Чем характеризуется наземно воздушная среда. Наземно-воздушная среда жизни, ее характеристика и формы адаптации к ней

Слоистое строение оболочек Земли и состав атмосферы; световой режим как фактор наземно-воздушной среды; адаптации организмов к различным световым режимам; температурный режим в наземно-воздушной среде, температурные адаптации; загрязнения наземно-воздушной среды

Наземно-воздушная среда - самая сложная по экологическим условиям жизни. Жизнь на суше потребовала таких морфологических и биохимических приспособлений, которые оказались возможны лишь при достаточно высоком уровне организации как растений, так и животных. На рис. 2 изображена схема оболочек Земли. К наземновоздушной среде можно отнести наружную часть литосферы и нижнюю часть атмосферы. Атмосфера, в свою очередь, имеет довольно четко выраженное слоистое строение. Нижние слои атмосферы отображены на рис. 2. Поскольку основная масса живых существ обитает в тропосфере, именно этот слой атмосферы входит в понятие наземно-воздушной среды. Тропосфера - самая нижняя часть атмосферы. Высота ее в разных областях от 7 до 18 км, в ней содержится основная масса водяных паров, которые, конденсируясь, образуют облака. В тропосфере происходит мощное перемещение воздуха, и температура падает в 1 среднем на 0,6°С с поднятием на каждые 100 м.

Атмосфера Земли состоит из механической смеси газов, химически не действующих друг на друга. В ней происходят все метеорологические процессы, совокупность которых называется климатом. Верхней границей атмосферы условно считается 2000 км, т. е. ее высота составляет У 3 часть радиуса Земли. В атмосфере непрерывно протекают различные физические процессы: изменяются температура, влажность, происходит конденсация водяных паров, возникают туманы, облака, солнечные лучи нагревают атмосферу, ионизируя ее, и т. д.

Основная масса воздуха сосредоточена в слое 70 км. Сухой воздух содержит (в %): азота - 78,08; кислорода - 20,95; аргона - 0,93; углекислого газа - 0,03. Остальных газов очень мало. Это водород, неон, гелий, криптон, радон, ксенон - большинство инертных газов.

Воздух атмосферы является одним из основных жизненно важных элементов окружающей среды. Он надежно защищает планету от вредного космического излучения. Под воздействием атмосферы на Земле совершаются важнейшие геологические процессы, которые в конечном итоге формируют ландшафт.

Атмосферный воздух относится к категории неисчерпаемых ресурсов, но интенсивное развитие промышленности, рост городов, расширение исследований космического пространства усиливают отрицательное антропогенное воздействие на атмосферу. Поэтому вопрос охраны атмосферного воздуха становится все более актуальным.

Кроме воздуха определенного состава, на живые организмы, населяющие наземно-воздушную среду, воздействуют давление воздуха и влажность, а также солнечная радиация и температура.

Рис. 2.

Световой режим, или солнечная радиация. Для осуществления процессов жизнедеятельности всем живым организмам необходима энергия, поступающая извне. Основным ее источником является солнечная радиация.

Действие разных участков спектра солнечного излучения на живые организмы различно. Известно, что в спектре солнечных лучей выделяют ультрафиолетовую, видимую и инфракрасную области, которые, в свою очередь, состоят из световых волн разной длины (рис. 3).

Среди ультрафиолетовых лучей (УФЛ) до поверхности Земли доходят только длинноволновые (290-300 нм), а коротковолновые (менее 290 нм), губительные для всего живого, практически полностью поглощаются на высоте около 20-25 км озоновым экраном - тонким слоем атмосферы, содержащим молекулы 0 3 (см. рис. 2).


Рис. 3. Биологическое действие разных участков спектра солнечного излучения: 1 - денатурация белка; 2 - интенсивность фотосинтеза пшеницы; 3 - спектральная чувствительность глаза человека. Заштрихована область ультрафиолетового излучения, не проникающая

сквозь атмосферу

Длинноволновые ультрафиолетовые лучи (300-400 нм), обладающие большой энергией фотонов, имеют высокую химическую и мутагенную активность. Большие дозы их вредны для организмов.

В диапазоне 250-300 нм УФЛ оказывают мощное бактерицидное действие и вызывают у животных образование антирахитного витамина Д, т. е. в небольших дозах УФЛ необходимы человеку и животным. При длине 300-400 нм УФЛ вызывают у человека загар, который является защитной реакцией кожи.

Инфракрасные лучи (ИКЛ) с длиной волны более 750 нм оказывают тепловое действие, не воспринимаются глазом человека и обеспечивают тепловой режим планеты. Особенно важны эти лучи для холоднокровных животных (насекомых, пресмыкающихся), которые используют их для повышения температуры тела (бабочки, ящерицы, змеи) или для охоты (клещи, пауки, змеи).

В настоящее время изготовлено много приборов, в которых используется та или иная часть спектра: ультрафиолетовые облучатели, бытовые приборы с инфракрасным излучением для быстрого приготовления пищи и т. д.

Видимые лучи с длиной волны 400-750 нм имеют большое значение для всех живых организмов.

Свет как условие жизни растений. Свет совершенно необходим растениям. Зеленые растения используют солнечную энергию именно этой области спектра, улавливая ее в процессе фотосинтеза:

В связи с разной потребностью в световой энергии у растений возникают различные морфологические и физиологические адаптации к световому режиму обитания.

