Аварии на взрывоопасных объектах. Пожары и взрывы на взрывопожароопасных объектах экономики и их возможные последствия презентация к уроку по обж (8 класс) на тему

Пожар – это горение, в результате которого бесполезно и безвозвратно уничтожаются и повреждаются материальные ценности, создается опасность для жизни и здоровья людей.

Пожаро- и взрывоопасные объекты (ПВОО) предприятия, на которых производятся, хранятся, транспортируются взрывоопасные продукты или продукты, приобретающие при определенных условиях способность к возгоранию или взрыву.

По взрывной, взрыво-пожарной и пожарной опасности ПВОО подразделяются на пять категорий, особенно опасны объекты, относящиеся к категориям А, Б, В.

Характеристика аварий на пожаро– и взрывоопасных объектах.

К авариям на ПВОО относятся:

1) пожары с последующим взрывом;

2) газообразных (сжиженных) углеводородных продуктов;

3) топливно-воздушных смесей и других взрывоопасных веществ.

К поражающим факторам аварий на ПВОО относятся:

1) воздушная ударная волна с образованием осколочных полей;

2) тепловое и световое излучение и как следствие – загрязнение воздуха в очаге поражения угарным газом и ОВ.

Характер и степень поражения людей зависят от степени их защищенности:

1) тяжелые травмы выражаются сильной контузией, потерей сознания и многочисленными сложными переломами костей;

2) средние – вывихами конечностей, контузией головного мозга, повреждением органов слуха;

3) легкие – скоро проходящими функциональными нарушениями.



Основные вопросы пожарной безопасности объектов (предприятий) изложены в Строительных нормах и правилах .

Противопожарная защита объектов зависит от назначения зданий, их огнестойкости и режима эксплуатации, количества людей, одновременно находящихся в помещении, количества горючих материалов и веществ, находящихся на предприятиях, и других факторов.

Для каждого объекта устанавливается определенный противопожарный режим - совокупность определенных мер и требований пожарной безопасности, установленных для объекта и подлежащих обязательному выполнению всеми работниками данного объекта.

Он определен правилами, инструкциями, приказами и распоряжениями руководителя предприятия.

Одно из перспективных направлений, обеспечивающих пожарную безопасность объектов, - установка противопожарной автоматики.

Для передачи известия о пожаре могут быть использованы:

1) электрические (ЭПС);

2) автоматические (АПС);

3) звуковые системы пожарной сигнализации;

5) сирена;

6) телефон;

7) радиосвязь.

В настоящее время на предприятиях используют лучевую и кольцевую электрическую пожарную сигнализацию.

Аварии на транспорте

Сегодня любой вид транспорта представляет потенциальную опасность.

Основные причины аварий и катастроф на железнодорожном транспорте:

1) неисправности пути;

2) неисправности подвижного состава;

3) неисправности средства сигнализации;

4) централизации и блокировки;

5) ошибки диспетчеров;

6) невнимательность и халатность машинистов.

При перевозке опасных грузов, таких как газы, легковоспламеняющиеся, взрывоопасные, ядовитые и радиоактивные вещества, возможны взрывы и пожары. Ликвидировать такие аварии очень сложно.

Одной из основных проблем современности стало обеспечение безопасности движения на автомобильном транспорте.

Примерно 75% всех дорожно-транспортных происшествий происходят из-за нарушения водителями Правил дорожного движения. При чем треть ДТП – следствие плохой подготовки водителей. Наиболее опасными видами нарушений по-прежнему остаются:

1) превышение скорости;

2) выезд на полосу встречного движения;

3) управление автомобилем в нерезвом состоянии.

Особенность ДТП состоит в том, что 80% раненых погибает в первые три часа. Кровопотеря в течение первого часа бывает столь велика и сильна, что даже блестяще проведенная операция оказывается бесполезной. Здесь очень важна первая доврачебная помощь. Однако уровень медицинской подготовки работников ГИБДД низок, подготовка населения и водителей также недостаточна. Автоаптечки, которые должны быть в каждой машине, без которых не проходят техосмотр, часто неукомплектованы.

Вот почему смертность от ДТП у нас в 10–15 раз выше, чем в других странах.

Несмотря на принимаемые меры, не уменьшается количество аварий и катастроф на воздушном транспорте. К тяжелым последствиям приводят:

1) разрушения отдельных конструкций самолета;

2) отказ двигателей;

3) нарушение работы систем управления, электропитания, связи;

4) плохое пилотирование;

5) недостаток топлива;

6) перебои в жизнеобеспечении экипажа и пассажиров.

Большинство крупных аварий и катастроф на судах происходит под воздействием:

1) ураганов;

2) штормов;

3) туманов;

5) по вине людей.

Много аварий происходит из-за ошибок при проектировании и строительстве судов. Половина из них является следствием неумелой эксплуатации. К работам по ликвидации последствий аварий, катастроф и спасению утопающих привлекаются все члены экипажа. Руководит всеми работами капитан как начальник ГО. Основные задачи:

1) спасение людей, терпящих бедствие;

2) борьба за плавучесть корабля;

3) ликвидация пожара;

4) ликвидация пробоин.

К работам по спасению судна привлекаются:

1) специальные суда-спасатели;

2) буксиры;

3) пожарные катера;

4) экипажи других плавсредств;

5) специальные подразделения аварийно-спасательных, судоподъемных и подъемно-технических работ.

Потенциальными объектами аварий, связанных со взрывом, являются хранилища и склады взрыва- и пожароопасных веществ, например: склады реактивного топлива, артиллерийских боеприпасов, склады взрывчатых веществ, нефтебазы и т.д.

В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, технологического оборудования, транспортных средств, коммуникации и другие объекты.

При взрывах люди получают термические и механические повреждения: ожоги тела, верхних дыхательных путей, переломы, ушибы, черепно-мозговые травмы, осколочные ранения, комбинированные поражения.

Взрывчатое превращение в зависимости от свойств взрывчатого Вещества и вида воздействия на него может протекать в виде взрыва или горения. Скорость горения в значительной степени зависит от внешних условий, в первую очередь от давления в окружающем пространстве. С увеличением давления скорость горения возрастает, при этом в некоторых случаях горение может перейти во взрыв.

Взрывчатые вещества в зависимости от их природы и состояния обладают определёнными взрывчатыми характеристиками. Наиболее важными из них являются: чувствительность к внешним воздействиям; энергия (теплота) взрывчатого вещества; скорость детонации; фугасность (работоспособность).

Пылевоздушные смеси и особенности их горения. Практически все взрывы пылевоздушных смесей происходят в ограниченном пространстве. Пылевоздушную смесь иногда называют пылевым облаком, а её взрыв - взрывом пылевого облака.

Механизм взрыва пыли аналогичен процессу окисления, когда окислителем выступает кислород воздуха. При этом процесс окисления протекает на поверхности твёрдых частиц пыли. Интенсивность горения зависит от размера частиц и содержание кислорода в системе. Взрывоопасные пылевоздушные смеси могут возникать спонтанно, например, при встряхивании осевшей пыли.

