Атмосфера земли ее строение. Атмосфера Земли — объяснение для детей

Атмосфера простирается вверх на много сотен километров. Верхняя ее граница, на высоте около 2000-3000 км, в известной мере условна, так как газы, ее составляющие, постепенно разрежаясь, переходят в мировое пространство. С высотой меняются химический состав атмосферы, давление, плотность, температура и другие ее физические свойства. Как говорилось ранее, химический состав воздуха до высоты 100 км существенно не меняется. Несколько выше атмосфера также состоит главным образом из азота и кислорода. Но на высотах 100-110 км, под действием ультрафиолетовой радиации солнца, молекулы кислорода расщепляются на атомы и появляется атомарный кислород. Выше 110-120км кислород почти весь становится атомарным. Предполагается, что выше 400-500 км газы, составляющие атмосферу, также находятся в атомарном состоянии.

Давление и плотность воздуха с высотой быстро уменьшаются. Хотя атмосфера простирается вверх на сотни километров, основная масса ее размещается в довольно тонком слое, прилегающем к поверхности земли в самых нижних ее частях. Так, в слое между уровнем моря и высотами 5-6 км сосредоточена половина массы атмосферы, в слое 0-16 км -90%, а в слое 0-30 км - 99%. Такое же быстрое уменьшение массы воздуха происходит выше 30 км. Если вес 1 м 3 воздуха у поверхности земли равен 1033 г, то на высоте 20 км он равен 43 г, а на высоте 40 км лишь 4 г.

На высоте 300-400 км и выше воздух настолько разрежен, что в течение суток плотность его изменяется во много раз. Исследования показали, что это изменение плотности связано с положением Солнца. Наибольшая плотность воздуха около полудня, наименьшая - ночью. Объясняется это отчасти тем, что верхние слои атмосферы реагируют на изменение электромагнитного излучения Солнца.

Изменение температуры воздуха с высотой происходит также неодинаково. По характеру изменения температуры с высотой атмосфера делится на несколько сфер, между которыми располагаются переходные слои, так называемые паузы, где температура с высотой мало изменяется.

Здесь приведены наименования и главные характеристики сфер и переходных слоев.

Приведем основные данные о физических свойствах этих сфер.

Тропосфера. Физические свойства тропосферы в значительной степени определяются влиянием земной поверхности, которая является ее нижней границей. Наибольшая высота тропосферы наблюдается в экваториальной и тропической зонах. Здесь она достигает 16-18 км и сравнительно мало подвергается суточным и сезонным изменениям. Над приполюсными и смежными областями верхняя граница тропосферы лежит в среднем на уровне 8- 10 км. В средних широтах она колеблется от 6-8 до 14-16 км.

Вертикальная мощность тропосферы значительно зависит от характера атмосферных процессов. Нередко в течение суток верхняя граница тропосферы над данным пунктом или районом опускается или поднимается на несколько километров. Это связано главным образом с изменениями температуры воздуха.

В тропосфере сосредоточено более 4 / 5 массы земной атмосферы и почти весь содержащийся в ней водяной пар. Кроме того, от поверхности земли до верхней границы тропосферы температура понижается в среднем на 0,6° на каждые 100 м, или 6° на 1 км поднятия. Это объясняется тем, что воздух в тропосфере нагревается и охлаждается преимущественно от поверхности земли.

В соответствии с притоком солнечной энергии температура понижается от экватора к полюсам. Так, средняя температура воздуха у поверхности земли на экваторе достигает +26°, над полярными областями зимой -34°, -36°, а летом около 0°. Таким образом, разность температур экватор - полюс зимой составляет 60°, а летом лишь 26°. Правда, такие низкие температуры в Арктике зимой наблюдаются только вблизи поверхности земли вследствие охлаждения воздуха над ледяными просторами.

Зимой в Центральной Антарктиде температура воздуха на поверхности ледяного щита еще ниже. На станции Восток в августе 1960 г. зарегистрирована самая низкая температура на земном шаре -88,3°, а наиболее часто в Центральной Антарктиде она бывает равна -45°, -50°.

С высоты разность температур экватор - полюс уменьшается. Например на высоте 5 км на экваторе температура достигает - 2°, -4°, а на этой же высоте в Центральной Арктике -37°, -39° зимой и -19°, -20° летом; следовательно, разность температуры зимой равна 35-36°, а летом 16-17°. В южном полушарии эти разности несколько больше.

Энергию атмосферной циркуляции можно определить контрактами температуры экватор-полюс. Так как зимой величина контрастов температуры больше, то атмосферные процессы протекают более интенсивно, чем летом. Этим же объясняется тот факт, что преобладающие западные ветры зимой в тропосфере имеют большие скорости, чем летом. При этом скорость ветра, как правило, с высотой возрастает, доходя до максимума на верхней границе тропосферы. Горизонтальный перенос сопровождается вертикальными перемещениями воздуха и турбулентным (неупорядоченным) движением. Вследствие подъема и опускания больших объемов воздуха образуются и рассеиваются облака, возникают и прекращаются осадки. Переходным слоем между тропосферой и вышележащей сферой является тропопауза. Выше нее лежит стратосфера.

Стратосфера простирается от высот 8-17 до 50-55 км. Она была открыта в начале нашего века. По физическим свойствам стратосфера резко отличается от тропосферы уже тем, что температура воздуха здесь, как правило, повышается в среднем на 1 - 2° на километр поднятия и на верхней границе, на высоте 50-55 км, становится даже положительной. Повышение температуры в этой сфере вызвано наличием здесь озона (О 3), который образуется под влиянием ультрафиолетовой радиации Солнца. Слой озона занимает почти всю стратосферу. Стратосфера очень бедна водяным паром. Здесь не происходит бурных процессов облакообразования и не выпадают осадки.

Еще совсем недавно предполагали, что стратосфера является сравнительно спокойной средой, где не происходит перемешивания воздуха, как в тропосфере. Поэтому считали, что газы в стратосфере разделены по слоям, в соответствии со своими удельными весами. Отсюда и название стратосферы («стратус» - слоистый). Полагали также, что температура в стратосфере формируется под действием лучистого равновесия, т. е. при равенстве поглощенной и отраженной солнечной радиации.

Новые данные, полученные с помощью радиозондов и метеорологических ракет, показали, что в стратосфере, как и в верхней тропосфере, осуществляется интенсивная циркуляция воздуха с большими изменениями температуры и ветра. Здесь, как и в тропосфере, воздух испытывает значительные вертикальные перемещения, турбулентные движения при сильных горизонтальных воздушных течениях. Все это - результат неоднородного распределения температуры.

Переходным слоем между стратосферой и вышележащей сферой является стратопауза. Однако, прежде чем перейти к характеристике более высоких слоев атмосферы, ознакомимся с так называемой озоносферой, границы которой приблизительно соответствуют границам стратосферы.

