Собственное движение Луны. Видимая орбита Луны

Орбита Луны претерпевает регулярные изменения, чтобы обеспечивать динамическую стабилизацию земной оси в положении, необходимом для поддержания условий существования разумной белковой жизни на планете.

Если замеченный эффект присутствует в действительности, то несогласованное изменение параметров лунной орбиты, например, в результате бомбардировки Луны крупным астероидом, может привести к изменению наклона оси вращения Земли , что неизбежно приведет к изменениям климата на планете.

Исследование движения точек нулевого склонения Луны.

Узлами лунной орбиты принято считать точки пересечения орбиты Луны с эклиптикой. Существует, однако, и другое определение узлов: они рассматриваются как «точки, в которых орбита планеты пересекает плоскость эклиптики, а орбита Луны или искусственного спутника Земли - плоскость земного экватора» . Луна пересекает плоскость земного экватора в точках, где ее склонение обращается в ноль. Анализ лунных эфемерид, взятых с сайта Лаборатории реактивного движения NASA , позволяет построить зависимость прямого восхождения точек, где склонение Луны равно нулю, от времени (Рис.1, 2).

Рис.1. Зависимость прямого восхождения точки нулевого склонения Луны от времени
(нисходящее движение).

Период дрейфа точек нулевого склонения составляет 6800 суток, т.е. 18,61 года. При этом стоит отметить, что скорость дрейфа в первой половине цикла выше, чем во второй.

Рис.2. Зависимость прямого восхождения точки нулевого склонения Луны от времени
(восходящее движение).

Склонение Луны связано с наклоном лунной орбиты по отношению к экваториальной плоскости. “Орбита Солнца” имеет наклон 23,43° к экваториальной плоскости Земли. Орбита Луны также имеет средний наклон 23,43° и периодическую составляющую наклона с амплитудой 5,145°(Рис. 3).

Рис. 3. Изменение склонения Луны за 21 год.

Зависимость склонения Луны от времени с достаточной точностью (Рис. 4) можно аппроксимировать функцией вида

A1 sin(2π(t-t 0)/T1)+ A2 sin(2π(t-t 0)/T2) ,
где А1=23.43
А2=5.145
T1=27.32166 - сидерический период Луны,
Т2=27.21222 - драконический период Луны,
t 0 = 5703.58сут - нулевая точка, начало отсчета.
Период огибающей, рассчитанный на основе значений T1 и T2, составляет 6794 сут (ровно 230 синодических месяцев), т.е. очень близок к 6800 сут или 18.61 года - принятому в настоящее время значению длительности цикла обращения лунных узлов по эклиптике.

Рис. 4. Аппроксимация зависимости склонения Луны от времени.

Именно "эклиптические" лунные узлы просчитаны с большой точностью, поскольку вблизи них происходят затмения. Однако Луна является спутником Земли, а любой спутник, будь он искусственный или естественный, плоскостью отсчета должен иметь небесный экватор. Это логично. Но не для Луны. Тем не менее, проанализировав экваториальные координаты Луны за достаточно большой период, можно получить картину эволюции таких параметров лунной орбиты, как долгота восходящего узла и наклонение орбиты, но уже не к эклиптике, а к небесному экватору (Рис 5.)

Рис. 5. Эволюции орбиты Луны относительно плоскости небесного экватора.

Период изменения максимального склонения Луны равен периоду движения точек пересечения орбиты Луны и эклиптики (узлов в классическом понимании). Узлы лунной орбиты в ином понимании (точки нулевого склонения) совершают дрейф +/-15° около точек весеннего и осеннего равноденствий. При этом максимальное склонение изменяется от +18,3° до +28,6°.
Взаимное расположение точек нулевого склонения и точки максимального склонения определяет направление вектора нормали к плоскости лунной орбиты. Этот вектор коллинеарен вектору орбитального момента Луны. Введем правую систему координат с осью Х, направленной от точки осеннего равноденствия к точке весеннего равноденствия (Рис. 5), и осью Y направленной вправо. Изменение взаимного расположения вышеназванных точек с течением времени происходит согласованно, синфазно (Рис.6).