Особенности физического взрыва. Их, как правило, связывают со взрывами сосудов от давления паров и газов. Их основной причиной является не химическая реакция, а физический процесс, обусловленный высвобождением внутренней энергии сжатого или сжиженного газа. Сила таких взрывов зависит от внутреннего давления, а разрушения вызывают ударная волна или осколки, разорвавшие сосуд.

Таким образом, пожары являются результатом химической, экзотермической реакции, а взрывы - физически превращений, они образуют зоны, в которых действуют опасные факторы.

К причинам взрывов на взрывоопасных предприятиях чаще всего относят: разрушение и повреждение производственных ёмкостей, аппаратуры и трубопроводов; отступление от установленного технологического режима; отсутствие постоянного контроля за исправностью производственного оборудования и своевременного проведения плановых ремонтных работ.

Наиболее распространенными источниками возникновения чрезвычайных ситуаций техногенного характера являются пожары и взрывы, которые происходят на взрывопожароопасных объектах экономики.

В различных отраслях экономики Российской Федерации находится и эксплуатируется около 10 тыс. взрывопожароопасных объектов.

    Запомните!
    Взрывопожароопасные объекты - это предприятия, на которых производят, хранят, транспортируют взрывоопасные продукты или продукты, приобретающие при определенных условиях способность к возгоранию или взрыву.

К ним, прежде всего, относится производство, где используются взрывчатые и имеющие высокую степень возгораемости вещества, а также железнодорожный и трубопроводный транспорт как несущие основную нагрузку при доставке жидких, газообразных и взрывоопасных грузов. {Трубопроводный транспорт - это нефте- и газопроводы.)

Наиболее часто аварии со взрывами и пожарами происходят на предприятиях химической, нефтехимической и нефтеперерабатывающей отраслевой промышленности, которые приводят к серьезным последствиям: разрушению промышленных и жилых зданий, поражению производственного персонала и населения, значительным материальным потерям.

На предприятиях, производящих порох, ракетное взрывное топливо, взрывчатые вещества, пиротехнические средства и составы, а также продукцию на их основе, возможны еще более масштабные происшествия с массовым поражением работников предприятий и населения близлежащих населенных пунктов.

Прогнозы специалистов МЧС России показывают, что при крупной аварии на подобных объектах, сопровождающейся взрывами и пожарами, может возникнуть необходимость к эвакуации свыше 20 тыс. человек.

    Статистика
    В настоящее время на предприятиях нефтяной и газовой промышленности, в геологоразведочных организациях находится в эксплуатации более 200 тыс. км магистральных трубопроводов, 350 тыс. км промысловых трубопроводов, 800 компрессорных и нефтеперекачивающих станций.

Необходимо отметить, что основное развитие системы магистральных газопроводов, нефтепроводов пришлось на 60-70-е гг. прошлого столетия и сегодня все они в значительной мере выработали свой ресурс, что приводит к увеличению вероятности возникновения аварий при их эксплуатации.

Особую опасность в настоящее время представляют угольные шахты из-за взрывов метана, угольной пыли и пожаров. Пожары, возникающие в подземных выработках, являются наиболее тяжелыми по последствиям и часто случающимся авариям (около 33% от общего числа аварий в этой отрасли).

    Внимание!
    Аварии, возникающие на взрывопожароопасных объектах, характеризуются возникновением взрывов и пожаров и представляют особую опасность для населения. К поражающим факторам аварий на взрывопожароопасных объектах относятся воздушная ударная волна с образованием большого количества осколков из летающих обломков зданий и сооружений, высокая температура от горения различных веществ и материалов и загрязнения воздуха в очаге поражения продуктами горения, в том числе и угарным газом.

При взрыве на взрывопожароопасных объектах поражение людей может происходить как от прямого воздействия ударной волны, так и от летающих обломков, камней, осколков стекла и т. п. Ущерб, причиняемый ударной волной жилым и промышленным зданиям, может носить характер полных разрушений, сильных, средних и слабых в зависимости от мощности взрыва.

При полных разрушениях рушатся все элементы здания, включая несущие конструкции этажей. При сильных разрушениях обваливаются несущие конструкции и перекрытия верхних этажей, после этого здания восстановлению не подлежат. При средних и слабых разрушениях поврежденные здания могут быть восстановлены.

Возникающие в результате взрывов пожары приводят к разрушению сооружений из-за сгорания или деформации их элементов от высоких температур, к образованию различных концентраций химически опасных веществ. Поражающими факторами для людей в этих условиях являются высокие температуры, приводящие к ожогам различной степени, и наличие в продуктах горения химически опасных веществ, приводящих к отравлению различной степени.

Аварии на взрывопожароопасных объектах вызываются в основном взрывами емкостей и трубопроводов с легковоспламеняющимися и взрывоопасными жидкостями и газами и могут привести к тяжелым социальным и экономическим последствиям.

Исторические факты

Для наглядной характеристики последствий такой аварии приведем анализ катастрофы двух пассажирских поездов, произошедшей в Башкирии 3 июня 1989 г. в результате взрыва на трубопроводе. Крупная железнодорожная катастрофа явилась следствием трагического стечения обстоятельств. Два пассажирских поезда Новосибирск - Адлер (20 вагонов) и Адлер - Новосибирск (17 вагонов), следующие в разных направлениях, в 23 ч 10 мин оказались в зоне скопившейся на местности площадью 250 га углеводородовоздушной смеси, образовавшейся в результате истечения нефтепродуктов в окружающую среду из разорвавшейся трубы трубопровода Западная Сибирь - Урал - Поволжье.

Предположительно из-за искрения токоприемников локомотива во время прохождения зоны с большой концентрацией углеводородовоздушной смеси (в ее состав входили компоненты: метан, этан, пропан, изобутан и гексан; смешавшись с воздухом, такая смесь становится взрывоопасной) возник пожар и произошел объемный взрыв 1 , энергия которого соответствовала энергии взрыва тротила массой около 300 т. Взрыв и возникший в результате взрыва пожар привели к массовой гибели и поражению людей двух встречных пассажирских поездов, оказавшихся в зоне образования взрывоопасной смеси нефтепродуктов.

Воздушной ударной волной от поездов было оторвано и сброшено под откос 11 вагонов (5 одного и 6 другого состава), из которых 7 полностью сгорели. Остальные 26 вагонов обгорели снаружи и полностью выгорели внутри. В поездах предположительно следовало 1284 человека, из них погибло более 780 человек.

Катастрофа явилась следствием неудовлетворительного качества строительства трубопровода и недопустимо плохого состояния контроля за его строительством со стороны заказчика и непринятием своевременных мер по устранению аварии (разрыв трубы), возникшей перед взрывом. К такому выводу пришла комиссия, расследовавшая причины катастрофы.

Вопросы

  1. Какие объекты экономики относятся к взрывопожароопасным?
  2. Какие основные факторы определяют возникновение аварии на взрывопожароопасном объекте?
  3. Какие поражающие факторы, возникающие при авариях на взры-вопожароопасных объектах, представляют высокую степень опасности для работающего персонала и населения?
  4. К каким последствиям может привести крупная авария на взрывопожароопасном объекте?