Озон в атмосфере. Озон играет большую роль в создании режима температуры и воздушных течений в стратосфере. Озон (О 3) ощущается нами после грозы при вдыхании чистого воздуха с приятным привкусом. Однако здесь речь пойдет не об этом озоне, образующемся после грозы, а об озоне, содержащемся в слое 10-60 км с максимумом на высоте 22-25 км. Озон образуется под действием ультрафиолетовых лучей Солнца и, хотя общее количество его незначительно, играет важную роль в атмосфере. Озон обладает способностью поглощать ультрафиолетовую радиацию Солнца и тем самым предохраняет животный и растительный мир от ее губительного действия. Даже та ничтожная доля ультрафиолетовых лучей, которая достигает поверхности земли, сильно обжигает тело, когда человек чрезмерно увлекается приемом солнечных ванн.

Количество озона неодинаково над различными частями Земли. Озона больше в высоких широтах, меньше в средних и низких широтах и изменяется это количество в зависимости от смены сезонов года. Весной озона больше, осенью меньше. Кроме того, происходят непериодические его колебания в зависимости от горизонтальной и вертикальной циркуляции атмосферы. Многие атмосферные процессы тесно связаны с содержанием озона, так как он оказывает непосредственное влияние на поле температуры.

Зимой, в условиях полярной ночи, в высоких широтах в слое озона происходит излучение и охлаждение воздуха. В результате в стратосфере высоких широт (в Арктике и Антарктике) зимой формируется область холода, стратосферный циклонический вихрь с большими горизонтальными градиентами температуры и давления, обусловливающий западные ветры над средними широтами земного шара.

Летом, в условиях полярного дня, в высоких широтах в слое озона происходит поглощение солнечного тепла и прогревание воздуха. В результате повышения температуры в стратосфере высоких широт формируется область тепла и стратосферный антициклонический вихрь. Поэтому над средними широтами земного шара выше 20 км летом в стратосфере преобладают восточные ветры.

Мезосфера. Наблюдениями с помощью метеорологических ракет и другими способами установлено, что общее повышение температуры, наблюдающееся в стратосфере, заканчивается на высотах 50-55 км. Выше этого слоя температура вновь понижается и у верхней границы мезосферы (около 80 км) достигает -75°, -90°. Далее вновь происходит повышение температуры с высотой.

Интересно отметить, что характерное для мезосферы понижение температуры с высотой происходит неодинаково на различных широтах и в течение года. В низких широтах падение температуры происходит более медленно, чем в высоких: средний для мезосферы вертикальный градиент температуры равен соответственно 0,23° - 0,31° на 100 м или 2,3°-3,1° на 1 км. Летом он значительно больше, чем зимой. Как показали новейшие исследования в высоких широтах, температура на верхней границе мезосферы летом на несколько десятков градусов ниже, чем зимой. В верхней мезосфере на высоте около 80 км в слое мезопаузы понижение температуры с высотой прекращается и начинается ее повышение. Здесь под инверсионным слоем в сумерки или перед восходом солнца при ясной погоде наблюдаются блестящие тонкие облака, освещенные солнцем, находящимся за горизонтом. На темном фоне неба они светятся серебристо-синим светом. Поэтому эти облака названы серебристыми.

Природа серебристых облаков еще недостаточно изучена. Долгое время полагали, что они состоят из вулканической пыли. Однако отсутствие оптических явлений, свойственных настоящим вулканическим облакам, привело к отказу от этой гипотезы. Затем было высказано предположение, что серебристые облака состоят из космической пыли. В последние годы предложена гипотеза, согласно которой эти облака состоят из ледяных кристаллов, подобно обычным перистым облакам. Уровень расположения серебристых облаков определяется задерживающим слоем в связи с инверсией температуры при переходе из мезосферы в термосферу на высоте около 80 км. Так как в подынверсионном слое температура достигает -80° и ниже, то здесь создаются наиболее благоприятные условия для конденсации водяного пара, который попадает сюда из стратосферы в результате вертикального движения или путем турбулентной диффузии. Серебристые облака обычно наблюдаются в летний период, иногда в очень большом количестве и в течение нескольких месяцев.

Наблюдениями за серебристыми облаками установлено, что летом на их уровне ветры обладают большой изменчивостью. Скорости ветра колеблются в больших пределах: от 50-100 до нескольких сотен километров в час.

Температура на высотах. Наглядное представление о характере распределения температуры с высотой, между поверхностью земли и высотами 90-100 км, зимой и летом в северном полушарии дает рисунок 5. Поверхности, разделяющие сферы, здесь изображены жирными штриховыми линиями. В самом низу хорошо выделяется тропосфера с характерным понижением температуры с высотой. Выше тропопаузы, в стратосфере, наоборот, температура с высотой в общем повышается и на высотах 50-55 км достигает + 10°, -10°. Обратим внимание на важную деталь. Зимой в стратосфере высоких широт температура выше тропопаузы понижается от -60 до -75° и лишь выше 30 км вновь возрастает до -15°. Летом, начиная от тропопаузы, температура с высотой повышается и на 50 км достигает + 10°. Выше стратопаузы вновь начинается понижение температуры с высотой, и на уровне 80 км она не превышает -70°, -90°.

Из рисунка 5 следует, что в слое 10-40 км температура воздуха зимой и летом в высоких широтах резко различна. Зимой, в условиях полярной ночи, температура здесь достигает -60°, -75°, а летом минимум -45° находится вблизи тропопаузы. Выше тропопаузы температура возрастает и на высотах 30-35 км составляет лишь -30°, -20°, что вызвано прогреванием воздуха в слое озона в условиях полярного дня. Из рисунка следует также, что даже в одном сезоне и на одном и том же уровне температура неодинакова. Разность их между различными широтами превышает 20-30°. При этом неоднородность особенно значительна в слое низких температур (18-30 км) и в слое максимальных температур (50-60 км) в стратосфере, а также в слое низких температур в верхней мезосфере (75-85 км).


Средние величины температуры, приведенные на рисунке 5, получены по данным наблюдений в северном полушарий, однако, судя по имеющимся сведениям, они могут быть отнесены и к южному полушарию. Некоторые различия имеются главным образом в высоких широтах. Над Антарктидой зимой температура воздуха в тропосфере и нижней стратосфере заметно ниже, чем над Центральной Арктикой.

Ветры на высотах. Сезонным распределением температуры обусловлена довольно сложная система воздушных течений в стратосфере и мезосфере.

На рисунке 6 представлен вертикальный разрез поля ветра в атмосфере между поверхностью земли и высотой 90 км зимой и летом над северным полушарием. Изолиниями изображены средние скорости преобладающего ветра (в м/сек). Из рисунка следует, что режим ветра зимой и летом в стратосфере резко различен. Зимой как в тропосфере, так и в стратосфере преобладают западные ветры с максимальными скоростями, равными около


100 м/сек на высоте 60-65 км. Летом западные ветры преобладают лишь до высот 18-20 км. Выше они становятся восточными, с максимальными скоростями до 70 м/сек на высоте 55-60 км.