Адаптация - это системы регулирования обменных процессов и физиологических особенностей, обеспечивающих максимальную приспособленность организмов к условиям окружающей среды.

В соответствии с адаптациями к световому режиму растения делят на следующие экологические группы.

  • 1. Светолюбивые - имеющие следующие морфологические адаптации: сильноветвящиеся побеги с укороченными междоузлиями, розе- точные; листья мелкие или с сильно рассеченной листовой пластинкой, нередко с восковым налетом или опушением, часто повернуты ребром к свету (например, акация, мимоза, софора, василек, ковыль, сосна, тюльпан).
  • 2. Тенелюбивые - постоянно находящиеся в условиях сильного затенения. Листья у них темно-зеленого цвета, располагаются горизонтально. Это растения нижних ярусов лесов (например, грушанки, майник двулистный, папоротники и т. д.). При недостатке света живут глубоководные растения (красные и бурые водоросли).
  • 3. Теневыносливые - могут переносить затенение, но хорошо растут и на свету (например, лесные травы и кустарники, растущие и в затененных местах, и на опушках, а также дуб, бук, граб, ель).

По отношению к свету растения в лесу располагаются ярусами. Кроме того, даже у одного и того же дерева листья по-разному улавливают свет в зависимости от яруса. Как правило, они составляют листовую мозаику, т. е. располагаются таким образом, чтобы увеличить листовую поверхность для лучшего улавливания света.

Световой режим меняется в зависимости от географической широты, времени суток и времени года. В связи с вращением Земли световой режим имеет отчетливую суточную и сезонную ритмичность. Реакция организма на смену режима освещения называется фотопериодизмом. В связи с фотопериодизмом в организме изменяются процессы обмена веществ, роста и развития.

С фотопериодизмом у растений связано явление фототропизма - движение отдельных органов растения к свету. Например, движение корзинки подсолнуха в течение дня вслед за солнцем, раскрывание соцветий у одуванчика и вьюнка утром и закрывание их вечером, и наоборот - открывание вечером цветов ночной фиалки и душистого табака и закрывание их утром (суточный фотопериодизм).

Сезонный фотопериодизм наблюдается в широтах со сменой времен года (умеренные и северные широты). С наступлением длинного дня (весной) в растениях наблюдается активное сокодвижение, почки набухают и раскрываются. При наступлении осеннего короткого дня растения сбрасывают листву и готовятся к зимнему покою. Необходимо различать растения «короткого дня» - они распространены в субтропиках (хризантемы, перилла, рис, соя, дурнишник, конопля); и растения «длинного дня» (рудбекия, хлебные злаки, крестоцветные, укроп) - они распространены в основном в умеренных и приполярных широтах. Растения «длинного дня» не могут развиваться на юге (они не дают семян), то же относится и к растениям «короткого дня», если их выращивать на севере.

Свет как условие жизни животных. Для животных свет не является фактором первостепенного значения, как для зеленых растений, так как они существуют за счет энергии солнца, накопленной этими растениями. Тем не менее животным нужен свет определенного спектрального состава. В основном свет необходим им для зрительной ориентации в пространстве. Правда, не у всех животных есть глаза. У примитивных это просто фоточувствительные клетки или даже место в клетке (например, стигма у одноклеточных организмов или «светочувствительный глазок»).

Образное видение возможно только при достаточно сложном устройстве глаза. Например, пауки могут различать контуры движущихся предметов только на расстоянии 1-2 см. Глаза позвоночных воспринимают форму и размеры предметов, их цвет и определяют расстояние до них.

Видимый свет - это условное понятие для разных видов животных. Для человека это лучи от фиолетового до темно-красного (вспомним цвета радуги). Гремучие змеи, например, воспринимают инфракрасную часть спектра. Пчелы же различают многоцветье ультрафиолетовых лучей, но не воспринимают красных. Спектр видимого света для них сдвинут в ультрафиолетовую область.

Развитие органов зрения во многом зависит от экологической обстановки и условий среды обитания организмов. Так, у постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы: у слепых жужелиц, летучих мышей, некоторых амфибий и рыб.

Способность к цветовому зрению зависит также от того, дневной или ночной образ жизни ведут организмы. Собачьи, кошачьи, хомяки (которые питаются, охотясь в сумерках) все видят в черно-белом изображении. Такое же зрение и у ночных птиц - сов, козодоев. Дневные же птицы имеют хорошо развитое цветовое зрение.

У животных и птиц также существуют приспособления к дневному и ночному образу жизни. Например, большинство копытных, медведи, волки, орлы, жаворонки активны днем, тогда как тигры, мыши, ежи, совы наибольшую активность проявляют ночью. Продолжительность светового дня влияет на наступление брачного периода, миграций и перелетов у птиц, спячки у млекопитающих и т. д.

Животные ориентируются с помощью органов зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая многие тысячи километров от гнездовий до мест зимовок. Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. Они способны к навигации, изменению ориентации, чтобы попасть в нужную точку Земли. Если птиц перевозят в клетках, то они правильно выбирают направление на зимовку из любой точки Земли. В сплошной туман птицы не летают, так как в процессе полета часто сбиваются с пути.

Среди насекомых способность к такого рода ориентации развита у пчел. В качестве ориентира они используют положение (высоту) Солнца.