Рис. 6. Движение точек нулевого склонения и точки

максимального склонения Луны.

Зная координаты трех точек, не трудно найти вектор нормали к плоскости. Движение вектора в пространстве представить несколько сложнее. Конец вектора орбитального момента Луны вычерчивает на плоскости XОY (плоскости небесного экватора) замкнутую кривую, показанную на Рис.7.

Рис. 7. Визуализация изменения положения вектора

орбитального момента Луны в пространстве.

Вектор момента совершает прецессионное движение в сторону убывания прямого восхождения и испытывает при этом нутационные пульсации. Период цикла равен периоду обращения узлов. Среднее за 21 год значение наклона вектора момента к оси вращения Земли составляет 21.9°, что меньше ожидаемого значения 23.43°.
Момент инерции Земли как сферы равен 9,70х10 37 кг м 2 , момент инерции Луны на орбите равен 1,09х10 40 кг м 2 . Таким образом, орбитальный момент инерции Луны почти в 112 раз больше земного осевого момента.Частота вращения Луны вокруг Земли, в 27.32 раза меньше частоты вращения Земли, поэтому момент импульса Луны в орбитальном движении только в 4.1 раза превышает момент импульса Земли в ее осевом вращении. Однако, по-видимому, этого достаточно, чтобы стабилизировать ось вращения Земли в том положении, в котором она пребывает, а именно 23.43° к эклиптической нормали. Механизм стабилизации, возможно, заключается во вращении вектора лунного орбитального момента, подобно тому, как маятник с подвижной точкой подвеса (маятник Капицы). может иметь точку динамического равновесия в верхнем вертикальном положении или как велосипедист, раскачиваясь из стороны в сторону, придает устойчивое положение велосипеду даже на очень малой скорости.
Итак, анализ лунных эфемерид показал, что узлы лунной орбиты (точки нулевого склонения) «привязаны» к узлам «орбиты Солнца» - точкам весеннего и осеннего равноденствия. Вращение вектора лунного орбитального момента, вероятно, стабилизирует угол наклона земной оси, а может быть вызывает и саму прецессию земной оси. Если этот эффект присутствует в действительности, то несогласованное изменение параметров лунной орбиты, например в результате бомбардировки Луны крупным астероидом, может привести к изменению наклона оси вращения Земли, что неизбежно приведет к изменениям климата на планете.

Большой энциклопедический словарь (http://www.vedu.ru/BigEncDic/64938)
http://ssd.jpl.nasa.gov/horizons.cgi
Ландау. Л.Д., Лившиц Е.М. Теоретическая физика: Т.1. Механика. -4-е изд., испр. -М.: Наука. Гл. ред. Физ.-мат. Лит., 1988.
Капица П. Л. «Динамическая устойчивость маятника при колеблющейся точке подвеса» ЖЭТФ, т. 21, вып. 5. с. 588—597 (1951)

kolkov_ivan

Ingus пишет:

Дни 4, 20, 21, 29 весьма хороши для землетрясений.

Ingus пишет:

В лунные дни 6, 12 жди беды, зато в полнолуние - тишина.

Немножко разные данные... Чему верить?

Ingus пишет:

Экстремальное удаление Луны заставляет Землю содрогаться! Напротив, экстремальное приближение успокаивает Землю.

Ingus пишет:

P1 и почему-то P12 - ООчень подходят для тряски земли.

Опять разные данные. Через P1 Вы ведь обозначили перигей лунной орбиты? А в первом утверждении говорится, что «экстремальное приближение успокаивает Землю ».

Или я что-то где-то неправильно понял?