Летом выше мезосферы ветры становятся западными, а зимой - восточными.

Термосфера. Выше мезосферы расположена термосфера, для которой характерно повышение температуры с высотой. По полученным данным, преимущественно с помощью ракет, установлено, что в термосфере уже на уровне 150 км температура воздуха достигает 220-240°, а на уровне 200 км более 500°. Выше температура продолжает повышаться и на уровне 500-600 км превышает 1500°. На основе данных, полученных при запусках искусственных спутников Земли, найдено, что в верхней термосфере температура достигает около 2000° и в течение суток значительно колеблется. Возникает вопрос, чем объяснить такую высокую температуру в высоких слоях атмосферы. Напомним, что температура газа - это мера средней скорости движения молекул. В нижней, наиболее плотной части атмосферы молекулы газов, составляющих воздух, при движении часто сталкиваются между собой и мгновенно передают друг другу кинетическую энергию. Поэтому кинетическая энергия в плотной среде в среднем одна и та же. В высоких слоях, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, происходят реже. При поглощении энергии скорость молекул в промежутке между столкновениями сильно изменяется; к тому же молекулы более легких газов движутся с большей скоростью, чем молекулы тяжелых газов. Вследствие этого температура газов может быть различной.

В разреженных газах сравнительно немного молекул весьма малых размеров (легких газов). Если они движутся с большими скоростями, то и температура в данном объеме воздуха будет велика. В термосфере в каждом кубическом сантиметре воздуха содержатся десятки и сотни тысяч молекул различных газов, в то время как у поверхности земли их около сотни миллионов миллиардов. Поэтому чрезмерно высокие значения температуры в высоких слоях атмосферы, показывая скорость перемещения молекул в этой весьма неплотной среде, не могут вызвать даже небольшого нагревания находящегося здесь тела. Подобно тому, как человек не чувствует высокой температуры при ослепительном освещении электрических ламп, хотя нити накала в разреженной среде мгновенно раскаляются до нескольких тысяч градусов.

В нижней термосфере и мезосфере сгорает, не долетая до поверхности земли, основная часть метеорных потоков.

Имеющиеся сведения о слоях атмосферы выше 60-80 км еще недостаточны для окончательных выводов о строении, режиме и процессах, развивающихся в них. Однако известно, что в верхней мезосфере и нижней термосфере режим температуры создается в результате превращения молекулярного кислорода (О 2) в атомарный (О), которое происходит под действием ультрафиолетовой солнечной радиации. В термосфере на режим температуры большое влияние оказывает корпускулярная, рентгеновская и. ультрафиолетовая радиация Солнца. Здесь даже в течение суток происходят резкие изменения температуры и ветра.

Ионизация атмосферы. Наиболее интересной особенностью атмосферы выше 60-80 км является ее ионизация, т. е. процесс образования огромного количества электрически заряженных частиц - ионов. Так как ионизация газов является характерной для нижней термосферы, то ее называют также и ионосферой.

Газы в ионосфере находятся большей частью в атомарном состоянии. Под действием ультрафиолетового и корпускулярного излучений Солнца, обладающих большой энергией, происходит процесс отщепления электронов от нейтральных атомов и молекул воздуха. Такие атомы и молекулы, потерявшие один или несколько электронов, становятся положительно заряженными, а свободный электрон может присоединиться снова к нейтральному атому или молекуле и наделить их своим отрицательным зарядом. Такие положительно и отрицательно заряженные атомы и молекулы называются ионами, а газы - ионизированными, т. е. получившими электрический заряд. При большей концентрации ионов газы становятся электропроводными.

Процесс ионизации наиболее интенсивно происходит в мощных слоях, ограниченных высотами 60-80 и 220-400 км. В этих слоях существуют оптимальные условия для ионизации. Здесь плотность воздуха заметно больше, чем в верхней атмосфере, а поступление ультрафиолетовой и корпускулярной радиации Солнца достаточно для процесса ионизации.

Открытие ионосферы является одним из важных и блестящих достижений науки. Ведь отличительной особенностью ионосферы является ее влияние на распространение радиоволн. В ионизированных слоях радиоволны отражаются, и поэтому становится возможной дальняя радиосвязь. Заряженные атомы-ионы отражают короткие радиоволны, и они вновь возвращаются на земную поверхность, но уже в значительном отдалении от места радиопередачи. Очевидно, этот путь короткие радиоволны совершают несколько раз, и таким образом обеспечивается дальняя радиосвязь. Если бы не ионосфера, то для передач сигналов радиостанций на большие расстояния было бы необходимо строить дорогостоящие радиорелейные линии.

Однако известно, что иногда радиосвязь на коротких волнах нарушается. Это происходит в результате хромосферных вспышек на Солнце, благодаря которым резко усиливается ультрафиолетовое излучение Солнца, приводящее к сильным возмущениям ионосферы и магнитного поля Земли - магнитным бурям. При магнитных бурях нарушается радиосвязь, так как движение заряженных частиц зависит от магнитного поля. Во время магнитных бурь ионосфера хуже отражает радиоволны или пропускает их в космос. Главным образом с изменением солнечной активности, сопровождающейся усилением ультрафиолетового излучения, увеличивается электронная плотность ионосферы и поглощение радиоволн в дневные часы, приводящее к нарушению работы радиосвязи на коротких волнах.

Согласно новым исследованиям в мощном ионизированном слое имеются зоны, где концентрация свободных электронов достигает несколько большей концентрации, чем в соседних слоях. Известны четыре такие зоны, которые располагаются на высотах около 60-80, 100-120, 180-200 и 300-400 км и обозначаются буквами D , E , F 1 и F 2 . При усиливающемся излучении Солнца заряженные частицы (корпускулы) под влиянием магнитного поля Земли отклоняются в сторону высоких широт. Войдя в атмосферу, корпускулы усиливают ионизацию газов настолько, что начинается их свечение. Так возникают полярные сияния - в виде красивых многокрасочных дуг, загорающихся в ночном небе преимущественно в высоких широтах Земли. Полярные сияния сопровождаются сильными магнитными бурями. В таких случаях полярные сияния становятся видимыми в средних широтах, а в редких случаях даже в тропической зоне. Так, например, интенсивное сияние, наблюдавшееся 21 - 22 января 1957 г., было видно почти во всех южных районах нашей страны.

С помощью фотографирования полярных сияний из двух пунктов, находящихся на расстоянии нескольких десятков километров, с большой точностью определяется высота сияния. Обычно полярные сияния располагаются на высоте около 100 км, нередко они обнаруживаются на высоте нескольких сотен километров, а иногда на уровне около 1000 км. Хотя природа полярных сияний выяснена, однако остается еще много нерешенных вопросов, связанных с этим явлением. До сих пор неизвестны причины многообразия форм полярных сияний.