Температурный режим в наземно-воздушной среде. Температурные адаптации. Известно, что жизнь есть способ существования белковых тел, поэтому границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0°С до +50°С. Однако некоторые организмы обладают специализированными ферментными системами и приспособлены к активному существованию при температурах, выходящих за указанные пределы.

Виды, предпочитающие холод (их называют криофилами ), могут сохранять активность клеток до -8°... -10°С. Переохлаждение способны выносить бактерии, грибы, лишайники, мхи, членистоногие. Наши деревья также не погибают при низких температурах. Важно только, чтобы в период подготовки к зиме вода в клетках растений перешла в особое состояние, а не превратилась в лед - тогда клетки погибают. Растения преодолевают переохлаждение, накапливая в своих клетках и тканях вещества - осмотики-протекторы: различные сахара, аминокислоты, спирты, которые «выкачивают» излишнюю воду, не давая ей превратиться в лед.

Существует группа видов организмов, оптимум жизни которых - высокие температуры, их называют термофилами. Это разнообразные черви, насекомые, клещи, обитающие в пустынях и жарких полупустынях, это бактерии горячих источников. Есть источники с температурой + 70°С, содержащие живых обитателей - сине-зеленые водоросли (цианобактерии), некоторые виды моллюсков.

Если же принимать во внимание и латентные (длительно покоящиеся) формы организмов, такие, как споры некоторых бактерий, цисты, споры и семена растений, то они могут выдерживать значительно отклоняющиеся от нормы температуры. Споры бактерий могут выдерживать нагревание до 180°С. Многие семена, пыльца растений, цисты, одноклеточные водоросли выдерживают замораживание в жидком азоте (при -195,8°С), а затем длительное хранение при -70°С. После размораживания и помещения в благоприятные условия и достаточную питательную среду эти клетки могут стать вновь активными и начать размножаться.

Временная приостановка всех жизненных процессов организма называется анабиозом. Анабиоз может наступать у животных как при понижении температуры среды, так и при ее повышении. Например, у змей и ящериц при повышении температуры воздуха выше 45°С наступает тепловое оцепенение. У земноводных при температуре воды ниже 4°С жизненная активность практически отсутствует. Из состояния анабиоза живые существа могут возвратиться к нормальной жизни только в том случае, если не нарушена структура макромолекул в их клетках (в первую очередь ДНК и белков).

Устойчивость к температурным колебаниям у наземных обитателей различна.

Температурные адаптации у растений. Растения, будучи организмами неподвижными, вынуждены приспосабливаться к тем температурным колебаниям, которые существуют в местах их обитания. Они обладают специфическими системами, предохраняющими от переохлаждения или перегрева. Транспирация - это система испарения воды растениями через устьичный аппарат, которая спасает их от перегрева. Некоторые растения приобрели даже устойчивость к пожарам - их называют пирофитами. Пожары часто бывают в саваннах, кустарниковых зарослях. У деревьев саванн толстая кора, пропитанная огнеупорными веществами. Плоды и семена их имеют толстые, одревесневшие покровы, которые растрескиваются, когда охвачены огнем, что помогает семенам попасть в землю.

Температурные адаптации животных. Животные, по сравнению с растениями, обладают большими возможностями приспосабливаться к изменению температуры, так как способны передвигаться, обладают мускулатурой и производят собственное внутреннее тепло. В зависимости от механизмов поддержания постоянной температуры тела различают пойкилотермных (холоднокровных) и гомойотермных (теплокровных) животных.

Пойкилотермные - это насекомые, рыбы, земноводные, пресмыкающиеся. Их температура тела меняется вместе с температурой окружающей среды.

Гомойотермные - животные с постоянной температурой тела, способные ее поддерживать даже при сильных колебаниях наружной температуры (это млекопитающие и птицы).

Основные пути температурных адаптаций:

  • 1) химическая терморегуляция - увеличение теплопродукции в ответ на понижение температуры окружающей среды;
  • 2) физическая терморегуляция - способность удерживать тепло благодаря волосяному и перьевому покровам, распределению жировых запасов, возможности испарительной теплоотдачи и т. п.;

3) поведенческая терморегуляция - способность перемещаться из мест крайних температур в места оптимальных температур. Это основной путь терморегуляции у пойкилотермных животных. При повышении или понижении температуры они стремятся изменить позу или спрятаться в тень, в нору. Пчелы, муравьи, термиты строят гнезда с хорошо регулируемой внутри них температурой.

У теплокровных система терморегуляции значительно усовершенствовалась (хотя она слаба у детенышей и птенцов).

Для иллюстрации совершенства терморегуляции у высших животных и человека можно привести такой пример. Около 200 лет назад доктор Ч. Блэгден в Англии поставил такой опыт: он вместе с друзьями и собакой провел 45 мин в сухой камере при +126°С без последствий для здоровья. Любители финской бани знают, что можно проводить в сауне с температурой более + 100°С некоторое время (для каждого - свое), и это полезно для здоровья. Но мы также знаем, что, если держать при такой температуре кусок мяса, он сварится.

При действии холода у теплокровных усиливаются окислительные процессы, особенно в мышцах. Вступает в действие химическая терморегуляция. Отмечается мышечная дрожь, приводящая к выделению дополнительного тепла. Особенно усиливается обмен липидов, так как в жирах содержится значительный запас химической энергии. Поэтому накопление жировых запасов обеспечивает лучшую терморегуляцию.

