Углерод и его соединения. Углерод элемент

Важная область практического применения новейших открытий в области физики, химии и даже астрономии - создание и исследование новых материалов с необычными, подчас уникальными свойствами. О том, в каких направлениях ведутся эти работы и чего уже сумели добиться ученые, мы расскажем в серии статей, созданных в партнерстве с Уральским федеральным университетом . Первый наш текст посвящен необычным материалам, которые можно получить из самого обычного вещества - углерода.

Если спросить у химика, какой элемент самый важный, можно получить массу разных ответов. Кто-то скажет про водород - самый распространенный элемент во Вселенной, кто-то про кислород - самый распространенный элемент в земной коре. Но чаще всего вы услышите ответ «углерод» - именно он лежит в основе всех органических веществ, от ДНК и белков до спиртов и углеводородов.

Наша статья посвящена многообразным обличьям этого элемента: оказывается, только из его атомов можно построить десятки различных материалов - от графита до алмаза, от карбина до фуллеренов и нанотрубок. Хотя все они состоят из абсолютно одинаковых атомов углерода, их свойства радикально отличаются - а главную роль в этом играет расположение атомов в материале.

Графит

Чаще всего в природе чистый углерод можно встретить в форме графита - мягкого черного материала, легко расслаивающегося и словно скользкого на ощупь. Многие могут вспомнить, что из графита делаются грифели карандашей - но это не всегда верно. Часто грифель делают из композита графитовой крошки и клея, но встречаются и полностью графитовые карандаши. Интересно, но на карандаши уходит больше одной двадцатой всей мировой добычи естественного графита.

Чем необычен графит? В первую очередь, он хорошо проводит электрический ток - хотя сам углерод и не похож на другие металлы. Если взять пластинку графита, то окажется, что вдоль ее плоскости проводимость примерно в сто раз больше, чем в поперечном направлении. Это напрямую связано с тем, как организованы атомы углерода в материале.

Если посмотреть на структуру графита, то мы увидим, что она состоит из отдельных слоев толщиной в один атом. Каждый из слоев - сетка из шестиугольников, напоминающая собой соты. Атомы углерода внутри слоя связаны ковалентными химическими связями. Более того, часть электронов, обеспечивающих химическую связь, «размазана» по всей плоскости. Легкость их перемещения и определяет высокую проводимость графита вдоль плоскости углеродных чешуек.

Отдельные слои соединяются между собой благодаря ван-дер-ваальсовым силам - они гораздо слабее, чем обычная химическая связь, но достаточны для того, чтобы кристалл графита не расслаивался самопроизвольно. Такое несоответствие приводит к тому, что электронам гораздо сложнее перемещаться перпендикулярно плоскостям - электрическое сопротивление возрастает в 100 раз.

Благодаря своей электропроводности, а также возможности встраивать атомы других элементов между слоями, графит применяется в качестве анодов литий-ионных аккумуляторов и других источников тока. Электроды из графита необходимы для производства металлического алюминия - и даже в троллейбусах используются графитовые скользящие контакты токосъемников.

Кроме того, графит - диамагнетик, причем обладающий одной из самых высоких восприимчивостей на единицу массы. Это означает, что если поместить кусочек графита в магнитное поле, то он всячески будет пытаться вытолкнуть это поле из себя - вплоть до того, что графит может левитировать над достаточно сильным магнитом.

И последнее важное свойство графита - невероятная тугоплавкость. Самым тугоплавким веществом на сегодняшний день считается один из карбидов гафния с температурой плавления около 4000 градусов Цельсия. Однако если попытаться расплавить графит, то при давлениях около ста атмосфер он сохранит твердость вплоть до 4800 градусов Цельсия (при атмосферном давлении графит сублимирует - испаряется, минуя жидкую фазу). Благодаря этому материалы на основе графита используют, например, в корпусах ракетных сопел.

Алмаз

Многие материалы под давлением начинают менять свою атомарную структуру - происходит фазовый переход. Графит в этом смысле ничем не отличается от других материалов. При давлениях в сто тысяч атмосфер и температуре в 1–2 тысячи градусов Цельсия слои углерода начинают сближаться между собой, между ними возникают химические связи, а когда-то гладкие плоскости становятся гофрированными. Образуется алмаз, одна из самых красивых форм углерода.

Свойства алмаза радикально отличаются от свойств графита - это твердый прозрачный материал. Его чрезвычайно сложно поцарапать (обладатель 10-ки по шкале твердости Мооса, это максимум твердости). При этом электропроводность алмаза и графита отличается в квинтиллион раз (это число с 18 нулями).

Алмаз в горной породе

Wikimedia Commons

Этим определяется применение алмазов: большая часть добываемых и получаемых искусственно алмазов используется в металлообработке и других отраслях промышленности. Например, широко распространены точильные диски и режущие инструменты с алмазным порошком или напылением. Алмазные напыления используются даже в хирургии - для скальпелей. Об использовании этих камней в ювелирной промышленности хорошо известно всем.

Потрясающая твердость находит применение и в научных исследованиях - именно с помощью высококачественных алмазов в лабораториях изучают материалы при давлениях в миллионы атмосфер. Подробнее об этом можно прочитать в нашем материале « ».