По данным третьего советского спутника, между высотами 200 и 1000 км днем преобладают положительные ионы расщепленного молекулярного кислорода, т. е. атомарного кислорода (О). Советские ученые исследуют ионосферу с помощью искусственных спутников серии «Космос». Американские ученые изучают ионосферу также с помощью спутников.

Поверхность, разделяющая термосферу от экзосферы, испытывает колебания в зависимости от изменения солнечной активности и других факторов. По вертикали эти колебания достигают 100-200 км и более.

Экзосфера (сфера рассеяния) - самая верхняя часть атмосферы, расположена выше 800 км. Она мало изучена. По данным наблюдений и теоретических расчетов температура в экзосфере с высотой возрастает предположительно до 2000°. В отличие от нижней ионосферы, в экзосфере газы настолько разрежены, что частицы их, двигаясь с огромными скоростями, почти не встречаются друг с другом.

Еще сравнительно недавно предполагали, что условная граница атмосферы находится на высоте около 1000 км. Однако на основе торможения искусственных спутников Земли установлено, что на высотах 700-800 км в 1 см 3 содержится до 160 тыс. положительных ионов атомного кислорода и азота. Это дает основание предполагать, что заряженные слои атмосферы простираются в космос на значительно большее расстояние.

При высоких температурах на условной границе атмосферы скорости частиц газов достигают приблизительно 12 км/сек. При данных скоростях газы постепенно уходят из области действия земного притяжения в межпланетное пространство. Это происходит в течение длительного времени. Например, частицы водорода и гелия удаляются в межпланетное пространство в течение нескольких лет.

В исследовании высоких слоев атмосферы богатые данные получены как со спутников серии «Космос» и «Электрон», так и геофизических ракет и космических станций «Марс-1», «Луна-4» и др. Ценными оказались и непосредственные наблюдения космонавтов. Так, по фотографиям, сделанным в космосе В. Николаевой-Терешковой, было установлено, что на высоте 19 км от Земли существует пылевой слой. Это подтвердилось и данными, полученными экипажем космического корабля «Восход». По-видимому, существует тесная связь между пылевым слоем и так называемыми перламутровыми облаками, иногда наблюдаемыми на высотах около 20-30 км.

Из атмосферы в космическое пространство. Прежние предположения, что за пределами атмосферы Земли, в межпланетном

пространстве, газы очень разрежены и концентрация частиц не превышает нескольких единиц в 1 см 3 , не оправдались. Исследования показали, что околоземное пространство заполнено заряженными частицами. На этой основе была выдвинута гипотеза о существовании зон вокруг Земли с заметно повышенным содержанием заряженных частиц, т. е. поясов радиации - внутреннего и внешнего. Новые данные помогли внести уточнения. Оказалось, что между внутренним и внешним поясами радиации также имеются заряженные частицы. Число их меняется в зависимости от геомагнитной и солнечной активности. Таким образом, по новому предположению вместо поясов радиации существуют зоны радиации без четко выраженных границ. Границы радиационных зон изменяются в зависимости от солнечной активности. При ее усилении, т. е. когда на Солнце появляются пятна и струи газа, выбрасывающиеся на сотни тысяч километров, возрастает поток космических частиц, которые и питают радиационные зоны Земли.

Радиационные зоны опасны для людей, совершающих полеты на космических кораблях. Поэтому перед полетом в космос определяется состояние и положение радиационных зон, а орбита космического корабля выбирается с таким расчетом, чтобы она проходила вне областей повышенной радиации. Однако высокие слои атмосферы, как и близкое к Земле космическое пространство, еще мало исследованы.

В исследовании высоких слоев атмосферы и околоземного пространства используются богатые данные, получаемые со спутников серии «Космос» и космических станций.

Высокие слои атмосферы менее всего изучены. Однако современные методы ее исследования позволяют надеяться, что в ближайшие годы человек будет знать многие детали строения атмосферы, на дне которой он живет.

В заключение приведем схематический вертикальный разрез атмосферы (рис. 7). Здесь по вертикали отложены высоты в километрах и давление воздуха в миллиметрах, а по горизонтали - температура. Сплошной кривой изображено изменение температуры воздуха с высотой. На соответствующих высотах отмечены и главнейшие явления, наблюдающиеся в атмосфере, а также максимальные высоты, достигнутые радиозондами и другими средствами зондирования атмосферы.

Атмосфера Земли

Атмосфе́ра (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера ), окружающая планету Земля . Внутренняя её поверхность покрывает гидросферу и частично кору , внешняя граничит с околоземной частью космического пространства.

Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы . Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология , а длительными вариациями климата - климатология .

Строение атмосферы

Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы. Содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция , возникают облака , развиваются циклоны и антициклоны . Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии ). Достигнув на высоте около 40 км значения около 273 К (почти 0° С), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Атмосфера Земли

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов , колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

Термосфера

Основная статья : Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород.

Атмосферные слои до высоты 120 км

Экзосфера (сфера рассеяния)

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация ).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Физические свойства

Толщина атмосферы - примерно 2000 - 3000 км от поверхности Земли. Суммарная масса воздуха - (5,1-5,3)×10 18 кг. Молярная масса чистого сухого воздуха составляет 28,966. Давление при 0 °C на уровне моря 101,325 кПа ; критическая температура ?140,7 °C; критическое давление 3,7 МПа; C p 1,0048×10 3 Дж/(кг·К)(при 0 °C), C v 0,7159×10 3 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде при 0 °C - 0,036 %, при 25 °C - 0,22 %.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды - 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли, постепенно ослабляются, а затем и полностью исчезают, такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл, там проходит условная Линия Кармана за которой начинается сфера чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

Состав атмосферы

Состав сухого воздуха

Атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H 2 O) и углекислого газа (CO 2).

Состав сухого воздуха

Азот

Кислород

Аргон

Вода

Углекислый газ

Неон

Гелий

Метан

Криптон

Водород

Ксенон

Закись азота

Кроме указанных в таблице газов, в атмосфере содержатся SO 2 , NH 3 , СО, озон , углеводороды , HCl , HF , пары Hg , I 2 , а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль ).

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия ), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром ). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

    утечка легких газов (водорода и гелия) в межпланетное пространство ;

    химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зеленые водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьезные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Содержание в атмосфере СО 2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего - от интенсивности биосинтеза и разложения органики в биосфере Земли . Практически вся текущая биомасса планеты (около 2,4×10 12 тонн ) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане , в болотах и в лесах органика превращается в уголь , нефть и природный газ . (см.Геохимический цикл углерода )

Благородные газы

Источник инертных газов - аргона , гелия и криптона - вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 50 - 60 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , NO , SO 2 ). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4 ) и сульфат аммония ((NH 4 ) 2 SO 4 ) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2 ) 4 ) ).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

Изменявшие земную поверхность. Не меньшее значение имела деятельность ветра , переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим А. защищает поверхность Земли от разрушительного действия падающих метеоритов , большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие А. сама в очень большой степени зависит от атмосферных условий. А. задерживает большую часть ультрафиолетового излучения Солнца , которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями , атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека . Особенно сильно зависит от климатических условий сельское хозяйство . В свою очередь, деятельность человека оказывает всё возрастающее влияние на состав А. и на климатический режим.