Задание

Из различных информационных источников (газеты, журналы, радио, ТВ) подберите несколько характерных примеров возникновения чрезвычайной ситуации из-за аварии на взрывопожароопасном объекте в регионе вашего проживания. Выпишите причины ее возникновения.

1 Объемный взрыв - это взрыв облака взрывоопасной смеси

К пожаро- и взрывоопасным ОЭ относится большинство элементов хозяйственного комплекса страны. Источниками пожаров и взрывов являются: емкости с легковоспламеняющимися, горючими или ядовитыми веществами; склады взрывоопасных и сильно дымящих составов; взрывоопасные технологические установки, коммуникации, разрушение которых приводит к пожарам, взрывам и загазованности территории; железные дороги и др.

При этом прогнозируются последствия:

  • утечек газов и распространения токсичных дымов;
  • пожаров и взрывов в колодцах, цистернах и других емкостях;
  • нарушений технологических процессов, особенно связанных с вредными веществами или опасными методами обработки;
  • воздействия шаровых молний, статического электричества;
  • взрывов паров ЛВГЖ;
  • нагрева и испарения жидкостей из емкостей и поддонов;
  • рассеивания продуктов горения во внутренних помещениях;
  • токсического воздействия продуктов горения и других реакций;
  • тепловой радиации при пожарах;
  • распространения в строениях пламени и огневого потока в зависимости от расположения стен и внутренней планировки.

При оценке планировки территории ОЭ определяется влияние плотности и типа застройки на возможность возникновения и распространения пожаров и на образование завалов.

Особое внимание обращается на участки, где могут возникнуть вторичные поражающие факторы: прежде всего, учитывается возможность образования УВВ при взрыве сосудов, работающих под давлением. При этом рассматривается суммарный эффект от воздействия динамического напора и статического избыточного давления.

Большинство пожаров связано с горением твердых материалов, хотя начальная стадия пожара обычно связана с горением жидких и газообразных горючих веществ, которых в современном производстве предостаточно. Образование пламени связано с газообразным состоянием вещества. Даже при горении твердых или жидких веществ происходит их переход в газообразное состояние. Этот процесс перехода для жидких веществ заключается в простом кипении с испарением у поверхности, а для твердых - с образованием продуктов достаточно низкой молекулярной массы, способных улетучиваться с поверхности твердого материала и попадать в область пламени (явление пиролиза).

Из-за воздействия так называемого "светового импульса" происходит загорание или устойчивое горение конкретных материалов. Возможная пожарная обстановка оценивается комплексно с учетом воздействия ударной волны и величины "светового импульса", огнестойкости сооружений, категории их пожаро- и взрывоопасности.

В соответствии с требованиями строительных норм и правил (СНиП 2.09.01-85) все строительные материалы и конструкции делятся по возгораемости на группы :

  • несгораемые, которые под действием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются (камень, железобетон, металл);
  • трудно сгораемые материалы, которые под действием огня и высокой температуры с трудом воспламеняются; тлеют или обугливаются только при наличии источника огня, а при его отсутствии горение или тление прекращается (глиносоломенные смеси, асфальтобетон);
  • сгораемые материалы, которые под воздействием огня или высокой температуры воспламеняются или тлеют (древесина, картон).

Под огнестойкостью понимают сопротивляемость строения огню, что характеризуется группой горючести и пределом огнестойкости (СНиП 2.01.02-85). Самыми опасными являются сооружения, выполненные из сгораемых материалов. Но даже если сооружение выполнено из несгораемых материалов, оно выдерживает воздействие огня определенное время. Предел огнестойкости конструкции определяется временем (в часах), в течение которого не появляются сквозные трещины, сама конструкция не теряет несущей способности, не обрушивается и не нагревается до температуры выше 200°С на противоположной от огня стороне.

По степени огнестойкости сооружения бывают:

  • I и II степени огнестойкости - основные конструкции таких сооружений выполнены из несгораемых материалов;
  • III степени огнестойкости - строения с каменными стенами и деревянными оштукатуренными перекрытиями;
  • IV степени огнестойкости - деревянные оштукатуренные дома;
  • V степени огнестойкости - деревянные строения.

Согласно принятым нормам все объекты - в соответствии с характером технологического процесса по пожаро- и взрывоопасности - делят на категории (ГОСТ 12.1.004-91, ОНТП 24-96):

  • категория А (взрыво- и пожароопасные) - горючие газы, ЛВГЖ с температурой вспышки ниже 28°С в количестве, достаточном для образования ТВС и УВВ с избыточным давлением более 5 кПа;
  • категория Б (взрыво- и пожароопасные) - горючие пыли, волокна, ЛВГЖ с температурой вспышки выше 28°С в количестве, достаточном для образования взрывоопасных ГВС и УВВ с избыточным давлением более 5 кПа;
  • категории В1...В4 (пожароопасные) - горючие и трудногорючие материалы, способные при взаимодействии с водой, кислородом воздуха или другими веществами только гореть;
  • категория Г - негорючие материалы в горячем состоянии, при обработке которых выделяется световая энергия, искры или пламя;
  • категория Д - предприятия по холодной обработке и хранению металла и других несгораемых материалов.

Горение - химическая реакция окисления с выделением большого количества тепла и света. Для горения необходимо наличие горючего вещества, окислителя (кислород, хлор, фтор, окислы азота, бром) и источника загорания (импульса).

Горение может быть гомогенным (исходные вещества имеют одинаковое агрегатное состояние: горение газов) или гетерогенным (исходные вещества имеют разные агрегатные состояния: твердые или жидкие горючие вещества). В зависимости от скорости распространения пламени горение делят на дефлаграционное (несколько метров в секунду), взрывное (десятки метров в секунду) или детонационное (тысячи метров в секунду). Пожары характеризуются дефлаграционным горением.

Различают три вида самоускорения химической реакции горения: тепловой, цепной и комбинированный. Реальные процессы горения идут по комбинированному механизму самоускорения (цепочно-тепловому).

Процесс возникновения горения имеет несколько этапов:

  • вспышка - быстрое сгорание горючей смеси без образования сжатых газов;
  • возгорание - возникновение горения под действием источника загорания;
  • воспламенение - возгорание с появлением пламени;
  • самовозгорание - явление резкого увеличения скорости экзотермической реакции, приводящей к возникновению горения при отсутствии источника загорания;
  • самовоспламенение - самовозгорание с появлением пламени;
  • взрыв - чрезвычайно быстрое химическое превращение, сопровождающееся выделением энергии и образованием сжатых газов, способных произвести механическую работу.

В зависимости от источника загорания (импульса) процессы самовозгорания можно разделить на тепловые, микробиологические и химические.

Основные показатели пожаро- и взрывоопасности:

Температура вспышки - самая низкая температура горючего вещества, при которой над его поверхностью образуются пары (газы), способные вспыхнуть от источника загорания. Но скорость их образования еще недостаточна для последующего горения. Температура вспышки паров: сероуглерод -45°С, бензин -ЗГС, нефть -2ГС, ацетон -20°С, дихлорэтан +8°С, скипидар +32°С, спирт +35°С, керосин +45°С, глицерин +17б°С. Жидкости с температурой вспышки ниже +45°С называют легковоспламеняющимися, а выше - горючими.