Графен

Вместо того чтобы сжимать и нагревать графит, мы, следуя за Андреем Геймом и Константином Новоселовым, приклеим к кристаллу графита кусочек скотча. Затем отклеим его - на скотче останется тонкий слой графита. Повторим эту операцию еще раз - приложим скотч к тонкому слою и снова отклеим. Слой станет еще тоньше. Повторив процедуру еще несколько раз, мы получим графен - материал, за который вышеупомянутые британские физики получили Нобелевскую премию в 2010 году.

Графен представляет собой плоский монослой из атомов углерода, полностью идентичный атомарным слоям графита. Его популярность связана с необычным поведением электронов в нем. Они двигаются так, словно бы вовсе не обладают массой. В действительности, конечно, масса электронов остается все той же, что и в любом веществе. Во всем «виноваты» атомы углерода графенового каркаса, притягивающие заряженные частицы и образующие особенное периодическое поле.

Устройство на основе графена. На заднем плане фотографии - золотые контакты, над ними находится графен, выше - тонкий слой полиметилметакрилата

Engineering at Cambridge / flickr.com

Следствием такого поведения стала большая подвижность электронов - они перемещаются в графене гораздо быстрее, чем в кремнии. По этой причине многие ученые надеются, что основой электроники будущего станет именно графен.

Интересно, что у графена есть углеродные собратья - и . Первый из них состоит из немного искаженных пятиугольных секций и, в отличие от графена, плохо проводит электрический ток. Фаграфен состоит из пяти-, шести- и семиугольных секций. Если свойства графена одинаковы во всех направлениях, то фаграфен будет обладать выраженной анизотропией свойств. Оба этих материала были предсказаны теоретически, но в реальности пока не существуют.


Обломок кремниевого монокристалла (на переднем плане) на вертикальном массиве углеродных нанотрубок

Углеродные нанотрубки

Представьте себе, что вы свернули небольшой кусочек графенового листа в трубку и склеили ее края. Получилась полая конструкция, состоящая из тех же самых шестиугольников атомов углерода, что и графен и графит, - углеродная нанотрубка. Этот материал во многом родственен графену - он обладает высокой механической прочностью (когда-то из углеродных нанотрубок предлагали строить лифт в космос), высокой подвижностью электронов.

Однако есть одна необычная особенность. Графеновый лист можно скручивать параллельно воображаемому краю (стороне одного из шестиугольников), а можно и под углом. Оказывается, от того, как мы скрутим углеродную нанотрубку, будут очень сильно зависеть ее электронные свойства, а именно: будет она больше похожа на полупроводник с запрещенной зоной или на металл.

Многослойная углеродная нанотрубка

Wikimedia commons

Когда углеродные нанотрубки наблюдались впервые, достоверно неизвестно. В 1950–1980-х года разные группы исследователей, занимавшихся катализом реакций с участием углеводородов (например, пиролиза метана), обращали внимание на продолговатые структуры в саже, покрывавшей катализатор. Сейчас, чтобы синтезировать углеродные нанотрубки только конкретного вида (конкретной хиральности), химики предлагают использовать специальные затравки. Это небольшие молекулы в виде колец, состоящих, в свою очередь, из шестиугольных бензольных колец. Про работы по их синтезу можно почитать, например, .

Как и графен, углеродные нанотрубки могут найти большое применение в микроэлектронике. Уже сейчас созданы первые транзисторы на нанотрубках, по своим свойствам традиционные кремниевые приборы. Кроме того, нанотрубки легли в основу транзистора с .

Карбин

Говоря о вытянутых структурах из атомов углерода, нельзя не упомянуть карбины. Это линейные цепочки, которые по оценкам теоретиков могут оказаться самым прочным материалом из возможных (речь идет об удельной прочности). К примеру, модуль Юнга для карбина оценивается в 10 гиганьютон на килограмм. У стали этот показатель в 400 раз меньше, у графена - по меньшей мере в два раза меньше.

Тонкая нить, тянущаяся к железной частице внизу - карбин

Wikimedia Commons

Карбины бывают двух типов, в зависимости от того, как устроены связи между атомами углерода. Если все связи в цепочке одинаковые, то речь идет о кумуленах, если же связи чередуются (одинарная-тройная-одинарная-тройная и так далее), то о полиинах. Физики показали, что нить карбина можно «переключать» между этими двумя видами путем деформации - при растяжении кумулен превращается в полиин. Интересно, что это радикально меняет электрические свойства карбина. Если полиин проводит электрический ток, то кумулен- диэлектрик.

Главная сложность в изучении карбинов - их очень сложно синтезировать. Это химически активные вещества, к тому же легко окисляющиеся. На сегодняшний день цепочки длиной лишь в шесть тысяч атомов. Чтобы достигнуть этого, химикам пришлось растить карбин внутри углеродной нанотрубки. Кроме того, синтез карбина поможет побить рекорд размера затвора в транзисторе - его удастся уменьшить до одного атома.

Фуллерены

Хотя шестиугольник - одна из самых стабильных конфигураций, которые могут образовывать атомы углерода, есть целый класс компактных объектов, где встречается правильный пятиугольник из углерода. Эти объекты называются фуллеренами.