Строение атмосферы

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Многочисленные наблюдения показывают, что А. имеет четко выраженное слоистое строение (см. рис.). Основные черты слоистой структуры А. определяются в первую очередь особенностями вертикального распределения температуры . В самой нижней части А. - тропосфере , где наблюдается интенсивное турбулентное перемешивание (см. Турбулентность в атмосфере и гидросфере), температура убывает с увеличением высоты, причём уменьшение температуры по вертикали составляет в среднем 6° на 1 км. Высота тропосферы изменяется от 8-10 км в полярных широтах до 16-18 км у экватора. В связи с тем, что плотность воздуха быстро убывает с высотой, в тропосфере сосредоточено около 80% всей массы А. Над тропосферой расположен переходный слой - тропопауза с температурой 190-220 , выше которой начинается стратосфера. В нижней части стратосферы уменьшение температуры с высотой прекращается, и температура остаётся приблизительно постоянной до высоты 25 км - т. н. изотермическая область (нижняя стратосфера); выше температура начинает возрастать - область инверсии (верхняя стратосфера). Температура достигает максимума ~ 270 K на уровне стратопаузы , расположенной на высоте около 55 км. Слой А., находящийся на высотах от 55 до 80 км, где вновь происходит понижение температуры с высотой, получил название мезосферы . Над ней находится переходный слой - мезопауза , выше которой располагается термосфера , где температура, увеличиваясь с высотой, достигает очень больших значений (св. 1000 K). Ещё выше (на высотах ~ 1000 км и более) находится экзосфера , откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству . Обычно все слои А., находящиеся выше тропосферы, называются верхними, хотя иногда к нижним слоям А. относят также стратосферу или её нижняя часть.

Все структурные параметры А. (температура, давление, плотность) обладают значительной пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной и др.). Поэтому данные рис. отражают лишь среднее состояние атмосферы.

Схема строения атмосферы:
1 - уровень моря ; 2 - высшая точка Земли - г. Джомолунгма (Эверест), 8848 м; 3 - кучевые облака хорошей погоды; 4 - мощно-кучевые облака; 5 - ливневые (грозовые) облака; 6 - слоисто-дождевые облака; 7 - перистые облака; 8 - самолёт ; 9 - слой максимальной концентрации озона ; 10 - перламутровые облака ; 11 - стратостат ; 12 - радиозонд ; 1З - метеоры ; 14 - серебристые облака ; 15 - полярные сияния ; 16 - американский самолёт-ракета Х-15; 17, 18, 19 - радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 - звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 - первый советский искусственный спутник Земли; 22 - межконтинентальная баллистическая ракета ; 23 - геофизические исследовательские ракеты; 24 - метеорологические спутники; 25 - космические корабли «Союз-4» и «Союз-5»; 26 - космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 - диссипация (ускальзывание) атомов Н и Не; 29 - траектория солнечных протонов Р; 30 - проникновение ультрафиолетовых лучей (длина волны l > 2000 и l < 900).

Слоистая структура атмосферы имеет и много других разнообразных проявлений. Неоднороден по высоте химический состав А. Если на высотах до 90 км, где существует интенсивное перемешивание А., относительный состав постоянных компонент атмосферы остаётся практически неизменным (вся эта толща А. получила название гомосферы), то выше 90 км - в гетеросфере - под влиянием диссоциации молекул атмосферных газов ультрафиолетовым излучением Солнца происходит сильное изменение химического состава А. с высотой. Типичные черты этой части А. - слои озона и собственное свечение атмосферы. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в А. твёрдых частиц земного и космического происхождения. Наиболее часто встречаются аэрозольные слои под тропопаузой и на высоте около 20 км. Слоистым является вертикальное распределение электронов и ионов в А., что выражается в существовании D-, Е- и F-cлоёв ионосферы .

Состав атмосферы

Одна из наиболее оптически активных компонент - атмосферная аэрозоль - взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в А. с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса . Аэрозоль наблюдается как в тропосфере, так и в верхних слоях А. Концентрация аэрозоля быстро убывает с высотой, но на этот ход налагаются многочисленные вторичные максимумы, связанные с существованием аэрозольных слоев.

Верхние слои атмосферы

Выше 20-30 км молекулы А. в результате диссоциации в той или иной степени распадаются на атомы и в А. появляются свободные атомы и новые более сложные молекулы. Несколько выше становятся существенными ионизационные процессы.

Наиболее неустойчива область гетеросферы , где процессы ионизации и диссоциации порождают многочисленные фотохимические реакции, определяющие изменение состава воздуха с высотой. Здесь происходит также и гравитационное разделение газов, выражающееся в постепенном обогащении А. более лёгкими газами по мере увеличения высоты. По данным ракетных измерений, гравитационное разделение нейтральных газов - аргона и азота - наблюдается выше 105-110 км . Основные компоненты А. в слое 100-210 км - молекулярный азот, молекулярный кислород и атомарный кислород (концентрация последнего на уровне 210 км достигает 77 ± 20% от концентрации молекулярного азота).

Верхняя часть термосферы состоит главным образом из атомарного кислорода и азота. На высоте 500 км молекулярный кислород практически отсутствует, но молекулярный азот, относительная концентрация которого сильно уменьшается, всё ещё доминирует над атомарным.

В термосфере важную роль играют приливные движения (см. Приливы и отливы), гравитационные волны, фотохимические процессы, увеличение длины свободного пробега частиц, а также другие факторы. Результаты наблюдений торможения спутников на высотах 200-700 км привели к выводу о наличии взаимосвязи между плотностью, температурой и солнечной активностью , с которой связано существование суточного, полугодового и годового хода структурных параметров. Возможно, что суточные вариации в значительной степени обусловлены атмосферными приливами. В периоды солнечных вспышек температура на высоте 200 км в низких широтах может достигать 1700-1900°C.

Выше 600 км преобладающей компонентой становится гелий , а ещё выше, на высотах 2-20 тыс. км, простирается водородная корона Земли. На этих высотах Земля окружена оболочкой из заряженных частиц, температура которых достигает нескольких десятков тысяч градусов. Здесь располагаются внутренний и внешний радиационные пояса Земли . Внутренний пояс, заполненный главным образом протонами с энергией в сотни Мэв, ограничен высотами 500-1600 км на широтах от экватора до 35-40°. Внешний пояс состоит из электронов с энергиями порядка сотен кэв. За внешним поясом существует «самый внешний пояс», в котором концентрация и потоки электронов значительно выше. Вторжение солнечного корпускулярного излучения (солнечного ветра) в верхние слои А. порождает полярные сияния. Под влиянием этой бомбардировки верхней А. электронами и протонами солнечной короны возбуждается также собственное свечение атмосферы, которое раньше называлось свечением ночного неба . При взаимодействии солнечного ветра с магнитным полем Земли создаётся зона, получившая назв. магнитосферы Земли , куда не проникают потоки солнечной плазмы .