Усиленное производство теплопродукции сопровождается потреблением большого количества пищи. Так, птицам, остающимся на зиму, нужно много корма, им страшны не морозы, а бескормица. При хорошем урожае ели и сосны клесты, например, даже зимой выводят птенцов. У людей - жителей суровых сибирских или северных районов - из поколения в поколение вырабатывалось высококалорийное меню - традиционные пельмени и другая калорийная пища. Поэтому, прежде чем следовать модным западным диетам и отвергать пищу предков, нужно вспомнить о существующей в природе целесообразности, лежащей в основе многолетних традиций людей.

Эффективным механизмом регуляции теплообмена у животных, как и у растений, является испарение воды путем потоотделения или через слизистые оболочки рта и верхних дыхательных путей. Это пример физической терморегуляции. Человек при сильной жаре может выделить до 12 л пота в день, рассеивая при этом тепла в 10 раз больше нормы. Выделяемая вода частично должна возвращаться через питье.

Теплокровным животным, так же как и холоднокровным, свойственна поведенческая терморегуляция. В норах живущих под землей животных колебания температур тем меньше, чем глубже нора. В искусно построенных гнездах пчел поддерживается ровный, благоприятный микроклимат. Особый интерес представляет групповое поведение животных. Например, пингвины в сильный мороз и буран образуют «черепаху» - плотную кучу. Те, кто оказался с краю, постепенно пробираются внутрь, где поддерживается температура около +37°С. Там же, внутри, помещаются и детеныши.

Таким образом, для того чтобы жить и размножаться в определенных условиях наземно-воздушной среды, у животных и растений в процессе эволюции выработались самые разнообразные приспособления и системы соответствия этой среде обитания.

Загрязнения наземно-воздушной среды. В последнее время все более значительным внешним фактором, изменяющим наземно-возду- шую среду обитания, становится антропогенный фактор.

Атмосфера, как и биосфера, имеет свойство самоочищения, или сохранения равновесия. Однако объем и скорость современных загрязнений атмосферы превосходят природные возможности их обезвреживания.

Во-первых, это природное загрязнение - различная пыль: минеральная (продукты выветривания и разрушения горных пород), органическая (аэропланктон - бактерии, вирусы, пыльца растений) и космическая (частицы, попадающие в атмосферу из космоса).

Во-вторых, это искусственные (антропогенные) загрязнения - промышленные, транспортные и бытовые выбросы в атмосферу (пыль цементных заводов, сажа, различные газы, радиоактивное загрязнение, пестициды).

По приблизительным подсчетам, в атмосферу за последние 100 лет выброшено 1,5 млн т мышьяка; 1 млн т никеля; 1,35 млн т кремния, 900 тыс. т кобальта, 600 тыс. т цинка, столько же меди и других металлов.

Химические предприятия выбрасывают углекислый газ, окись железа, оксиды азота, хлор. Из пестицидов особенно токсичны фосфо- рорганические соединения, из которых в атмосфере получаются еще более токсичные.

В результате выбросов в городах, где снижено ультрафиолетовое излучение и наблюдается большое скопление людей, происходит деградация воздушного бассейна, одним из проявлений которой является смог.

Смог бывает «классический» (смесь токсичных туманов, возникающих при незначительной облачности) и «фотохимический » (смесь едких газов и аэрозолей, которая образуется без тумана в результате фотохимических реакций). Наиболее опасен лондонский и лос-анджелесский смог. Он поглощает до 25 % солнечного излучения и 80 % ультрафиолетовых лучей, от этого страдает городское население.

Наземно-воздушная среда является самой сложной для жизни организмов. Физические факторы, ее составляющие, очень разнообразны: свет, температура. Но организмы приспособились в ходе эволюции к этим меняющимся факторам и выработали системы адаптации для обеспечения чрезвычайной приспособленности к условиям обитания. Несмотря на неисчерпаемость воздуха как ресурса окружающей среды, качество его стремительно ухудшается. Загрязнение воздуха - самая опасная форма загрязнения окружающей среды.

Вопросы и задания для самоконтроля

  • 1. Объясните, почему наземно-воздушная среда является самой сложной для жизни организмов.
  • 2. Приведите примеры адаптаций у растений и животных к высоким и низким температурам.
  • 3. Почему температура оказывает сильное влияние на жизнедеятельность любых организмов?
  • 4. Проанализируйте, как свет влияет на жизнедеятельность растений и животных.
  • 5. Охарактеризуйте, что такое фотопериодизм.
  • 6. Докажите, что различные волны светового спектра по-разному воздействуют на живые организмы, приведите примеры. Перечислите, на какие группы подразделяются живые организмы по способу использования энергии, приведите примеры.
  • 7. Прокомментируйте, с чем связаны сезонные явления в природе и как на них реагируют растения и животные.
  • 8. Объясните, почему загрязнение наземно-воздушной среды представляет наибольшую опасность для живых организмов.

Жизнь на суше во многом зависит от состояния воздуха. Естественная смесь газов, сложившаяся в процессе эволюции Земли, — это и есть воздух, которым мы дышим.