Температура самовоспламенения - самая низкая температура, при которой происходит резкое увеличение скорости экзотермической реакции при отсутствии источника загорания, что заканчивается устойчивым горением.

Температура воспламенения. При этой температуре горючее вещество выделяет горючие пары (газы) со скоростью, достаточной (после воспламенения вещества) для устойчивого горения. Температурные пределы воспламенения - это температуры, при которых насыщенные пары вещества образуют в данной окислительной среде концентрации, равные соответственно нижнему или верхнему пределу воспламенения.

Температуры вспышки, самовоспламенения и воспламенения горючих веществ определяются экспериментально или расчетом (ГОСТ 12.1.044-89); нижний и верхний концентрационный предел - экспериментально или руководствуясь "Расчетом основных показателей пожаро- и взрывоопасности веществ и материалов".

Пожаро- и взрывоопасность ОЭ определяется параметрами пожароопасности и количеством используемых в технологических процессах материалов, конструктивными особенностями и режимами работы оборудования, наличием источников зажигания и условий для быстрого распространения огня. Распространение пожаров и превращение их в сплошные пожары зависит от плотности застройки, разрушений и других факторов.

Пожароопасность веществ характеризуется линейной (см/с) или массовой (г/с) скоростями горения, а также предельным содержанием кислорода. При горении твердых веществ скорость поступления летучих компонентов непосредственно связана с интенсивностью теплообмена в зоне контакта пламени и твердой поверхности. Массовая скорость выгорания (г/м 2 *с) зависит от теплового потока с поверхности, физико-химических свойств твердого горючего и выражается формулой:

где V - массовая скорость выгорания материала, г/м 2 *с; - тепловой поток от зоны горения к твердому горючему, кВт/м 2 ; Q- теплопотери твердого горючего в окружающую среду, кВт/м 2 ; - количество тепла для образования летучих веществ, кДж/г.

Тепловой поток, поступающий из зоны горения к твердому горючему, зависит от энергии, выделенной в процессе горения, и условий теплообмена на границе горения и в зоне контакта твердого горючего и окружающей среды.

Пожарная обстановка и динамика ее развития зависят от:

  • импульса воспламенения;
  • пожарной опасности ОЭ;
  • огнестойкости конструкции и ее элементов;
  • плотности застройки в районе пожара;
  • метеоусловий, особенно силы и направления ветра.

На ОЭ многие технологические процессы протекают при температурах, значительно превышающих температуру окружающей среды. Нагретые поверхности излучают потоки лучистой энергии, способные вызвать отрицательные последствия. Продолжительность теплового облучения человека без ощутимых последствий зависит от величины тепловыделения (Дж/с) его организма. Чтобы физиологические процессы у человека протекали нормально, выделяемая в нем теплота должна полностью отводиться в окружающую среду. Избыток внешнего теплового излучения может привести к перегреву организма, потере сознания, ожогу или смерти. Температура кожи отражает реакцию организма на воздействие термического фактора. Если теплоотдача недостаточна, то происходит рост температуры внутренних органов (характеризуется понятием "жарко"). Тепловая энергия, превращаясь на горячей поверхности (очага пожара) в лучистую, передается - как свет - другому телу, имеющему более низкую температуру. Здесь лучистая энергия поглощается и вновь превращается в тепловую.

Предельная температура вдыхаемого воздуха, при которой человек еще способен дышать несколько минут без специальных средств защиты, 11б°С. Переносимость человеком высокой температуры зависит от влажности и скорости движения воздуха: чем больше влажность, тем меньше пота испаряется в единицу времени, то есть быстрее наступает перегрев тела. При температуре окружающего воздуха выше 30°С пот не испаряется, а стекает каплями, что резко уменьшает теплоотдачу.

Воздействие повышенной температуры на древесину:

  • 110°С - удаляется влага (происходит сушка древесины);
  • 150°C - начинается выделение летучих продуктов термического разложения, изменяется ее цвет (она темнеет);
  • 200°C - то же, что и при 150°C, но древесина приобретает коричневую окраску;
  • 300°C - значительное выделение газообразных продуктов, способных к самовоспламенению, древесина начинает тлеть;
  • 400°C - то же, что и при 300°C, однако происходит самовоспламенение древесины.

При самостоятельном горении в условиях пожара линейная скорость выгорания древесины для тонких предметов (до 20 мм) около 1 мм/мин, для более толстых - 0,63 мм/мин.

Тяжелый бетон при температуре порядка 300°C принимает розовый оттенок, при 600°С - красноватый с появлением микротрещин, а при температуре 1000°С цвет переходит в бледно-серый, происходит выгорание частиц. Из-за различия в коэффициентах расширения его компонентов ширина трещин в бетоне достигает 1 мм. Взрывоопасное разрушение бетона при пожаре наблюдается в предварительно напряженных и тонкостенных элементах, особенно с повышенным влагосодержанием, при температуре 700...900°С.

Стальные конструкции при температуре 650°С теряют несущую способность, деформируются, изменяют физические и химические свойства, а при температуре 1400...1500°С - плавятся.

Если температура нагретой поверхности ниже 500°С, то преобладает тепловое (инфракрасное) излучение, а при температуре выше 500°С присутствует излучение инфракрасного видимого и ультрафиолетового света. Инфракрасные лучи оказывают на человека в основном тепловое воздействие, что приводит к уменьшению кислородной насыщенности крови, понижению венозного давления, нарушению деятельности сердечно-сосудистой и нервной систем. Общее количество теплоты, поглощенное телом, зависит от площади и свойств облучаемой поверхности, температуры источника излучения, расстояния до него.

Для характеристики теплового излучения используется понятие "интенсивность теплового воздействия". Это мощность лучистого потока, приходящаяся на единицу облучаемой поверхности. Облучение с интенсивностью до 350 Вт/м 2 не вызывает неприятного ощущения, до 1050 Вт/м 2 - уже через несколько минут ощущается как жжение в месте облучения, и температура кожи в этом районе может повыситься на 10°С. При облучении с интенсивностью до 1400 Вт/м 2 увеличивается частота пульса, а до 3500 Вт/м 2 - уже возможны ожоги. Болевые ощущения появляются при температуре кожи около 45°С.

Основным параметром, характеризующим поражающее действие светового излучения, является световой импульс "И". Это количество световой энергии, падающей за все время огненного свечения на 1м 2 освещаемой поверхности, перпендикулярной к направлению излучения. Световой импульс измеряется в Дж/м 2 или ккал/см 2 . Световое излучение вызывает ожоги открытых участков тела, поражение глаз (временное или полное), пожары.

В зависимости от величины светового импульса различают ожоги разной степени .

Ожоги 1-й степени вызываются световым импульсом, равным 2...4 ккал/см 2 (84...168 кДж/м 2). При этом наблюдается покраснение кожных покровов. Лечение обычно не требуется.