Для верхних слоев А. характерно существование сильных ветров, скорость которых достигает 100-200 м/сек. Скорость и направление ветра в пределах тропосферы, мезосферы и нижней термосферы обладают большой пространственно-временной изменчивостью. Хотя масса верхних слоев А. незначительна по сравнению с массой нижних слоев и энергия атмосферных процессов в высоких слоях сравнительно невелика, по-видимому, существует некоторое влияние высоких слоев А. на погоду и климат в тропосфере.

Радиационный, тепловой и водный балансы атмосферы

Практически единственным источником энергии для всех физических процессов, развивающихся в А., является солнечная радиация. Главная особенность радиационного режима А. - т. н. парниковый эффект: А. слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в А. солнечная радиация частично поглощается в А. главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности А. Вследствие рассеяния лучистой энергии Солнца в А. наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо . За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к А. В свою очередь, А. также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение А.) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и А. определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением А. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом .

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в А. составляют тепловой баланс Земли. Главный источник тепла для атмосферы - земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в А. меньше потери тепла из А. в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к А. от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в А. Так как итоговая величина конденсации во всей А. равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в А. численно равен затрате тепла на испарение на поверхности Земли (см. также Водный баланс).

Некоторая часть энергии солнечной радиации затрачивается на поддержание общей циркуляции А. и на другие атмосферные процессы, однако эта часть незначительна по сравнению с основными составляющими теплового баланса.

Движение воздуха

Вследствие большой подвижности атмосферного воздуха на всех высотах А. наблюдаются ветры. Движения воздуха зависят от многих факторов, из которых главный - неравномерность нагрева А. в разных районах земного шара.

Особенно большие контрасты температуры у поверхности Земли существуют между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. Наряду с этим на распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоёмкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года . В связи с этим в умеренных и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неравномерность нагревания атмосферы способствует развитию системы крупномасштабных воздушных течений - т. н. общей циркуляции атмосферы , которая создаёт горизонтальный перенос тепла в А., в результате чего различия в нагревании атмосферного воздуха в отдельных районах заметно сглаживаются. Наряду с этим общая циркуляция осуществляет влагооборот в А., в ходе которого водяной пар переносится с океанов на сушу и происходит увлажнение континентов. Движение воздуха в системе общей циркуляции тесно связано с распределением атмосферного давления и зависит также от вращения Земли (см. Кориолиса сила). На уровне моря распределение давления характеризуется его понижением у экватора, увеличением в субтропиках (пояса высокого давления) и понижением в умеренных и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено.

С планетарным распределением давления связана сложная система воздушных течений, некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору. Сравнительно устойчивы также муссоны - воздушные течения, возникающие между океаном и материком и имеющие сезонный характер. В умеренных широтах преобладают воздушные течения западных направления (с З. на В.). Эти течения включают крупные вихри - циклоны и антициклоны , обычно простирающиеся на сотни и тысячи км. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т. н. тропические циклоны). В верхней тропосфере и нижней стратосфере встречаются сравнительно узкие (в сотни км шириной) струйные течения , имеющие резко очерченные границы, в пределах которых ветер достигает громадных скоростей - до 100-150 м/сек. Наблюдения показывают, что особенности атмосферные циркуляции в нижней части стратосферы определяются процессами в тропосфере.

В верхней половине стратосферы, где наблюдается рост температуры с высотой, скорость ветра возрастает с высотой, причём летом доминируют ветры восточных направлений, а зимой - западных. Циркуляция здесь определяется стратосферным источником тепла, существование которого связано с интенсивным поглощением озоном ультрафиолетовой солнечной радиации.

В нижней части мезосферы в умеренных широтах скорость зимнего западного переноса возрастает до максимальных значений - около 80 м/сек, а летнего восточного переноса - до 60 м/сек на уровне порядка 70 км. Исследования последних лет ясно показали, что особенности поля температуры в мезосфере нельзя объяснить только влиянием радиационных факторов. Главное значение имеют динамические факторы (в частности, разогревание или охлаждение при опускании или подъёме воздуха), а также возможны источники тепла, возникающие в результате фотохимических реакций (например, рекомбинации атомарного кислорода).

Над холодным слоем мезопаузы (в термосфере) температура воздуха начинает быстро возрастать с высотой. Во многих отношениях эта область А. подобна нижней половине стратосферы. Вероятно, циркуляция в нижней части термосферы определяется процессами в мезосфере, а динамика верхних слоев термосферы обусловлена поглощением здесь солнечной радиации. Однако исследовать атмосферного движения на этих высотах трудно вследствие их значительной сложности. Большое значение приобретают в термосфере приливные движения (главным образом солнечные полусуточные и суточные приливы), под влиянием которых скорость ветра на высотах более 80 км может достигать 100-120 м/сек. Характерная черта атмосферных приливов - их сильная изменчивость в зависимости от широты, времени года, высоты над уровнем моря и времени суток. В термосфере наблюдаются также значительные изменения скорости ветра с высотой (главным образом вблизи уровня 100 км), приписываемые влиянию гравитационных волн. Расположенная в диапазоне высот 100-110 км т. н. турбопауза резко отделяет находящуюся выше область от зоны интенсивного турбулентного перемешивания.

Наряду с воздушными течениями больших масштабов, в нижних слоях атмосферы наблюдаются многочисленные местные циркуляции воздуха (бриз , бора , горно-долинные ветры и др.; см. Ветры местные). Во всех воздушных течениях обычно отмечаются пульсации ветра, соответствующие перемещению воздушных вихрей средних и малых размеров. Такие пульсации связаны с турбулентностью атмосферы, которая существенно влияет на многие атмосферные процессы.

Климат и погода

Различия в количестве солнечной радиации, приходящей на разные широты земной поверхности, и сложность её строения, включая распределение океанов, континентов и крупнейших горных систем, определяют разнообразие климатов Земли (см. Климат).

Литература

  • Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967;
  • Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958;
  • Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968;
  • Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964;
  • Тверской П. Н., Курс метеорологии, Л., 1962;
  • Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965;
  • Будыко М. И., Тепловой баланс земной поверхности, Л., 1956;
  • Кондратьев К. Я., Актинометрия , Л., 1965;
  • Хвостиков И. А., Высокие слои атмосферы, Л., 1964;
  • Мороз В. И., Физика планет, М., 1967;
  • Тверской П. Н., Атмосферное электричество, Л., 1949;
  • Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964;
  • Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966;
  • Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

М. И. Будыко, К. Я. Кондратьев.

Эта статья или раздел использует текст

10,045×10 3 Дж/(кг*К)(в интервале температур от 0-100°С), C v 8,3710*10 3 Дж/(кг*К) (0-1500°С). Растворимость воздуха в воде при 0°С 0,036%, при 25°С - 0,22%.