В 1985 году Гарольд Крото, Роберт Кёрл и Ричард Смолли исследовали пары углерода и то, в какие фрагменты слипаются атомы углерода при охлаждении. Оказалось, что в газовой фазе есть два класса объектов. Первый - кластеры, состоящие из 2–25 атомов: цепочки, кольца и другие простые структуры. Второй - кластеры, состоящие из 40–150 атомов, не наблюдавшиеся ранее. За следующие пять лет химикам удалось доказать, что этот второй класс представляет собой полые каркасы из атомов углерода, наиболее устойчивый из которых состоит из 60 атомов и повторяет по форме футбольный мяч. C 60 , или бакминстерфуллерен, состоял из двадцати шестиугольных секций и 12 пятиугольных, скрепленных между собой в сферу.

Открытие фуллеренов вызвало большой интерес химиков. Впоследствии был синтезирован необычный класс эндофуллеренов - фуллеренов, в полости которых находился какой-либо посторонний атом или небольшая молекула. К примеру, всего лишь год назад в фуллерен впервые молекулу плавиковой кислоты, что позволило очень точно определить ее электронные свойства.

Фуллериты - кристаллы фуллеренов

Wikimedia Commons

В 1991 году оказалось, что фуллериды - кристаллы фуллеренов, в которых часть полостей между соседними многогранниками занимают металлы, - это молекулярные сверхпроводники с рекордно высокой температурой перехода для этого класса, а именно 18 кельвин (для K 3 C 60). Позднее нашлись фуллериды и с еще большей температурой перехода - 33 кельвина, Cs 2 RbC 60 . Такие свойства оказались напрямую связаны с электронной структурой вещества.

Q-углерод

Среди недавно открытых форм углерода можно отметить так называемый Q-углерод. Впервые он был американскими материаловедами из Университета Северной Каролины в 2015 году. Ученые облучали аморфный углерод с помощью мощного лазера, локально разогревая материал до 4000 градусов Цельсия. В результате примерно четверть всех атомов углерода в веществе принимала sp 2 -гибридизацию, то есть то же электронное состояние, что и в графите. Остальные атомы Q-углерода сохраняли гибридизацию, характерную для алмаза.

Q-углерод

В отличие от алмаза, графита и других форм углерода, Q-углерод ферромагнетиком, таким как магнетит или железо. При этом его температура Кюри составила около 220 градусов Цельсия - только при таком нагреве материал терял свои магнитные свойства. А при допировании Q-углерода бором физики получили еще один углеродный сверхпроводник, с температурой перехода уже около 58 кельвинов.

***

Перечисленное - не все известные формы углерода. Более того, прямо сейчас теоретики и экспериментаторы создают и изучают новые углеродные материалы. В частности, такие работы ведутся в Уральском федеральном университете. Мы обратились к Анатолию Федоровичу Зацепину, доценту и главному научному сотруднику Физико-технологического института УрФУ, чтобы выяснить, как можно предсказывать свойства еще не синтезированных материалов и создавать новые формы углерода.

Анатолий Зацепин работает над одним из шести прорывных научных проектов УрФУ «Разработка фундаментальных основ новых функциональных материалов на базе низкоразмерных модификаций углерода». Работа осуществляется с академическими и индустриальными партнерами России и мира.

Проект реализует Физико-технологический институт УрФУ - стратегическая академическая единица (САЕ) университета. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

N + 1: Свойства углеродных наноматериалов очень сильно зависят от структуры и варьируются в широких пределах. Можно ли как-то заранее предсказать свойства материала по его структуре?

Анатолий Зацепин: Предсказать можно, и мы этим занимаемся. Существуют методы компьютерного моделирования, с помощью которых осуществляются расчеты из первых принципов (ab initio ) - мы закладываем определенную структуру, моделируем и берем все фундаментальные характеристики атомов, из которых состоит эта структура. В результате получаются те свойства, которыми может обладать материал или новое вещество, которое мы моделируем. В частности, что касается углерода, мы сумели смоделировать новые модификации, не известные природе. Их можно создать искусственно.

В частности, наша лаборатория на физтехе УрФУ сейчас занимается разработкой, синтезом и исследованиями свойств новой разновидности углерода. Ее можно назвать так: двумерно-упорядоченный линейно-цепочный углерод. Такое длинное название связано с тем, что этот материал представляет из себя так называемую 2D-структуру. Это пленки, составленные из отдельных цепей углерода, причем в пределах каждой цепи атомы углерода находятся в одной и той же «химической форме» - sp 1 -гибридизация. Это придает совершенно необычные свойства материалу, в цепочках sp 1 -углерода прочность превышает прочность алмаза и других углеродных модификаций.

Когда мы формируем из этих цепочек пленки, получается новый материал, обладающий свойствами, присущими цепочкам углерода, плюс к тому совокупность этих упорядоченных цепочек формирует двумерную структуру или сверхрешетку на специальной подложке. Такой материал обладает большими перспективами не только благодаря механическим свойствам. Самое главное, что углеродные цепочки в определенной конфигурации можно замкнуть в кольцо, при этом возникают очень интересные свойства, такие как сверхпроводимость, а магнитные свойства таких материалов могут быть лучше, чем у существующих ферромагнетиков.

Задача остается в том, чтобы их реально создать. Наше моделирование показывает путь, куда двигаться.

Как сильно отличаются реальные и предсказанные свойства материалов?