Ожоги 2-й степени вызываются световым импульсом, равным 5...8 ккал/см 2 (210...336 кДж/м 2). На коже образуются пузыри, наполненные прозрачной белой жидкостью. Если площадь ожога значительная, то человек может потерять работоспособность и нуждаться в лечении. Выздоровление может наступить даже при площади ожога до 60% поверхности кожи.

Ожоги 3-й степени наблюдаются при величине светового импульса, равного 9...15 ккал/см 2 . (368...630 кДж/м 2). Тогда происходит омертвление кожи с поражением росткового слоя и образованием язв. Требуется длительное лечение.

Ожоги 4-й степени имеют место при световом импульсе свыше 15 ккал/см 2 (630 кДж/м 2). Происходит омертвление более глубоких слоев ткани (подкожной клетчатки, мышц, сухожилий, костей).

При поражении значительной площади тела наступает смерть. Степень ожогов участков тела зависит от характера одежды: ее цвета, плотности, толщины и плотности прилегания к телу.

В атмосфере лучистая энергия ослабляется из-за поглощения или рассеивания света частицами дыма, пыли, каплями влаги, поэтому учитывается степень прозрачности атмосферы. Падающее на объект световое излучение частично поглощается или отражается. Часть излучения проходит через прозрачные объекты: стекло окон пропускает до 90% энергии светового излучения, которое способно вызвать пожар внутри помещения из-за преобразования световой энергии в тепловую. Таким образом, в городах и на ОЭ возникают очаги горения. Скорость распространения пожаров в городе зависит от характера застройки и скорости ветра. При скорости ветра около 6 м/с в городе с кирпичными домами пожар распространяется со скоростью порядка 100 м/ч; при сгораемой застройке - до 300 м/ч, а в сельской местности свыше 900 м/ч. При этом надо учитывать наличие горючих материалов вокруг зданий (толь, бумага, солома, торф, камыш, древесина, нефтепродукты), их толщину, содержание влаги.

Пожары являются самым опасным и распространенным бедствием. Они могут вспыхивать в населенных пунктах, лесных массивах, на ОЭ, торфоразработках, в районах газо- и нефтедобычи, на энергетических коммуникациях, на транспорте, но особенно часто они возникают из-за неосторожного обращения людей с огнем.

Первостепенное значение придается умению грамотно реализовать при тушении пожара принципы прекращения горения :

  • изоляция очага горения от окислителей, снижение их концентрации методом разбавления негорючими газами до значения, при котором не может идти процесс горения;
  • охлаждение очага горения;
  • ингибирование (торможение) скорости реакции в пламени;
  • механический срыв пламени воздействием взрыва, струей газа или воды;
  • создание условий для огнепреграждения: например, можно заставить пламя распространяться по узким каналам.

Основным огнетушащим средством является вода. Это дешево, охлаждает место горения, а образующийся при испарении воды пар разбавляет горящую среду. Вода также механически воздействует на горящее вещество, то есть срывает пламя. Объем образовавшегося пара в 1700 раз больше объема использованной воды. Нецелесообразно тушить водой горючие жидкости, так как это может значительно увеличить площадь пожара, вызвать заражение водоемов. Опасно применять воду при тушении оборудования, находящегося под напряжением, - во избежание поражения электрическим током.

Для тушения пожаров используются установки водяного пожаротушения, пожарные автомобили или водяные стволы. Вода в них подается от водопроводов через пожарные гидранты или краны, при этом должно быть обеспечено постоянное и достаточное давление воды в водопроводной сети. При тушении пожаров внутри зданий используют внутренние пожарные краны, к которым подсоединяют пожарные рукава. Для автоматического водяного пожаротушения применяются спринклерные и дренчерные установки.

Спринклерные установки - это разветвленная, заполненная водой система труб, которая оборудована спринклерными головками, чьи выходные отверстия запаяны легкоплавким составом (рассчитанным на температуру 72, 93, 141 или! 182°С). При пожаре эти отверстия сами распаиваются и орошают охранную зону водой.

Дренчерные установки - это система трубопроводов внутри здания, на которых установлены специальные головки (дренчеры) с диаметром выходных отверстий 8, 10 и 13 мм лопастного или розеточного типа, способные оросить до 12 м 2 пола. Дренчерный распылитель с винтовыми щелями дает возможность получить распыленную воду с более мелкой дисперсией, а при высоте расположения 5,2 м он способен оросить до 210 м 2 пола.

Для тушения твердых и жидких веществ применяют пены. Их огнегасительные свойства определяются кратностью (отношением объема пены к объему ее жидкой фазы), стойкостью, дисперсностью и вязкостью. В зависимости от условий и способа получения пена может быть :

  • химической - это концентрированная эмульсия окиси углерода в водном растворе минеральных солей;
  • воздушно-механической (кратность 5...10), которую получают из 5%-ных водных растворов пенообразователей.

При тушении пожаров газами используют двуокись углерода, азот, аргон, дымовые или отработанные газы, пар. Их огнегасительное действие основано на разбавлении воздуха, то есть на снижении концентрации кислорода. При нулевой температуре и давлении 36 атм. 1 л жидкой углекислоты образует 500 л углекислого газа. При тушении пожаров используют углекислотные огнетушители (ОУ-5, ОУ-8, УП-2м), если в состав молекул горящего вещества входит кислород, щелочные и щелочноземельные металлы. Газ в огнетушителе находится под давлением до 60 атм. Для тушения электроустановок необходимо применять порошковые огнетушители (ОП-1, ОП-10), заряд которых состоит из бикарбоната натрия, талька и стеараторов железа, алюминия.

Тушение паром применяют при ликвидации небольших пожаров на открытых площадках, в закрытых аппаратах и при ограниченном воздухообмене. Концентрация водяного пара в воздухе должна быть порядка 35% по объему.

Широкое применение в пожаротушении нашли огнегасительные составы-ингибиторы на основе предельных углеводородов, в которых один или несколько атомов замещены атомами галоида. Они эффективно тормозят реакции в пламени, проникая в него в виде капель. Низкая температура замерзания позволяет использовать эти составы при минусовых температурах. Применяют и порошковые составы на основе неорганических солей щелочных металлов.

Взрывчатые вещества - это химические соединения или смеси, способные к быстрому химическому превращению с образованием сильно нагретых газов, которые из-за расширения и огромного давления способны произвести механическую работу.

Взрывчатые вещества можно разделить на группы:

  • инициирующие, которые обладают огромной чувствительностью к внешним воздействиям (удар, накол, нагрев) и используются для подрыва основного заряда ВВ;
  • бризантные - менее чувствительные к внешним воздействиям. Они имеют повышенную мощность, подрываются в результате детонации;
  • метательные - это пороха, основной формой химического превращения которых является горение. Могут применяться при подрывных работах.

Характеристики взрывчатых веществ:

  • чувствительность к внешним воздействиям (удар, свет, накол);
  • теплота превращения при взрыве;
  • скорость детонации;
  • бризантность (мощность), которая зависит от скорости детонации;
  • фугасность (работоспособность).