Состав атмосферы

История образования атмосферы

Ранняя история

В настоящее время наука не может со стопроцентной точностью проследить все этапы образования Земли. Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углеводородами, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • постоянная утечка водорода в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Появление жизни и кислорода

С появлением на Земле живых организмов в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа, состав атмосферы начал меняться. Существуют, однако, данные (анализ изотопного состава кислорода атмосферы и выделяющегося при фотосинтезе), свидетельствующие в пользу геологического происхождения атмосферного кислорода.

Первоначально кислород расходовался на окисление восстановленых соединений - углеводородов , закисной формы железа , содержавшейся в океанах и др. По окончанию данного этапа содержание кислорода в атмосфере стало расти.

В 1990-x годах были проведены эксперименты по созданию замкнутой экологической системы («Биосфера 2»), в ходе которых не удалось создать стабильную систему, обладающую единым составом воздуха. Влияние микроорганизмов привело к снижению уровня кислорода и увеличению количества углекислого газа.

Азот

Образование большого количества N 2 обусловлено окислением первичной аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, как предполагается, около 3 млрд. лет назад (по другой версии, кислород атмосферы имеет геологическое происхождение). Азот окисляется до NO в верхних слоях атмосферы, используется в промышленности и связывается азотфиксирующими бактериями, в то же время N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений.

Азот N 2 инертный газ и вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окислять его и переводить в биологическую форму могут цианобактерии, некоторые бактерии (например клубеньковые, формирующие ризобиальный симбиоз с бобовыми растениями).

Окисление молекулярного азота электрическиими разрядами используется при промышленном изготовлении азотных удобрений, он же привёл к образованию уникальных месторождений селитры в чилийской пустыне Атакама .

Благородные газы

Сжигание топлива - основной источник загрязняющих газов (CО , NO, SO 2). Диоксид серы окисляется О 2 воздуха до SO 3 в высших слоях атмосферы, который взаимодействует с парами Н 2 О и NH 3 , а образующиеся при этом Н 2 SO 4 и (NН 4) 2 SO 4 возвращаются на поверхность Земли вместе с атмосферными осадками. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями Рb .

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капел морской воды и частиц пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

Строение атмосферы и характеристика отдельных оболочек

Физическое состояние атмосферы определяется погодой и климатом . Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.

Тропосфера

Стратосфера

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний , зарниц, и др. свечений.

В стратосфере и более высоких слоях под воздействия солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - Н 2). На высоте 100-400 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Мезосфера

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0°С в стратосфере до −110°С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80% массы атмосферы, на долю стратосферы - около 20%; масса мезосферы - не более 0,3%, термосферы - менее 0,05% от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды −47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

Атмосфера имеет слоистую структуру. Границы между слоями не резкие и их высота зависит от широты и времени года. Слоистая структура - результат температурных изменений на разных высотах. Погода формируется в тропосфере (нижние примерно 10 км: около 6 км над полюсами и более 16 км над экватором). И верхняя граница тропософеры выше летом, чем зимой.

От поверхности Земли вверх эти слои:

Тропосфера

Стратосфера

Мезосфера

Термосфера

Экзосфера

Тропосфера

Нижняя часть атмосферы, до высоты 10-15 км, в которой сосредоточено 4/5 всей массы атмосферного воздуха, носит название тропосферы. Для нее характерно, что температура здесь с высотой падает в среднем на 0.6°/100 м (в отдельных случаях распределение температуры по вертикали варьирует в широких пределах). В тропосфере содержится почти весь водяной пар атмосферы и возникают почти все облака. Сильно развита здесь и турбулентность, особенно вблизи земной поверхности, а также в так называемых струйных течениях в верхней части тропосферы.

Высота, до которой простирается тропосфера, над каждым местом Земли меняется изо дня в день. Кроме того, даже в среднем она различна под разными широтами и в разные сезоны года. В среднем годовом тропосфера простирается над полюсами до высоты около 9 км, над умеренными широтами до 10-12 км и над экватором до 15-17 км. Средняя годовая температура воздуха у земной поверхности около +26° на экваторе и около -23° на северном полюсе. На верхней границе тропосферы над экватором средняя температура около -70°, над северным полюсом зимой около -65°, а летом около -45°.

Давление воздуха на верхней границе тропосферы соответственно ее высоте в 5-8 раз меньше, чем у земной поверхности. Следовательно, основная масса атмосферного воздуха находится именно в тропосфере. Процессы, происходящие в тропосфере, имеют непосредственное и решающее значение для погоды и климата у земной поверхности.

В тропосфере сосредоточен весь водяной пар и именно поэтому все облака образуются в пределах тропосферы. Температура уменьшается с высотой.

Солнечные лучи легко проходят через тропосферу, а тепло, которое излучает нагретая солнечными лучами Земля, накапливается в тропосфере: такие газы, как углекислый газ, метан а также пары воды удерживают тепло. Такой механизм прогревания атмосферы от Земли, нагретой солнечной радиацией, называется парниковый эффект. Именно потому, что источником тепла для атмосферы является Земля, температура воздуха с высотой уменьшается

Граница между турбулентной тропосферой и спокойной стратосферой называется тропопауза. Здесь образуются быстро движущиеся ветры, называемые "реактивные потоки".

Когда-то предполагали, что температура атмосферы падает и выше тропософеры, однако измерения в высоких слоях атмосферы показали, что это не так:сразу выше тропопаузы температура почти постоянна, а затем начинает увеличиваться Сильные горизонтальные ветры дуют в стратосфере не образуя турбулентности. Воздух стратосферы очень сухой и поэтому облака редки. Образуются так называемые перламутровые облака.

Стратосфера очень важна для жизни на Земле, так именно в этом слое находится небольшое количество озона, которое поглощает сильное ультрафиолетовое излучение, вредное для жизни. Поглощая ультрафиолетовое излучение, озон нагревает стратосферу.

Стратосфера

Над тропосферой до высоты 50-55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1-2 км) носит название тропопаузы.

Выше были приведены данные о температуре на верхней границе тропосферы. Эти температуры характерны и для нижней стратосферы. Таким образом, температура воздуха в нижней стратосфере над экватором всегда очень низкая; притом летом много ниже, чем над полюсом.

Нижняя стратосфера более или менее изотермична. Но, начиная с высоты около 25 км, температура в стратосфере быстро растет с высотой, достигая на высоте около 50 км максимальных, притом положительных значений (от +10 до +30°). Вследствие возрастания температуры с высотой турбулентность в стратосфере мала.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 20-25 км наблюдаются иногда в высоких широтах очень тонкие, так называемые перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются солнцем, находящимся под горизонтом. Эти облака состоят из переохлажденных водяных капелек. Стратосфера характеризуется еще тем, что преимущественно в ней содержится атмосферный озон, о чем было сказано выше

Мезосфера

Над стратосферой лежит слой мезосферы, примерно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля. Вследствие быстрого падения температуры с высотой в мезосфере сильно развита турбулентность. На высотах, близких к верхней границе мезосферы (75-90 км), наблюдаются еще особого рода облака, также освещаемые солнцем в ночные часы, так называемые серебристые. Наиболее вероятно, что они состоят из ледяных кристаллов.