Погрешность всегда существует, но дело в том, что расчеты и моделирование из первых принципов используют фундаментальные характеристики отдельных атомов - квантовые свойства. И когда на таком микро- и наноуровне из этих квантовых атомов формируются структуры, то ошибки связаны с существующим ограничением теории и тех моделей, которые существуют. Например, известно, что уравнение Шредингера точно можно решить только для атома водорода, а для более тяжелых атомов надо использовать определенные приближения, если мы говорим о твердых телах или более сложных системах.

С другой стороны - ошибки могут возникать за счет компьютерных вычислений. При всем этом грубые ошибки исключены, а точности вполне достаточно, чтоб предсказать то или иное свойство или эффект, которые будут присущ данному материалу.

Много ли материалов можно предсказать такими способами?

Если говорить об углеродных материалах, то тут много вариаций, и я уверен, что многое еще не исследовано и не открыто. В УрФУ есть все для исследования новых углеродных материалов, и впереди предстоит большая работа.

Мы занимаемся и другими объектами, к примеру, кремниевыми материалами для микроэлектроники. Кремний и углерод - это, кстати, аналоги, они находятся в одной группе в таблице Менделеева.

Владимир Королёв

Углерод — это, пожалуй, основной и самый удивительный химический элемент на Земле, ведь с его помощью формируется колоссальное количество разнообразных соединений, как неорганических, так и органических. Углерод является основой всех живых существ, можно сказать, что углерод, наравне с водой и кислородом, — основа жизни на нашей планете! Углерод имеет разнообразие форм, которые не похожи ни по своим физико-химическим свойствам, ни по внешнему виду. Но всё это углерод!

История открытия углерода

Углерод был известен человечеству ещё с глубокой древности. Графит и уголь использовались ещё древними греками, а алмазы нашли применение в Индии. Правда, за графит частенько принимали похожие по внешнему виду соединения. Тем не менее, графит имел широкое применение в древности, в частности для письма. Даже его название происходит от греческого слова «графо» — «пишу». Графит сейчас используется в карандашах. Алмазами начали впервые торговать в Бразилии в первой половине 18 века, с этого времени открыто множество месторождений, а в 1970 году была разработана технология получения алмазов искусственным путём. Такие искусственные алмазы применяются в промышленности, натуральные же, в свою очередь, в ювелирном деле.

Углерод в природе

Наиболее значимое количество углерода собрано в атмосфере и гидросфере в виде углекислого газа. В атмосфере углерода содержится около 0,046%, а еще больше — в растворенном виде в Мировом Океане.

Кроме того, как мы видели выше, углерод является основой живых организмов. Например, в теле человека массой 70 кг содержится около 13 кг углерода! Это только в одном человеке! А углерод содержится также во всех растениях и животных. Вот и считайте…

Круговорот углерода в природе

Аллотропные модификации углерода

Углерод — уникальный химический элемент, который образует так называемые аллотропные модификации , или, проще говоря, различные формы. Эти модификации подразделяются кристаллические, аморфные и в виде кластеров.

Кристаллические модификации имеют правильную кристаллическую решётку. К этой группе относятся: алмаз , фуллерит, графит, лонсдейлит, углеродные волокна и трубки. Подавляющее большинство кристаллических модификаций углерода на первых местах в рейтинге «Самые твёрдые материалы в мире » .

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен); е) графен;
ж) однослойная нанотрубка

Аморфные формы образованы углеродом с небольшими примесями других химических элементов. Основные представители этой группы: уголь (каменный, древесный, активированный), сажа, антрацит.

Самыми сложными и высокотехнологичными являются соединения углерода в виде кластеров. Кластеры — это особая структура, при которой атомы углерода расположены таким образом, что образуют полую форму, которая заполнена изнутри атомами других элементов, например, воды. В этой группе не так уж и много представителей, в неё входят углеродные наноконусы, астралены и диуглерод.

Графит — «тёмная сторона» алмаза

Применение углерода

Углерод и его соединения имеют огромное значение в жизнедеятельности человека. Из углерода образованы главные виды топлива на Земле — природный газ и нефть. Соединения углерода широко применяются в химической и металлургической промышленности, в строительстве, в машиностроении и медицине. Аллотропные модификации в виде алмазов используют в ювелирном деле, фуллерит и лонсдейлит в ракетостроении. Из соединений углерода изготавливаются различные смазки для механизмов, техническое оборудование и многое другое. Промышленность в настоящее время не может обойтись без углерода, он используется везде!

Углерод (химический символ - C) - химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева, порядковый номер 6, атомная масса природной смеси изотопов 12,0107 г/моль.

При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300-500 °C, 600-700 °C и 850-1000 °C.

Изотопы:
Природный углерод состоит из двух стабильных изотопов - 12С (98,892 %) и 13С (1,108 %) и одного радиоактивного изотопа 14С (β-излучатель, Т½= 5730 лет) , сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14N (n, p) 14C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.
На образовании и распаде 14С основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропия:
Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

Тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp3-гибридизация) . Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.

Тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация) . Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
- дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация) . При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию - карбин.

Степени окисления +4, −4, редко +2 (СО, карбиды металлов) , +3 (C2N2, галогенцианы) ; сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С0 к С4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Химические свойства углерода
Взаимодействие с фтором
Углерод обладает низкой реакционной способностью, из галогенов реагирует только с фтором:

С + 2F2 = CF4.