Воздух как среда жизни направляет эволюционное развитие обитателей этой среды. Так, высокое содержание кислорода определяет возможность формирования высокого уровня энергетического метаболизма (обмена веществ между организмом и средой). Атмосферный воздух отличается низкой и изменчивой влажностью, что ограничило возможности освоения воздушной среды, а у ее обитателей обусловило эволюцию системы водно-солевого обмена и структуру органов дыхания. Следует также отметить низкую плотность воздуха в атмосфере, благодаря чему жизнь сосредоточена вблизи поверхности Земли и проникает в толщу атмосферы на высоту не более 50-70 м (кроны деревьев тропических лесов).

Основными компонентами атмосферного воздуха являются азот (N 2) — 78,08 %, кислород (0 2) — 20,9 %, аргон (Аr) — около 1 % и углекислый газ (С0 2) — 0,03 % (табл. 1).

Кислород появился на Земле примерно 2 млрд лет назад, когда происходило формообразование поверхности под воздействием активной вулканической деятельности. В течение последних 20 млн лет доля кислорода в воздухе постепенно возрастала (сегодня она составляет 21 %). Главную роль в этом играло развитие растительного мира суши и океана.

Таблица 1. Газовый состав атмосферы Земли

Атмосфера предохраняет Землю от метеоритной бомбардировки. Около 5 раз в год в атмосфере сгорают обломки метеоритов, комет и астероидов, мощность которых при встрече с Землей превысила бы мощность бомбы, сброшенной на Хиросиму. Большинство метеоритов никогда не достигает земной поверхности, они сгорают еще при вхождении с огромной скоростью в атмосферу. Ежегодно на Землю выпадает около 6 млн т космической пыли.

Кроме того, атмосфера способствует сохранению тепла на планете, которое в противном случае рассеивалось бы в холоде космического пространства. Сама же атмосфера благодаря силе притяжения не улетучивается.

На высоте 20-25 км от поверхности Земли находится защитный (слой), задерживающий губительную для всего живого ультрафиолетовую радиацию. Не будь его, такое излучение могло бы уничтожить жизнь на Земле. К сожалению, начиная с 80-90-х гг. XX в. наблюдается негативная тенденция к истончению и разрушению озонового экрана.

В ходе эволюции эта среда была освоена позже, чем водная. Ее особенность заключается в том, что она газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода. В ходе эволюции у живых организмов выработались необходимые анатомо-морфологические, физиологические, поведенческие и другие адаптации.

Животные в наземно-воздушной среде передвигаются по почве или по воздуху (птицы, насекомые), а растения укореняются в почве. В связи с этим, у животных появились легкие и трахеи, а у растений – устьичный аппарат, т.е. органы, которыми сухопутные обитатели планеты усваивают кислород прямо из воздуха. Сильное развитие получили скелетные органы, обеспечивающие автономность передвижения по суше и поддерживающие тела со всеми его органами в условиях незначительной плотности среды, в тысячи раз меньшей по сравнению с водой. Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток. Воздействия их на организмы неразрывно связано с движением воздуха и положения относительно морей и океанов и сильно отличаются от воздействия в водной среде (табл. 1).

Таблица 5

Условия обитания организмов воздушной и водной среды

(по Д. Ф. Мордухай-Болтовскому, 1974)

воздушной среды водной среды
Влажность Очень важное (часто в дефиците) Не имеет (всегда в избытке)
Плотность Незначительное(за исключением почвы) Большое по сравнению с ее ролью для обитателей воздушной среды
Давление Почти не имеет Большое (может достигать 1000 атмосфер)
Температура Существенное (колеблется в очень больших пределах – от -80 до +1ОО°С и более) Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)
Кислород Несущественное(большей частью в избытке) Существенное (часто в дефиците)
Взвешенные вещества Неважное; не используются в пищу (главным образом минеральные) Важное (источник пищи, особенно органические вещества)
Растворенные вещества в окружающей среде В некоторой степени (имеют значение только в почвенных растворах) Важное (в определенном количестве необходимы)

У животных и растений суши выработались свои, не менее оригинальные адаптации на неблагоприятные факторы среды: сложное строение тела и его покровов, периодичность и ритмика жизненных циклов, механизмы терморегуляции и пр. Выработалась целенаправленная подвижность животных в поисках пищи, появились переносимые ветром споры, семена и пыльца растений, а также растения и животные, жизнь которых всецело связана с воздушной средой. Сформировалась исключительно тесная функциональная, ресурсная и механическая взаимосвязь с почвой.

Многие из адаптаций были рассмотрены нами выше, в качестве примеров при характеристике абиотических факторов среды. Поэтому сейчас повторяться нет смысла, т.б., что к ним мы вернемся еще на практических занятиях

Почва как среда обитания

Земля - единственная из планет имеет почву (эдасфера, педосфера)– особенную, верхнюю оболочку суши. Эта оболочка сформировалась в исторически обозримое время – она ровесница сухопутной жизни на планете. Впервые на вопрос о происхождении почвы ответил М.В. Ломоносов ("О слоях земли"): "…почва произошла от согнития животных и растительных тел … долготою времени…". А великий русский ученый Вас. Вас. Докучаев (1899: 16) впервые назвал почву самостоятельным природным телом и доказал, что почва есть "…такое же самостоятельное естественноисторическое тело, как любое растение, любое животное, любой минерал … оно есть результат, функция совокупной, взаимной деятельности климата данной местности, ее растительных и животных организмов, рельефа и возраста страны…, наконец, подпочвы, т.е. грунтовых материнских горных пород. … Все эти агенты-почвообразователи, в сущности, совершенно равнозначные величины и принимают равноправное участие в образовании нормальной почвы…".