Часто причиной пожаров и взрывов является образование топливо- , паро- или пылевоздушных смесей. Такие взрывы возникают как следствие разрушения емкостей с газом, коммуникаций, агрегатов, трубопроводов или технологических линий. Особенно опасными потенциальными источниками взрывов могут оказаться предприятия высокой пожаро- и взрывоопасности категорий А и Б . При разрушении агрегатов или коммуникаций не исключается истечение газов или сжиженных углеводородных продуктов, что приводит к образованию взрыво- или пожароопасной смеси. Взрыв такой смеси происходит при определенной концентрации газа в воздухе. Например, если в 1 м 3 воздуха содержится 21 л пропана, то возможен взрыв, если 95 л - возгорание.

Значительное число аварий связано с разрядами статического электричества. Одной из причин этого является электризация жидкостей и сыпучих веществ при их транспортировке по трубопроводам, когда напряженность электрического поля может достичь величины 30 кВ/см. Необходимо учитывать, что разность потенциалов между телом человека и металлическими частями оборудования может достигать десятков киловольт.

Сильным взрывам пылевоздушной смеси (ПлВС) обычно предшествуют локальные хлопки внутри оборудования, при которых пыль переходит во взвешенное состояние с образованием взрывоопасной концентрации. Поэтому в закрытых аппаратах необходимо создавать инертную среду, обеспечивать достаточную прочность аппарата и наличие противоаварийной защиты. До 90% аварий связано с взрывом парогазовых смесей (ПрГС), при этом до 60% таких взрывов происходит в закрытой аппаратуре и трубопроводах.

Ацетилен в определенных условиях способен к взрывному разложению при отсутствии окислителей. Выделяющейся при этом энергии (8,7 МДж/кг) достаточно для разогрева продуктов реакции до температуры 2800°С. При взрыве скорость распространения пламени достигает нескольких метров в секунду. Но для ацетилена возможен вариант, когда часть газов сгорает, а остальная сжимается и детонирует. В этом случае давление может вырасти в сотни раз. Температура самовоспламенения ацетилена зависит от его давления (табл. 3.1).

Таблица 3.1. Температура самовоспламенения ацетилена

Наиболее опасны в эксплуатации аппараты и трубопроводы высокого давления ацетилена (0,15-2,5 МПа), так как при случайных перегревах может возникнуть взрыв, переходящий при большой длине трубопровода в детонацию. Максимальная скорость распространения пламени при горении ацетилено-воздушной смеси, содержащей ацетилена 9,4% (об), равна 1,69 м/с. Смесь ацетилена с хлором и другими окислителями может взрываться под действием источника света. Поэтому к зданиям, где используется ацетилен, запрещается делать пристройки для производства хлора, сжижения и разделения воздуха.

Часто при ручном вскрытии железных барабанов с карбидом кальция происходит искрообразование, что приводит к взрывам. К тому же надо всегда учитывать возможность присутствия в барабане влаги.

При взрыве ТВС образуется очаг поражения с ударной волной и световым излучением ("огненный шар"). В очаге взрыва ТВС можно выделить три сферические зоны (рис. 3.1).

Рис. 3.1. Зоны в очаге поражения при взрыве ТВС. R 1 , R 2 , R 3 , - радиусы внешних границ соответствующих зон

Рис. 3.2. Зависимость радиуса внешней границы зоны действия избыточного давления от количества взрывоопасной газовоздушной смеси

Зона I - зона детонационной волны. Находится в пределах облака взрыва. Радиус зоны определяется формулой:

где R 1 - радиус зоны I, м; - масса сжиженного газа, т.

В пределах зоны I избыточное давление можно считать постоянным и равным 1700 кПа.

Зона II - зона действия продуктов взрыва, которая охватывает всю площадь разлета продуктов взрыва ТВС в результате ее детонации. Радиус зоны II в 1,7 раза больше радиуса зоны I, то есть R 2 = 1,7R 1 , а избыточное давление по мере удаления уменьшается до 300 кПа.

Зона III - зона действия УВВ. Здесь формируется фронт УВВ. Величина избыточного давления определяется по графику, рис. 3.2.

Ударная воздушная волна (УВВ) - наиболее мощный поражающий фактор при взрыве. Она образуется за счет колоссальной энергии, выделяемой в центре взрыва, что приводит к возникновению здесь огромной температуры и давления. Раскаленные продукты взрыва при стремительном расширении производят резкий удар по окружающим слоям воздуха, сжимают их до значительного давления и плотности, нагревая до высокой температуры. Такое сжатие происходит во все стороны от центра взрыва, образуя фронт УВВ. Вблизи центра взрыва скорость распространения УВВ в несколько раз превышает скорость звука. Но по мере движения скорость ее распространения падает. Снижается и давление во фронте. В слое сжатого воздуха, называемого фазой сжатия УВВ (рис. 3.3), наблюдаются наибольшие разрушительные последствия. По мере движения давление во фронте УВВ падает и в какой-то момент достигает атмосферного, но будет продолжать уменьшаться из-за снижения температуры. При этом воздух начнет движение в обратном направлении, то есть к центру взрыва. Эта зона пониженного давления называется зоной разрежения.

Параметры УВВ

1. Избыточное давление (см. рис. 3.2). Определяется разностью между фактическим давлением воздуха в данной точке и атмосферным давлением (Р изб = Р ф - Р атм,). Измеряется в кг/см 2 или Паскалях (1 кг/см 2 = 100 кПа). При проходе фронта УВВ избыточное давление воздействует на человека со всех сторон.

2. Скоростной напор воздуха (динамическая нагрузка). Обладает метательным действием. Измеряется в кг/см 2 или Паскалях. Совместное воздействие этих двух параметров УВВ приводят к разрушениям объектов и человеческим жертвам.

3. Время распространения УВВ (Т р, с).

4. Продолжительность действия фазы сжатия на объект (Т р, с). Избыточное давление во фронте УВВ (Р изб, кПа) можно определить по формуле

где - тротиловый эквивалент ВВ, кг; R- расстояние от центра взрыва, м.

Скоростной напор воздуха зависит от скорости и плотности воздуха за фронтом УВВ и равен:

где V - скорость частиц воздуха за фронтом УВВ, м/с; ρ - плотность воздуха за фронтом УВВ, кг/м 3 .

Рис. 3.3. Фазы и фронт УВВ

Воздействие УВВ на человека может быть косвенным или непосредственным. При косвенном поражении УВВ, разрушая постройки, вовлекает в движение огромное количество твердых частиц, осколков стекла и других предметов массой до 1,5 г при скорости до 35 м/с. Так, при величине избыточного давления порядка 60 кПа плотность таких опасных частиц достигает 4500 шт./м 2 . Наибольшее количество пострадавших - жертвы косвенного воздействия УВВ.

При непосредственном поражении УВВ наносит людям крайне тяжелые, тяжелые, средние или легкие травмы.

Крайне тяжелые травмы (обычно несовместимые с жизнью) возникают при воздействии избыточного давления величиной свыше 100 кПа.