На верхней границе мезосферы давление воздуха раз в 200 меньше, чем у земной поверхности. Таким образом, в тропосфере, стратосфере и мезосфере вместе, до высоты 80 км, заключается больше чем 99,5% всей массы атмосферы. На вышележащие слои приходится ничтожное количество воздуха

На высоте около 50 км над Землей температура снова начинает падать, обозначая верхнюю границу стратосферы и начало следующего слоя - мезосферы. Мезосфера имеет самую холодную температуру в атмосфере: от -2 до - 138 градусов Цельсия. Здесь же находятся самые высокие облака: в ясную погоду их можно видеть при закате. Они называются noctilucent (светящиеся ночью).

Термосфера

Верхняя часть атмосферы, над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосфера, простирающаяся от мезосферы до высот порядка тысячи километров, и лежащая над нею внешняя часть - экзосфера, переходящая в земную корону.

Воздух в ионосфере чрезвычайно разрежен. Мы уже указывали, что на высотах 300-750 км его средняя плотность порядка 10-8-10-10 г/м3. Но и при такой малой плотности каждый кубический сантиметр воздуха на высоте 300 км еще содержит около одного миллиарда (109) молекул или атомов, а на высоте 600 км - свыше 10 миллионов (107). Это на несколько порядков больше, чем содержание газов в межпланетном пространстве.

Ионосфера, как говорит само название, характеризуется очень сильной степенью ионизации воздуха - содержание ионов здесь во много раз больше, чем в нижележащих слоях, несмотря на сильную общую разреженность воздуха. Эти ионы представляют собой в основном заряженные атомы кислорода, заряженные молекулы окиси азота и свободные электроны. Их содержание на высотах 100-400 км - порядка 1015-106 на кубический сантиметр.

В ионосфере выделяется несколько слоев, или областей, с максимальной ионизацией, в особенности на высотах 100- 120 км и 200-400 км. Но и в промежутках между этими слоями степень ионизации атмосферы остается очень высокой. Положение ионосферных слоев и концентрация ионов в них все время меняются. Спорадические скопления электронов с особенно большой концентрацией носят название электронных облаков.

От степени ионизации зависит электропроводность атмосферы. Поэтому в ионосфере электропроводность воздуха в общем в 1012 раз больше, чем у земной поверхности. Радиоволны испытывают в ионосфере поглощение, преломление и отражение. Волны длиной более 20 м вообще не могут пройти сквозь ионосферу: они отражаются уже электронными слоями небольшой концентрации в нижней части ионосферы (на высотах 70- 80 км). Средние и короткие волны отражаются вышележащими ионосферными слоями.

Именно вследствие отражения от ионосферы возможна дальняя связь на коротких волнах. Многократное отражение от ионосферы и земной поверхности позволяет коротким волнам зигзагообразно распространяться на большие расстояния, огибая поверхность Земного шара. Так как положение и концентрация ионосферных слоев непрерывно меняются, меняются и условия поглощения, отражения и распространения радиоволн. Поэтому для надежной радиосвязи необходимо непрерывное изучение состояния ионосферы. Наблюдения над распространением радиоволн как раз являются средством для такого исследования.

В ионосфере наблюдаются полярные сияния и близкое к ним по природе свечение ночного неба - постоянная люминесценция атмосферного воздуха, а также резкие колебания магнитного поля - ионосферные магнитные бури.

Ионизация в ионосфере обязана своим существованием действию ультрафиолетовой радиации Солнца. Ее поглощение молекулами атмосферных газов приводит к возникновению заряженных атомов и свободных электронов, о чем говорилось выше. Колебания магнитного поля в ионосфере и полярные сияния зависят от колебаний солнечной активности. С изменениями солнечной активности связаны изменения в потоке корпускулярной радиации, идущей от Солнца в земную атмосферу. А именно корпускулярная радиация имеет основное значение для указанных ионосферных явлений.

Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°.

Говоря о высоких температурах ионосферы, имеют в виду то, что частицы атмосферных газов движутся там с очень большими скоростями. Однако плотность воздуха в ионосфере так мала, что тело, находящееся в ионосфере, например летящий спутник, не будет нагреваться путем теплообмена с воздухом. Температурный режим спутника будет зависеть от непосредственного поглощения им солнечной радиации и от отдачи его собственного излучения в окружающее пространство. Термосфера находится выше мезосферы на высоте от 90 до 500 км над поверхностью Земли. Молекулы газа здесь сильно рассеянны, поглощают рентгеновское излучение и коротковолновую часть ультрафиолетового излучения. Из-за этого температура может достигать 1000 градусов Цельсия.

Термосфера в основном соответствует ионосфере, где ионизированный газ отражает радиоволны обратно к Земле - это явление дает возможным устанавливать радиосвязь.

Экзосфера

Выше 800-1000 км атмосфера переходит в экзосферу и постепенно в межпланетное пространство. Скорости движения частиц газов, особенно легких, здесь очень велики, а вследствие чрезвычайной разреженности воздуха на этих высотах частицы могут облетать Землю по эллиптическим орбитам, не сталкиваясь между собою. Отдельные частицы могут при этом иметь скорости, достаточные для того, чтобы преодолеть силу тяжести. Для незаряженных частиц критической скоростью будет 11,2 км/сек. Такие особенно быстрые частицы могут, двигаясь по гиперболическим траекториям, вылетать из атмосферы в мировое пространство, "ускользать", рассеиваться. Поэтому экзосферу называют еще сферой рассеяния.

Ускользанию подвергаются преимущественно атомы водорода, который является господствующим газом в наиболее высоких слоях экзосферы.

Недавно предполагалось, что экзосфера, и с нею вообще земная атмосфера, кончается на высотах порядка 2000-3000 км. Но из наблюдений с помощью ракет и спутников создалось представление, что водород, ускользающий из экзосферы, образует вокруг Земли так называемую земную корону, простирающуюся более чем до 20 000 км. Конечно, плотность газа в земной короне ничтожно мала. На каждый кубический сантиметр здесь приходится в среднем всего около тысячи частиц. Но в межпланетном пространстве концентрация частиц (преимущественно протонов и электронов) по крайней мере, в десять раз меньше.

С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и в околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности. Этот пояс состоит из электрически заряженных частиц - протонов и электронов, захваченных магнитным полем Земли и движущихся с очень большими скоростями. Их энергия - порядка сотен тысяч электрон-вольт. Радиационный пояс постоянно теряет частицы в земной атмосфере и пополняется потоками солнечной корпускулярной радиации.

атмосфера температура стратосфера тропосфера



Просмотров