И уже современный известный ученый почвовед Н.А. Качинский ("Почва, ее свойства и жизнь", 1975) дает следующее определение почвы: "Под почвой надо понимать все поверхностные слои горных пород, переработанные и измененные совместным воздействием климата (свет, тепло, воздух, вода), растительных и животных организмов".

Основными структурными элементами почвы являются: минеральная основа, органическое вещество, воздух и вода.

Минеральная основа (скелет) (50-60% всей почвы) – это неорганическое вещество, образовавшееся в результате подстилающей горной (материнской, почвообразующей) породы в результате ее выветривания. Размеры скелетных частиц: от валунов и камней до мельчайших песчинок и илистых частиц. Физико-химические свойства почв обусловлены в основном составом почвообразующих пород.

От соотношения в почве глины и песка, размеров фрагментов, зависят проницаемость и пористость почвы, обеспечивающие циркуляцию, как воды, так и воздуха. В умеренном климате идеально, если почва образована равными количествами глины и песка, т.е. представляет суглинок. В этом случае почвам не грозит ни переувлажнение, не пересыхание. И то и другое одинаково губительно как для растений, так для и животных.

Органическое вещество – до 10% почвы, образуется из отмершей биомассы (растительная масса – опад листьев, ветвей и корней, валежные стволы, ветошь травы, организмы погибших животных), измельченной и переработанной в почвенный гумус микроорганизмами и определенными группами животных и растений. Более простые элементы, образовавшиеся в результате разложения органики, вновь усваиваются растениями и вовлекаются в биологический круговорот.

Воздух (15-25%) в почве содержится в полостях – порах, между органическими и минеральными частицами. При отсутствии (тяжелые глинистые почвы) или заполнении пор водой (во время подтоплений, таяния мерзлоты) в почве ухудшается аэрация и складываются анаэробные условия. В таких условиях тормозятся физиологические процессы организмов, потребляющих кислород – аэробов, разложение органики идет медленно. Постепенно накапливаясь, они образуют торф. Большие запасы торфа характерны для болот, заболоченных лесов, тундровых сообществ. Торфонакопление особенно выражено в северных регионах, где холодность и переувлажнение почв взаимообусловливают и дополняют друг друга.

Вода (25-30%) в почве представлена 4 типами: гравитационной, гигроскопической (связанной), капиллярной и парообразной.

Гравитационная – подвижная вода, занимают широкие промежутки между частицами почвы, просачивается вниз под собственной тяжестью до уровня грунтовых вод. Легко усваивается растениями.

Гигроскопическая, или связанная – адсорбируется вокруг коллоидных частиц (глина, кварц) почвы и удерживается в виде тонкой пленки за счет водородных связей. Освобождается от них при высокой температуре (102-105°С). Растениям она недоступна, не испаряется. В глинистых почвах такой воды до 15%, в песчаных – 5%.

Капиллярная – удерживается вокруг почвенных частиц силой поверхностного натяжения. По узким порам и каналам – капиллярам, поднимается от уровня грунтовых вод или расходится от полостей с гравитационной водой. Лучше удерживается глинистыми почвами, легко испаряется. Растения легко поглощают ее.

Особенности наземно-воздушной среды оби-тания. В наземно-воздушной среде достаточно света и воздуха. Но увлажнённость и температу-ра воздуха отличаются большим разнообразием. На болотистых территориях — чрезмерное коли-чество влаги, в степях её значительно меньше. Ощутимы также суточные и сезонные колебания температуры.

Приспособление организмов к жизни в условиях разной температуры и увлаж-нённости. Большое количество приспо-соблений организмов наземно-воздушной среды связано с температурой и влажно-стью воздуха. Животные степи (скорпио-ны, пауки тарантул и каракурт, суслики, мыши полёвки) прячутся от жары в нор-ках. От жарких солнечных лучей растения защищает повышенное испарение воды листьями. У животных таким приспособ-лением является выделение пота.

С наступлением холодов птицы улетают в тёплые края, чтобы весной снова вернуться на место, где родились и где дадут потомство. Особенностью наземно-воздушной среды в южных областях Украины либо в Крыму является недостаточное количество влаги.

Ознакомьтесь по рис. 151 с растения-ми, которые приспособились к подобным условиям.

Приспособление организмов к передвижению в наземно-воздушной среде. Для многих жи-вотных наземно-воздушной среды важно передви-жение по земной поверхности либо в воздухе. Для этого у них появились определённые приспособле-ния, а их конечности имеют различ-ное строение. Одни приспособились к бегу (волк, лошадь), вторые — к прыжкам (кенгуру, тушканчик, кузнечик), третьи — к полёту (пти-цы, летучие мыши, насекомые) (рис. 152). Ужи, гадюки не имеют конечностей. Они перемещаются, изгибая тело.