Взаимодействие с кислородом
При нагревании взаимодействует с кислородом:

2С + О2 = 2СО,

С + О2 = СО2,

образуя оксиды СО и СО2.

Взаимодействие с другими неметаллами
Реагирует с серой:

не взаимодействует с азотом и фосфором.

Реагирует с водородом в присутствии никелевого катализатора, образуя метан:

Взаимодействие с металлами
Способен взаимодействовать с металлами, образуя карбиды:
Ca + 2C = CaC2.

Взаимодействие с водой
При пропускании водяных паров через раскаленный уголь образуется оксид углерода (II) и водород:
C + H2O = CO + H2.

Восстановительные свойства
Углерод способен восстанавливать многие металлы из их оксидов:
2ZnO + C = 2Zn + CO2.

Концентрированные серная и азотная кислоты при нагревании окисляют углерод до оксида углерода (IV):

C + 2H2SO4 = CO2 + 2SO2 + 2H2O;
C + 4HNO3 = CO2 + 4NO2 + 2H2O.

МОУ «Никифоровская средняя общеобразовательная школа №1»

Углерод и его основные неорганические соединения

Реферат

Выполнил: ученик 9В класса

Сидоров Александр

Учитель: Сахарова Л.Н.

Дмитриевка 2009


Введение

Глава I. Всё об углероде

1.1. Углерод в природе

1.2. Аллотропные модификации углерода

1.3. Химические свойства углерода

1.4. Применение углерода

Глава II. Неорганические соединения углерода

Заключение

Литература


Введение

Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы Менделеева: атомный номер 6, атомная масса 12,011(1). Рассмотрим строение атома углерода. На наружном энергетическом уровне атома углерода находятся четыре электрона. Изобразим графически:


Углерод был известен с глубокой древности, и имя первооткрывателя этого элемента неизвестно.

В конце XVII в. флорентийские ученые Аверани и Тарджони пытались сплавить несколько мелких алмазов в один крупный и нагрели их с помощью зажигательного стекла солнечными лучами. Алмазы исчезли, сгорев на воздухе. В 1772 г. французский химик А. Лавуазье показал, что при сгорании алмаза образуется СО 2 . Лишь в 1797 г. английский ученый С. Теннант доказал идентичность природы графита и угля. После сгорания равных количеств угля и алмаза объемы оксида углерода (IV) оказались одинаковыми.

Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обуславливает особое положение углерода среди других элементов.


Глава I . Всё об углероде

1.1. Углерод в природе

Углерод находится в природе, как в свободном состоянии, так и в виде соединений.

Свободный углерод встречается в виде алмаза, графита и карбина.

Алмазы очень редки. Самый большой из известных алмазов – «Куллинан» был найден в 1905 г. в Южной Африке, весил 621,2 г и имел размеры 10×6,5×5 см. В Алмазном фонде в Москве хранится один из самых боль­ших и красивых алмазов в мире – «Орлов» (37,92 г).

Свое название алмаз получил от греч. «адамас» – непобедимый, несокрушимый. Самые значительные месторождения алмазов находятся в Южной Африке, Бразилии, в Якутии.

Крупные залежи графита находятся в ФРГ, в Шри-Ланке, в Сибири, на Алтае.

Главными углеродсодержащими минералами являются: магнезит МgСО 3 , кальцит (известковый шпат, известняк, мрамор, мел) СаСО 3 , доломит СаМg(СО 3) 2 и др.

Все горючие ископаемые – нефть, газ, торф, каменные и бурые угли, сланцы – построены на углеродной основе. Близки по составу к углероду некоторые ископаемые угли, содержащие до 99% С.

На долю углерода приходится 0,1% земной коры.

В виде оксида углерода (IV) СО 2 углерод входит в состав атмосферы. В гидросфере растворено большое количество СО 2 .

1.2. Аллотропные модификации углерода

Элементарный углерод образует три аллотропные модификации: алмаз, графит, карбин.

1. Алмаз – бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света. Атомы углерода в алмазе находятся в состоянии sр 3 -гибридизации. В возбуждённом состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов. При образовании химических связей электронные облака приобретают одинаковую вытянутую форму и располагаются в пространстве так, что их оси оказываются направленными к вершинам тетраэдра. При перекрывании вершин этих облаков с облаками других атомов углерода возникают ковалентные связи под углом 109°28", и образуется атомная кристаллическая решетка, характерная для алмаза.

Каждый атом углерода в алмазе окружён четырьмя другими, расположенными от него в направлениях от центра тетраэдров к вершинам. Расстояние между атомами в тетраэдрах равно 0,154 нм. Прочность всех связей одинакова. Таким образом, атомы в алмазе «упакованы» очень плотно. При 20°С плотность алмаза составляет 3,515 г/см 3 . Этим объясняется его исключительная твердость. Алмаз плохо проводит электрический ток.

В 1961 г. в Советском Союзе было начато промышленное производство синтетических алмазов из графита.

При промышленном синтезе алмазов используются давления в тысячи МПа и температуры от 1500 до 3000°С. Процесс ведут в присутствии катализаторов, которыми могут служить некоторые металлы, например Ni. Основная масса образующихся алмазов – небольшие кристаллы и алмазная пыль.

