффициент естественной освещенности (КЕО) в жилых комнатах и кухнях должен быть не менее 0,5% в середине помещения.


5.3. Жилые здания должны обеспечиваться инсоляцией согласно действующим санитарным нормам.

Длительность инсоляции в весенне-осенний период года в жилых помещениях (не менее чем в одной комнате 1 - 3-комнатных квартир и не менее чем в двух комнатах 4 - 5-комнатных квартир) должна быть:

В центральной зоне (58-48°с.ш.) - не менее 2,5 часов в день в период с 22 марта по 22 сентября;

В северной зоне (севернее 58°с.ш.) - не менее 3 часов в день в период с 22 апреля по 22 августа;

В южной зоне (южнее 48°с.ш.) - не менее 2 часов в день в период с 22 февраля по 22 октября.

5.4. В случае прерывистого режима инсоляции суммарная длительность инсоляции должна быть увеличена на 0,5 ч. В жилых домах меридионального типа для квартир, где одновременно инсолируются все жилые помещения, а также в реконструируемой жилой застройке или в особо сложных градостроительных условиях (исторически ценная городская среда, зона общегородского или районного центра) допускается сокращение продолжительности инсоляции, но не более чем на 0,5 ч.

Микроклиматические факторы. К числу наиболее важных, определяющих

комфорт в жилище, принадлежит метеорологический фактор. Влияние на человека тех или иных микроклиматических факторов создает различные условия для теплообмена организма со средой и обеспечивает определенное функциональное состояние, которое называется тепловым. Оно определяется

не только в субъективном теплоощущении человека, но и в характере тех терморегуляторных процессов, которые происходят в организме при изменении метеорологических условий. Тепловое состояние, наконец, влияет на все физиологические системы организма и определяет функциональные возможности

человека, его здоровье. Это делает актуальным нормирование оптимальных

параметров микроклимата в помещениях жилых и общественных зданий.

При оценке теплового состояния организма выделяют зону теплового комфорта.

Под зоной теплового комфорта понимают такой комплекс метеорологических

условий, при которых терморегуляторная система организма находится

в состоянии наименьшего напряжения (или физиологического покоя), а все

другие физиологические функции осуществляются на уровне, наиболее благоприятном

для отдыха и восстановления сил организма после его нагрузки.



Просмотров