К жизни высоко в горах приспо-собилось значительно меньше ор-ганизмов, поскольку для растений там мало почвы, влаги и воздуха, а у животных возникают трудно-сти с перемещением. Но некоторые животные, например горные козлы муфлоны (рис. 154), способны дви-гаться почти вертикально вверх и вниз, если есть хотя бы небольшие неровности. Поэтому они могут жить высоко в горах. Материал с сайта

Приспособление организмов к раз-личному освещению. Одним из при-способлений растений к различному осве-щению является направленность листьев к свету. В тени листья располагаются го-ризонтально: так на них попадает больше световых лучей. Светолюбивые подснеж-ник и ряст развиваются и цветут ранней весной. В этот период им достаточно света, поскольку листья на деревьях в лесу ещё не появились.

Приспособление животных к указан-ному фактору наземно-воздушной среды обитания — строение и размеры глаз. У большинства животных этой среды хоро-шо развиты органы зрения. Например, ястреб с вы-соты своего полёта видит бегущую по полю мышь.

За многие столетия развития организмы наземно--воздушной среды приспособились к воздействию её факторов.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • доклад на тему среда обитания живого организма 6 класс
  • приспособленность белой совы к среде обитания
  • термины на тему воздушная среда
  • доклад на тему наземно воздушная среда обитания
  • приспособление хищных птиц к среде обитания
Читайте также:
  1. A) Сервис Параметры Вид Отображать Строка состояния команд меню
  2. A) создающие условия для жизни других видов данного биоценоза
  3. I блок 9. Профессиональное становление личности. Условия эффективного профессионального самоопределения.
  4. I. Особенности формирования отраслевой системы оплаты труда работников учреждений здравоохранения
  5. II. Особенности учета операций по осуществлению функций главного распорядителя, распорядителя и получателя средств федерального бюджета
  6. III Блок: 5. Особенности работы социального педагога с детьми-сиротами и детьми, оставшимися без попечения родителей.
  7. PR-мероприятия для СМИ (виды, характеристика, особенности).
  8. Абсолютная монархия в Англии. Предпосылки возникновения, общественный и государственный строй. Особенности английского абсолютизма.

Общая характеристика. В ходе эволюции наземно-воздушная среда была освоена значительно позднее, чем водная. Жизнь на суше потребовала таких приспособлений, которые стали возможными только при сравнительно высоком уровне организации как растений, так и животных. Особенностью наземно-воздушной среды жизни является то, что организмы, которые здесь обитают, окружены газообраз­ной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растении укореняются в ней.

В наземно-воздушной среде действующие экологические факто­ры имеют ряд характерных особенностей: более высокая интенсив­ность света в сравнении с другими средами, значительные колебании температуры, изменение влажности в зависимости от географическо­го положения, сезона и времени суток.

В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические, поведенческие и другие адаптации. Например, появились органы, которые обеспечивают непосредственное усвоение атмосферного кислорода в процессе дыхания (легкие и трахеи животных, устьица растений). Получили сильное, развитие скелетные образования (скелет животных, механические и опорные ткани растений), которые поддерживают тело
в условиях незначительной плотности среды. Выработались приспособления для защиты от неблагоприятных факторов, таких, как периодичность и ритмика жизненных циклов, сложное строение покровов, механизмы терморегуляции и др. Сформирова­лась тесная связь с почвой (конечности животных, корни расте­ний), выработалась подвижность животных в поисках пищи, появились переносимые воздушными течениями семена, плоды и пыльца растений, летающие животные.

Низкая плотность воздуха определяет его малую подъем­ную силу и незначительную опорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не ока­зывает высокого сопротивления организмам при их передвиже­нии по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.



Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные, обитающиe на поверхности земли, меньше, чем гиганты водной среды. Крупные млекопитающие (размером и массой современного кита) не могли бы жить на суше, так как были 6ы раздавлены собственной тяжест­ью.

Малая плотность воздуха создает незначительную сопротивляемость передвижению. 75% всех ви­дов наземных животных способны к активному полету.

Ветры усиливают отдачу животными и растениями влаги и тепла. При ветре легче переносится жара и тяжелее морозы, быстрее наступает иссушение и охлаждение организмов. Ветер вызывает изменение интенсивности транспирации у растений, играет роль в опылении растений–анемофилов.

Газовый состав воздуха – кислород – 20,9%, азот – 78,1%, инертные газы – 1%, углекислый газ – 0,03% по объему. Кислород способствует повышению обмена веществ у наземных организмов.

Световой режим . Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. Освещенность на поверхности Земли варьирует в широких пределах.



Деревья, кустарники, посевы ра­стений затеняют местность, создают особый микроклимат, ослабляя ради­ацию.

Таким образом, в разных местообитаниях различаются не только ин­тенсивность радиации, но и ее спек­тральный состав, продолжитель­ность освещения растений, пространственное и временное рас­пределение света разной интенсивно­сти и т. д. Соответственно разнооб­разны и приспособления организмов к жизни в наземной среде при том или ином световом режиме. По отно­шению к свету различают три основ­ных группы растений: светолюбивые (гелиофиты), тенелюбивые (сцио­фиты) и теневыносливые.

У растений наземно-воздушной среды выработались анато­мо-морфологические, физиологические и др. приспособления к различным условиям светового режима:

Примером анатомо-морфологических приспособ­лений является изменение внешнего облика в разных световых условиях, например, неодинаковая величина листовых пластинок у растений, родственных по систематическому положению, живущих при разном освещении (луговой колокольчик Cumpanula patula и лесной – С. trachelium, фиалка полевая – Viola arvensis, растущая на полях, лугах, опушках, и лесные фиалки – V. mirabilis).