Алмаз при нагревании без доступа воздуха выше 1000°С превращается в графит. При 1750°С превращение алмаза в графит происходит быстро.

Структура алмаза

2. Графит – серо-чёрное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступающее даже бумаге.

Атомы углерода в кристаллах графита находятся в состоянии sр 2 -гибридизации: каждый из них образует три ковалентные σ-связи с соседними атомами. Углы между направлениями связей равны 120°. В результате образуется сетка, составленная из правильных шестиугольников. Расстояние между соседними ядрами атомов углерода внутри слоя составляет 0,142 нм. Четвёртый электрон внешнего слоя каждого атома углерода в графите занимает р-орбиталь, не участвующую в гибридизации.

Негибридные электронные облака атомов углерода ориентированы перпендикулярно плоскости слоя, и перекрываясь друг с другом, образуют делокализованные σ-связи. Соседние слои в кристалле графита находятся друг от друга на расстоянии 0,335 нм и слабо связаны между собой, в основном силами Ван-дер-Ваальса. Поэтому графит имеет низкую механическую прочность и легко расщепляется на чешуйки, которые сами по себе очень прочны. Связь между слоями атомов углерода в графите частично имеет металлический характер. Этим объясняется тот факт, что графит хорошо проводит электрический ток, но все, же не так хорошо, как металлы.

Структура графита

Физические свойства в графите сильно различаются по направлениям – перпендикулярному и параллельному слоям атомов углерода.

При нагревании без доступа воздуха графит не претерпевает никаких изменений до 3700°С. При указанной температуре он возгоняется, не плавясь.

Искусственный графит получают из лучших сортов каменного угля при 3000°С в электрических печах без доступа воздуха.

Графит термодинамически устойчив в широком интервале температур и давлений, поэтому он принимается в качестве стандартного состояния углерода. Плотность графита составляет 2,265 г/см 3 .

3. Карбин – мелкокристаллический порошок чёрного цвета. В его кристаллической структуре атомы углерода соединены чередующимися одинарными и тройными связями в линейные цепочки:

−С≡С−С≡С−С≡С−

Это вещество впервые получено В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым в начале 60-х годов XX века.

Впоследствии было показано, что карбин может существовать в разных формах и содержит как полиацетиленовые, так и поликумуленовые цепочки, в которых углеродные атомы связаны двойными связями:

С=С=С=С=С=С=

Позднее карбин был найден в природе – в метеоритном веществе.

Карбин обладает полупроводниковыми свойствами, под действием света его проводимость сильно увеличивается. За счёт существования разных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке физические свойства карбина могут меняться в широких пределах. При нагревании без доступа воздуха выше 2000°С карбин устойчив, при температурах около 2300°С наблюдается его переход в графит.

Природный углерод состоит из двух изотопов (98,892%) и (1,108%). Кроме того, в атмосфере обнаружены незначительные примеси радиоактивного изотопа , который получают искусственным путём.

Раньше считали, что древесный уголь, сажа и кокс близки по составу чистому углероду и отличающиеся по свойствам от алмаза и графита, представляют самостоятельную аллотропную модификацию углерода («аморфный углерод»). Однако было установлено, что эти вещества состоят из мельчайших кристаллических частиц, в которых атомы углерода связаны так же, как в графите.

4. Уголь – тонко измельчённый графит. Образуется при термическом разложении углеродсодержащих соединений без доступа воздуха. Угли существенно различаются по свойствам в зависимости от вещества, из которого они получены и способа получения. Они всегда содержат примеси, влияющие на их свойства. Наиболее важные сорта угля – кокс, древесный уголь, сажа.

Кокс получается при нагревании каменного угля без доступа воздуха.

Древесный уголь образуется при нагревании дерева без доступа воздуха.

Сажа – очень мелкий графитовый кристаллический порошок. Образуется при сжигании углеводородов (природного газа, ацетилена, скипидара и др.) при ограниченном доступе воздуха.

Активные угли - пористые промышленные адсорбенты, состоящие в основном из углерода. Адсорбцией называют поглощение поверхностью твёрдых веществ газов и растворённых веществ. Активные угли получают из твердого топлива (торфа, бурого и каменного угля, антрацита), дерева и продуктов его переработки (древесного угля, опилок, отходов бумажного производства), отходов кожевенной промышленности, материалов животного происхождения, например костей. Угли, отличающиеся высокой механической прочностью, производят из скорлупы кокосовых и других орехов, из косточек плодов. Структура углей представлена порами всех размеров, однако адсорбционная ёмкость и скорость адсорбции определяются содержанием микропор в единице массы или объёма гранул. При производстве активного угля вначале исходный материал подвергают термической обработке без доступа воздуха, в результате которой из него удаляется влага и частично смолы. При этом образуется крупнопористая структура угля. Для получения микропористой структуры активацию производят либо окислением газом или паром, либо обработкой химическими реагентами.

1.3. Химические свойства углерода

При обычных температурах алмаз, графит, уголь химически инертны, но при высоких температурах активность их увеличивается. Как и следует из строения основных форм углерода, уголь вступает в реакции легче, чем графит и тем более алмаз. Графит не только более реакционноспособен, чем алмаз, но и, реагируя с некоторыми веществами, может образовывать такие продукты, каких не образует алмаз.