Тяжелые травмы (сильная контузия организма, поражение внутренних органов, потеря конечностей, сильное кровотечение из носа и ушей) возникают при избыточном давлении 100...60 кПа.

Средние травмы (контузии, повреждения органов слуха, кровотечение из носа и ушей, вывихи) имеют место при избыточном давлении 60...40 кПа.

Легкие травмы (ушибы, вывихи, временная потеря слуха, общая контузия) наблюдаются при избыточном давлении 40...20 кПа.

Эти же параметры УВВ приводят к разрушениям, характер которых зависит от нагрузки, создаваемой УВВ, и реакции предмета на действия этой нагрузки. Поражения объектов, вызванные УВВ, можно характеризовать степенью их разрушений.

Зона полных разрушений. Восстановить разрушенные объекты невозможно. Массовая гибель всего живого. Занимает до 13% всей площади очага поражения. Здесь полностью разрушены строения, до 50% противорадиационных укрытий (ПРУ), до 5% убежищ и подземных коммуникаций. На улицах образуются сплошные завалы. Сплошных пожаров не возникает из-за сильных разрушений, срыва пламени ударной волной, разлета воспламенившихся обломков и засыпки их грунтом. Эта зона характеризуется величиной избыточного давления свыше 50 кПа.

Зона сильных разрушений занимает площадь до 10% очага поражения. Строения сильно повреждены, убежища и коммунальные сети сохраняются, 75% укрытий сохраняют свои защитные свойства. Есть местные завалы, зоны сплошных пожаров. Зона характеризуется избыточным давлением 0,3...0,5 кг/см 2 (30...50 кПа).

Зона средних разрушений наблюдается при избыточном давлении 0,2...0,3 кг/см 2 (20...30 кПа) и занимает площадь до 15% очага поражения. Строения получают средние разрушения, а защитные сооружения и коммунальные сети сохраняются. Могут быть местные завалы, участки сплошных пожаров, массовые санитарные потери среди незащищенного населения.

Зона слабых разрушений характеризуется избыточным давлением 0,1...0,2 кг/см 2 (10...20 кПа) и занимает до 62% площади очага поражения. Строения получают слабые повреждения (разрушения перегородок, дверей, окон), могут быть отдельные завалы, очаги пожаров, а у людей - травмы.

За пределами зоны слабых разрушений возможны нарушения остекления и несущественные разрушения. Население способно оказывать самопомощь. Рельеф местности влияет на распространение УВВ: на склонах холмов, обращенных в сторону взрыва, давление выше, чем на равнинной местности (при крутизне склона 30° давление на нем на 50% выше), а на обратных склонах - ниже (при крутизне склона 30° - в 1,2 раза ниже). В лесных массивах избыточное давление может оказаться на 15% выше, чем на открытой местности, но по мере углубления в лес скоростной напор уменьшается. Метеоусловия оказывают влияние только на слабую УВВ, то есть с избыточным давлением менее 10 кПа. Летом наблюдается ослабление УВВ по всем направлениям, а зимой - ее усиление, особенно в направлении ветра. Дождь и туман оказывают влияние на УВВ при избыточном давлении до 300 кПа (при 30 кПа и среднем дожде УВВ ослабляется на 15%, а при ливне - на 30%). Снегопад не снижает давления в УВВ.