У растений-гелиофитов листья ориентированы на уменьше­ние прихода радиации в самые «опасные» дневные часы. Листовые пластинки расположены вертикально или под большим углом к горизонтальной плоскости, поэтому днем листья получают большей частью скользящие лучи.

У теневыносливых же растений листья расположены так, чтобы получить максимальное количество падающей радиации.

Своеобразной формой физиологической адаптации при рез­ком недостатке света служит потеря растением способности к фотосинтезу, переход к гетеротрофному питанию готовыми неорганическими веществами. Иногда такой переход становился безвозвратным из-за потери растениями хлорофилла, например, орхидеи тенистых еловых лесов (Goodyera repens, Weottia nidus avis), вертляница (Monotropa hypopitys).

Физиологические адаптации животных. Для подавляю­щего большинства наземных животных с дневной и ночной ак­тивностью зрение представляет один из способов ориентации, имеет важное значение для поисков добычи. Многие виды животных обладают и цветным видением. В связи с этим у живот­ных, особенно жертв, возникли приспосо6ительные осо6енности. К ним относятся защитная, маскирующая и предупреждаю­щая окраска, покровительственное сходство, мимикрия и т. п. Возникновение ярко окрашенных цветков высших растений также связано с особенностями зрительного аппарата опылителей и в конечном счете со световым режимом среды.

Водный режим . Дефицит влаги – одна из наиболее существен­ных особенностей наземно-воздушной среды жизни. Эволюция наземных организмов проходила путем приспособления к добыванию и сохранению влаги.

()садки (дождь, град, снег), кроме водоо6еспечения и созда­ния запасов влаги, часто играют и другую экологическую роль. На­пример, при ливневых дождях почва не успевает впитывать влагу, вода сильными потоками быстро стекает и зачастую сносит в озе­ра и реки слабо укоренившиеся растения, мелких животных и пло­дородный слой почвы.

Отрицательное действие на растения и животных оказывает и град. Посевы сельскохозяйственных культур на отдельных полях иногда бывают полностью уничтожены этим стихийным бедствием.

Многообразна экологическая роль снежного покрова, для растений, почки возобновления которых находятся в почве или у ее поверхности, многих мелких животных снег играет роль теплоизолирующего покрова, защищая от низких зимних температур. Крупным животным зимний снежный покров нередко мешает добывать корм, передвигаться, особенно при образовании на поверхности ледяной корки. Часто при многоснежных зимах наблюдается гибель косуль, диких кабанов.

Выпадение большого количества снега оказывает отрицательное влияние и на растения. Помимо механических повреждений в виде снеголомов или снеговалов, мощный слой снега может приводить к выпреванию растений, а во время таяния снега, особенно в затяжную весну, к вымоканию растений.

Температурный режим . Отличительной чертой наземно-воздушной среды является большой размах температурных коле6аний. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов.

Наземные растения занимают зону, прилежащую к поверхности почвы, т. е. к «поверхности раздела», на которой совершается переход падающих лучей из одной среды в другую, - из прозрачной в непрозрачную. На этой поверхности создается особый тепловой режим: днем происходит сильное нагревание благодаря поглощению тепловых лучей, ночью – сильное охлаждение вследствие лучеиспускания. Поэтому приземный слой воздуха испытывает наиболее резкие суточные колебания температур, которые в наи6ольшей степени выражены над оголенной почвой.

В наземно-воздушной среде осложняются условия жизни существованием погодных изменений. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности, примерно до высоты 20 км. Изменчивость погоды проявляется в постоянном варьировании факторов среды: температура, влажность воздуха, облачность, осадки, сила, направление ветра. Многолетний режим погоды характеризует климат местности. Климат определяется географическими условиями района. Каждое местообитание характеризуется определенным экологическим климатом, т. е. климатом приземного слоя воздуха, или экоклиматом.

Географическая поясность и зональность. Распространение живых организмов на Земле тесно связано с географическими поясами и зонами. На поверхности земного шара выделяют 13 географических поясов, которые сменяются от экватора к полюсам и от океанов в глубь континентов. Внутри поясов выделяют широтные и меридиальные, или долготные природные зоны. Первые тянутся с запада на восток, вторые – с севера на юг. Каждая климатическая зона характеризуется своеобразной растительностью и животным населением. Наиболее богаты жизнью и продуктивны тропические леса, поймы рек, прерии и леса субтропиков и переходной зоны. Менее продуктивны пустыни, луга и степи. Одним из важных условий изменчивости организмов и их зонального размещения на земле служит изменчивость химического состава среды. Наряду с горизонтальной зональностью в наземной среде четко проявляется высотная, или вертикальная поясность. Растительность горных стран более богата, чем на прилегающих равнинах. Приспособления к жизни в горах: у растений преобладает подушкообразная жизненная форма, многолетники, у которых выработана адаптация к сильной ультрафиолетовой радиации и снижению транспирации. У животных увеличивается относительный объем сердца, возрастает содержание гемоглобина в крови. Животные: горные индейки, горные вьюрки, жаворонки, грифы, бараны, козлы, серны, яки, медведи, рыси.



Просмотров