1. В качестве окислителя углерод реагирует с некоторыми металлами при высоких температурах, образуя карбиды:

ЗС + 4Аl = Аl 4 С 3 (карбид алюминия).

2. С водородом уголь и графит образуют углеводороды. Простейший представитель – метан СН 4 – может быть получен в присутствии катализатора Ni при высокой температуре (600-1000°С):

С + 2Н 2 СН 4 .

3. При взаимодействии с кислородом углерод проявляет восстановительные свойства. При полном сгорании углерода любой аллотропной модификации образуется оксид углерода (IV):

С + О 2 = СО 2 .

При неполном сгорании образуется оксид углерода (II) СО:

С + О 2 = 2СО.

Обе реакции экзотермичны.

4. Особенно ярко восстановительные свойства угля проявляются при взаимодействии с оксидами металлов (цинка, меди, свинца и др.), например:

С + 2CuO = СО 2 + 2Cu,

С + 2ZnO = СО 2 + 2Zn.

На этих реакциях основан важнейший процесс металлургии – выплавка металлов из руд.

В иных случаях, например при взаимодействии с оксидом кальция, образуются карбиды:

СаО + ЗС = СаС 2 + СО.

5. Уголь окисляется горячими концентрированными серной и азотной кислотами:

С + 2Н 2 SO 4 = СO 2 + 2SO 2 + 2Н 2 О,

ЗС + 4НNО 3 = ЗСО 2 + 4NO + 2Н 2 О.

Любые формы углерода устойчивы по отношению к щелочам!

1.4. Применение углерода

Алмазы используются для обработки различных твердых материалов, для резки, шлифования, сверления и гравировки стекла, для бурения горных пород. Алмазы после шлифования и огранки превращаются в бриллианты, используемые в качестве украшений.

Графит – ценнейший материал для современной промышленности. Из графита изготавливают литейные формы, плавильные тигли и другие огнеупорные изделия. Благодаря высокой химической устойчивости графит применяется для изготовления труб и аппаратов, выложенных изнутри графитовыми плитами. Значительные количества графита используют в электротехнической промышленности, например при изготовлении электродов. Графит используется для изготовления карандашей и некоторых красок, в качестве смазочного материала. Очень чистый графит используют в ядерных реакторах для замедления нейтронов.

Линейный полимер углерода – карбин – привлекает внимание учёных как перспективный материал для изготовления полупроводников, которые могут работать при высоких температурах, и сверхпрочных волокон.

Древесный уголь используется в металлургической промышленности, в кузнечном деле.

Кокс применяется в качестве восстановителя при выплавке металлов из руд.

Сажа применяется в качестве наполнителя резин для повышения прочности, поэтому автомобильные шины – чёрного цвета. Используют сажу и как компонент печатных красок, туши, крема для обуви.

Активные угли используются для очистки, извлечения и разделения различных веществ. Активные угли применяются в качестве наполнителей противогазов и как сорбирующее средство в медицине.


Глава II . Неорганические соединения углерода

Углерод образует два оксида – оксид углерода (II) СО и оксид углерода (IV) СO 2 .

Оксид углерода (II) СО – бесцветный, не имеющий запаха газ, малорастворимый в воде. Его называют угарным газом, так как он очень ядовит. Попадая при дыхании в кровь, быстро соединяется с гемоглобином, образуя прочное соединение карбоксигемоглобин, лишая тем самым возможности гемоглобин переносить кислород.

При вдыхании воздуха, содержащего 0,1% СО, человек может внезапно потерять сознание и умереть. Угарный газ образуется при неполном сгорании топлива, вот почему так опасно преждевременное закрывание дымоходов.

Оксид углерода (II) относят, как вы уже знаете, к несолеобразующим оксидам, так как, будучи оксидом неметалла, он должен реагировать со щелочами и основными оксидами с образованием соли и воды, однако этого не наблюдается.

2СО + О 2 = 2СО 2 .

Оксид углерода (II) способен отнимать кислород у оксидов металлов, т.е. восстанавливать металлы из их оксидов.

Fe 2 О 3 + ЗСО = 2Fe + ЗСО 2 .

Именно это свойство оксида углерода (II) используют в металлургии при выплавке чугуна.

Оксид углерода (IV) СО 2 – широко известный под названием углекислый газ – бесцветный, не имеющий запаха газ. Он примерно в полтора раза тяжелее воздуха. При обычных условиях в 1 объеме воды растворяется 1 объем углекислого газа.

При давлении примерно 60 атм углекислый газ превращается в бесцветную жидкость. При испарении жидкого углекислого газа часть его превращается в твердую снегообразную массу, которую в промышленности прессуют, – это известный вам «сухой лед», который применяют для хранения пищевых продуктов. Вы уже знаете, что твердый углекислый газ имеет молекулярную решетку, способен к возгонке.

Углекислый газ СО 2 – это типичный кислотный оксид: взаимодействует со щелочами (например, вызывает помутнение известковой воды), с основными оксидами и водой.

Он не горит и не поддерживает горения и потому применяется для тушения пожаров. Однако магний продолжает гореть в углекислом газе с образованием оксида и выделением углерода в виде сажи.

СО 2 + 2Mg = 2MgO + С.

Углекислый газ получают, действуя на соли угольной кислоты – карбонаты растворами соляной, азотной и даже уксусной кислот. В лаборатории углекислый газ получают при действии на мел или мрамор соляной кислоты.