Пожар - это горение, в результате которого уничтожаются или повреждаются материальные ценности, создается опасность для жизни и здоровья людей.
Горением называется быстро протекающий химический процесс окисления или соединения горючего вещества и кислорода воздуха, сопровождающийся выделением газа, тепла и света. Известно горение и без кислорода воздуха с образованием тепла и света. Таким образом, горение представляет собой не только химическую реакцию соединения, но и разложения.
Различают собственно горение, взрыв и детонацию. При собственно горении скорость распространения пламени не превышает десятков метров в секунду, при взрыве - сотни метров в секунду, а при детонации - тысячи метров в секунду.
С наибольшей скоростью горение происходит в чистом кислороде. По мере снижения концентрации кислорода процесс горения замедляется, наименьшая скорость горения при содержании кислорода в воздухе 14-15%.
Для горения необходимы горючие материалы, окислитель и источник поджигания.
В практике различают полное и неполное горение. Полное горение достигается при достаточном количестве кислорода, а неполное - при недостатке кислорода. При неполном горении, как правило, образуются едкие, ядовитые и
взрывоопасные смеси.
Самовоспламенение (тепловой взрыв) возникает при внутреннем подогреве горючего вещества в результате химических процессов. Температура самовоспламенения зависит от различных факторов: состава и объема горючей смеси, давления и др. Большинство газов и жидкостей воспламеняется при температуре 400-700 °С, а твердых тел (дерева, угля, торфа и т. п.) - 250-450 °С. Следует иметь в виду, что увеличение содержания кислорода в веществах и уменьшение содержания углерода снижают температуру самовоспламенения.
Для горения и воспламенения важное значение имеет концентрация газов и паров в воздухе. Диапазон горения и воспламенения характеризуется нижним и верхним пределами взрываемости. Они являются важнейшей характеристикой взрывоопасное™ горючих веществ. Нижний предел взрыва характеризуется наименьшей концентрацией газов и паров воздуха, при котором возможен взрыв, а верхний - наибольшей их концентрацией, при которой еще возможен взрыв.
При взрывах некоторых газов, паров и смесей горение переходит в особую форму - детонацию. При этом скорость распространения пламени достигает 1000-4000 м/с, что превышает скорость распространения звука. Детонация, как правило, происходит в трубах, имеющих достаточный диаметр и длину, может возникать при определенном подогреве смеси и сильной ударной волне, а также при специальном поджигании взрывоопасного вещества. Детонация имеет верхний и нижний концентрационные пределы.
Все горючие жидкости пожароопасны. Они горят в воздухе при определенных условиях, зависящих от концентрации их паров. Горючие жидкости постоянно испаряются, образуя над поверхностью насыщенные взрывоопасные пары.
По температуре вспышки горючие жидкости подразделяются на два класса. К первому классу относятся жидкости (бензин, керосин, эфир и др.), вспыхивающие при температуре менее 45 "С, ко второму классу - жидкости (масла, мазуты и др.), имеющие температуру вспышки выше 45 °С. В практике первый класс жидкостей принято называть легковоспламеняющимися (ЛВЖ), второй - горючими (ГЖ).
Пыли и пылевоздушные смеси горючих веществ пожароопасны. В воздухе они могут образовывать взрывоопасные смеси. Увеличение влажности воздуха и сырья, из которого образуется пыль, а также повышение скорости движения воздуха уменьшают концентрацию пыли в воздухе и снижают пожароопасность.
Взрывоопасными являются пыль сахара, крахмала, нафталина при концентрации в воздухе до 15 г/м3; торфа, красителей и т. п. при концентрации от 15 до 65 г/м3.
Важное значение в противопожарном отношении имеет правильная эксплуатация электрических сетей и приборов. Электрическая сеть в эксплуатационном отношении должна отвечать противопожарным требованиям. При ее устройстве устанавливают специальные автоматические выключатели и плавкие предохранители, защищающие ее от перегрузки и воспламенения изоляции. При эксплуатации электрической сети нельзя применять "жучки" вместо калиброванных плавких вставок или защитных средств, так как это приводит к перегрузке в линии, высыханию изоляции, возникновению короткого замыкания и пожару.
Пожаро- и взрывоопасные объекты (ПВОО) - предприятия, на которых производятся, хранятся, транспортируются взрывоопасные продукты или продукты, приобретающие при определенных условиях способность к возгоранию или взрыву.
К ним прежде всего относятся производства, где используются взрывчатые и имеющие высокую степень возгораемости вещества, а также железнодорожный и трубопроводный транспорт как несущий основную нагрузку при доставке жидких, газообразных пожаро- и взрывоопасных грузов.
По взрывной, взрывопожарной и пожарной опасности ПВОО подразделяются на пять категорий: А, Б, В, Г, Д. Особенно опасны объекты, относящиеся к категориям А, Б, В.
Категория А - нефтеперерабатывающие заводы, химические предприятия, трубопроводы, склады нефтепродуктов.
Категория Б - цехи приготовления и транспортировки угольной пыли, древесной муки, сахарной пудры, выбойные и размольные отделения мельниц.
Категория В - деревообрабатывающие, столярные, модельные, лесопильные производства.
Категория Г - склады и предприятия, связанные с переработкой и хранением несгораемых веществ в горячем состоянии, а также со сжиганием твердого, жидкого или газообразного топлива.
Категория Д - склады и предприятия по хранению несгораемых веществ и материалов в холодном состоянии, например мясных, рыбных и других продуктов.
Все строительные материалы и конструкции из них подразделяются на три группы: несгораемые, трудносгораемые и сгораемые.
Несгораемые - это материалы, которые под воздействием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются.
Трудносгораемые - это материалы, которые под воздействием огня или высокой температуры с трудом воспламеняются, тлеют или обугливаются и продолжают гореть при наличии источника огня.
Сгораемые - это материалы, которые под воздействием огня или высокой температуры воспламеняются или тлеют и продолжают гореть и тлеть после удаления источника огня.
Пожары на крупных промышленных предприятиях и в населенных пунктах подразделяются на отдельные и массовые. Отдельные - пожары в здании или сооружении.
Массовые - совокупность отдельных пожаров, охвативших более 25% зданий. Сильные пожары при определенных условиях могут перейти в огненный шторм.
Характеристика аварий на пожаро- и взрывоопасных объектах. К авариям на IIBOQ относятся пожары с последующим взрывом газообразных (сжиженных) углеводородных продуктов, топливно-воздушных смесей и других взрывоопасных веществ и взрывы чаще всего в результате свободного истечения легковоспламеняющихся взрывоопасных жидкостей или газов, приводящие к возникновению многочисленных очагов пожаров.
Особым случаем взрыва является объемный взрыв, когда подрывается газообразная или аэрозольная смесь, занимающая значительный объем. Характерный пример такого взрыва - взрыв при утечке газа. При этом взрывоопасное облако способно проникать в закрытые помещения через окна, люки и т. п. и взрыв может поражать людей и причинять разрушения в местах, защищенных стенами.
Чрезвычайные ситуации, создающиеся на ПВОО, часто осложняются тем, что многие взрывоопасные вещества ядовиты или образуют при сгорании химически опасные вещества (ХОВ).
Поражающие факторы при авариях на пожаро- и взрывоопасных объектах. К поражающим факторам аварий на ПВОО относятся: воздушная ударная волна с образованием осколочных полей, тепловое и световое излучение и, как следствие, загрязнение воздуха в очаге поражения угарным газом и ХОВ.
Характер воздействия аварии на пожаро- и взрывоопасном объекте на население и окружающую среду. При взрыве на ПВОО поражение людей и повреждения различной степени могут происходить как от прямого воздействия ударной волны, так и косвенно - от летящих обломков, камней, осколков стекла и т. п. Характер и степень поражения людей зависят от степени их защищенности.
Возникающие в результате взрывов пожары приводят к ожогам, а горение пластмасс и некоторых синтетических материалов - к образованию различных концентраций ХОВ, цианистых соединений, фосгена, сероводорода и др. Чаще всего на пожарах людей поражают окиси углерода (при содержании в воздухе 1% окиси углерода наступает почти мгновенная потеря сознания и смерть), реже - цианистые соединения, бензол, окислы азота, углекислота и другие токсичные продукты. К поражающим факторам пожаров относят также задымление, затрудняющее ориентирование, и сильный морально-психологический эффект.
Взрывы емкостей с газообразными и сжиженными веществами, которые могут быть отнесены к категории ХОВ, приводят к загрязнению токсичными веществами воздушного, водного бассейнов и значительных территорий местности, а также заболеваниям и гибели людей, животных и растений. Кроме того, следует учитывать, что взрывы и пожары на объектах, имеющих в производстве и хранении взрыво- и пожароопасные компоненты, представляют серьезную опасность не только для самих объектов, но и для населения, проживающего вблизи объектов.
Наиболее опасны пожары в административных зданиях, так как внутренние стены облицованы панелями из горючего материала, а потолочные плиты выполнены из горючих древесных плит. Часто возникновению возгорания способствует неудовлетворительная огнестойкость древесины и других строительных материалов, особенно пластиков.
Чрезвычайно опасен в пожарном отношении применяемый при изготовлении мебели поролон, который при горении выделяет ядовитый дым, содержащий цианистые соединения. Кроме того, в условиях стесненного производства становятся опасными вещества, считающиеся негорючими.
Так, взрывается и горит древесная, угольная, торфяная, алюминиевая, мучная, зерновая и сахарная пыль, а также пыль хлопка, льна, пеньки, джута. Самовозгораются такие обычные химикаты, как скипидар, камфара, барий, пирамидон и многие другие.
Аварии на объектах нефтегазодобывающей промышленности всегда приносят большие бедствия. Так, вырвавшийся нефтяной или газовый фонтан при воспламенении перебрасывает огонь на резервуары с нефтью, компрессорные установки и нефтепроводы, мастерские, гаражи, жилые дома и лесные массивы.
Бушующее пламя горящего фонтана поднимается огромным смерчем к небу, тяжелый дым застилает окрестности. Температура внутри такого смерча настолько велика, что плавятся стальные буровые вышки и другие конструкции.
Нередки пожары от возгорания горючего при перевозках. Во время пожаров на железнодорожном транспорте, как правило, обрываются провода, парализуя все движение.
При планировании мероприятий по борьбе с авариями надо учитывать, что они проходят пять фаз:
первая - накопление отклонений от нормального процесса;
вторая - инициирование аварии;
третья - развитие аварии, во время которой оказывается воздействие на людей, природную среду и объекты народного хозяйства;
четвертая - проведение спасательных и других неотложных работ, локализация аварии;
пятая - восстановление жизнедеятельности после ликвидации последствий аварии.

По материалам книги - "Безопасность жизнедеятельности" Под редакцией проф. Э. А. Арустамова.



Просмотров