СаСО 3 + 2НСl = СаСl 2 + Н 2 0 + С0 2 .

В промышленности углекислый газ получают обжигом известняка:

СаСО 3 = СаО + С0 2 .

Углекислый газ, кроме уже названной области применения, используют также для изготовления шипучих напитков и для получения соды.

При растворении оксида углерода (IV) в воде образуется угольная кислота Н 2 СО 3 , которая очень нестойкая и легко разлагается на исходные компоненты – углекислый газ и воду.

Как двухосновная кислота, угольная кислота образует два ряда солей: средние - карбонаты, например СаСО 3 , и кислые - гидрокарбонаты, например Са(НСО 3) 2 . Из карбонатов в воде растворимы только соли калия, натрия и аммония. Кислые соли, как правило, растворимы в воде.

При избытке углекислого газа в присутствии воды карбонаты могут превращаться в гидрокарбонаты. Так, если через известковую воду пропускать углекислый газ, то она сначала помутнеет из-за выпавшего в осадок нерастворимого в воде карбоната кальция, однако при дальнейшем пропускании углекислого газа помутнение исчезает в результате образования растворимого гидрокарбоната кальция:

СаСO 3 + Н 2 O + СO 2 = Са(НСO 3) 2 .

Именно наличием этой соли и объясняется временная жесткость воды. Почему временная? Потому, что при нагревании растворимый гидрокарбонат кальция снова превращается в нерастворимый карбонат:

Са(НСO 3) 2 = СаСO 3 ↓ + Н 2 0 + С0 2 .

Эта реакция приводит к образованию накипи на стенках котлов, труб парового отопления и домашних чайников, а в природе в результате этой реакции формируются в пещерах свисающие вниз причудливые сталактиты, навстречу которым снизу вырастают сталагмиты.

Другие соли кальция и магния, в частности хлориды и сульфаты, придают воде постоянную жесткость. Кипячением постоянную жесткость воды устранить нельзя. Приходится использовать другой карбонат – соду.

Na 2 CО 3 , которая переводит эти ионы Са 2+ в осадок, например:

СаСl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl.

Соду можно использовать и для устранения временной жесткости воды.

Карбонаты и гидрокарбонаты можно обнаружить с помощью растворов кислот: при действии на них кислот наблюдается характерное «вскипание» из-за выделяющегося углекислого газа.

Эта реакция является качественной реакцией на соли угольной кислоты.


Заключение

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. На примере круговорота углерода в природе можно проследить в динамике картину жизни на нашей планете.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO 2). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

1. Углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов углерод вернется в атмосферу в качестве CO 2 ;

2. Растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями);

3. растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо – например, в уголь.

В случае же растворения исходной молекулы CO 2 в морской воде также возможно несколько вариантов:

Углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно);

Углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

Если углерод вошел в состав осадочных отложений или ископаемого топлива, он изымается из атмосферы. На протяжении существования Земли изъятый таким образом углерод замещался углекислым газом, попадавшим в атмосферу при вулканических извержениях и других геотермальных процессах. В современных условиях к этим природным факторам добавляются также выбросы при сжигании человеком ископаемого топлива. В связи с влиянием CO 2 на парниковый эффект исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Составной частью этих поисков является установление количества CO 2 , находящегося в тканях растений (например, в только что посаженном лесу) – ученые называют это стоком углерода. Поскольку правительства разных стран пытаются достичь международного соглашения по ограничению выбросов CO 2 , вопрос сбалансированного соотношения стоков и выбросов углерода в отдельных государствах стал главным яблоком раздора для промышленных стран. Однако ученые сомневаются, что накопление углекислого газа в атмосфере можно остановить одними лесопосадками.

Углерод постоянно циркулирует в земной биосфере по замкнутым взаимосвязанным путям. В настоящее время к природным процессам добавляются последствия сжигания ископаемого топлива.


Литература:

1. Ахметов Н.С. Химия 9 класс: учеб. для общеобразоват. учеб. заведений. – 2-е изд. – М.: Просвещение, 1999. – 175 с.: ил.

2. Габриелян О.С. Химия 9 класс: учеб. для общеобразоват. учеб. заведений. – 4-е изд. – М.: Дрофа, 2001. – 224 с.: ил.

3. Габриелян О.С. Химия 8-9 классы: метод. пособие. – 4-е изд. – М.: Дрофа, 2001. – 128 с.

4. Ерошин Д.П., Шишкин Е.А. Методика решения задач по химии: учеб. пособие. – М.: Просвещение, 1989. – 176 с.: ил.

5. Кременчугская М. Химия: Справочник школьника. – М.: Филол. общ-во «СЛОВО»: ООО «Изд-во АСТ», 2001. – 478 с.

6. Крицман В.А. Книга для чтения по неорганической химии. – М.: Просвещение, 1986. – 273 с.

С (carboneum), неметаллический химический элемент IVA группы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19% (см. также АЛМАЗ; ФУЛЛЕРЕНЫ).

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы – для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость. См. также СПЛАВЫ.

В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении – это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.

Сюняев З.И. Нефтяной углерод . М., 1980
Химия гиперкоординированного углерода . М., 1990

Найти "УГЛЕРОД " на



Просмотров