Были взяты разные выборки и получены несколько разные частотные зависимости. Полина выложила весь мой ЖЖ на эту тему. Это мои заблуждения в их развитии) В целом итог таков: Луна НИКАК не влияет на количество и интенсивность землетрясений. В зависимости от фильтров выборки (по интенсивности например) будут получаться разнообразные не похожие друг на друга зависимости. Есть правда слабое подозрение, что перигей P1 и апогей -P12, то есть экстремальные расстояния особенно, когда это еще и сизигии (три тела в линию) больше подходят для землетрясений... Но похоже, что Луна не имеет отношения к землетрясениям, так же как и к приливам (при внимательном и честном рассмотрении данных).

Ingus пишет:

Похоже, что Луна не имеет отношения к землетрясениям...

Жаль... Мне кажется - должна иметь.

Ingus пишет:

Так же как и к приливам (при внимательном и честном рассмотрении данных).

А вот это - интересно! Поясните, пожалуйста. Ведь, вроде как, доказано обратное.

По поводу землетрясений... Статистика показывает, что ни расстояние до Луны, ни фаза не коррелируют с частотой землетрясений. С большой натяжкой можно сказать, что на перигее землетрясения происходят чаще. Можно сделать фантастическое предположение, что землетрясения происходят, когда орбита Луны подвергается КОРРЕКЦИИ. Ее параметры далеко не случайны, продуманы, и дожны находиться в пределах согласно техническому заданию. Луна повторяет путь Солнца в земном небе, ее точки нулевого склонения зачем-то привязаны к точкам весеннего и осеннего равноденствия, большая полуось ее орбиты пульсирует с периодом 7 синодических месяцев (не полгода). Чтобы все работало как ЧАСЫ, иногда требуется коррекция).

По приливам та же картина. Нужно хорошую статистику по приливам сопоставить с фазами и расстоянием до Луны и все встанет на свои места. Я собираюсь это сделать. А пока вот ссыка:

Ученые предлагают добровольцам искать на Луне следы инопланетян

МОСКВА, 26 дек — РИА Новости. Американские ученые предлагают подключить пользователей интернета к поиску инопланетных артефактов и следов чужих баз и кораблей на высококачественных фотографиях поверхности Луны, полученных американским зондом LRO, говорится в статье, опубликованной в журнале Acta Astronautica.

Пол Дейвис (Paul Davies) и Роберт Вагнер (Robert Wagner) из университета штата Аризона в городе Тусон (США) полагают, что их предложение хорошо дополняет существующую программу поиска внеземной жизни SETI и при этом не требует существенных финансовых вливаний.

Несмотря на мизерные шансы того, что инопланетяне оставили свои следы в виде артефактов или искусственных форм рельефа, у этой идеи есть свои преимущества — близость к Земле и практически «вечная» сохранность таких следов, — пишут ученые.

Астрономы обратили внимание на то, что человечество накопило огромные базы данных по рельефу, минеральному составу и другим свойствам Луны.

В частности, автоматическая межпланетная станция LRO непрерывно делает высококачественные снимки поверхности Луны с разрешением 50 сантиметров на пиксель. С момента запуска в июне 2009 года зонд обработал четверть поверхности спутника Земли. Общее число снимков уже достигает 340 тысяч, их количество должно достигнуть миллиона к концу срока работы аппарата на орбите Луны.

Дейвис и Вагнер полагают, что пристально изучить и обработать все эти изображений нельзя даже силами относительно крупных научных коллективов. Они предлагают два варианта решения этой проблемы, и оба они связаны с интернетом.

Первый включает в себя организацию и поддержку сети распределенных вычислений — централизованной сетевой структуры, использующей вычислительные мощности компьютеров пользователей для решения разных однотипных задач. Это не единственный проект, в котором ученые пытаются задействовать силы добровольцев для решения сложных и ресурсоемких вычислительных задач. К примеру, наиболее популярная на сегодня вычислительная сеть BOINC, организованная калифорнийским институтом Беркли в 1999 году, используется для решения целого спектра задач, в том числе, обнаружения внеземного разума (проект SETI@home) и определения пространственной структуры сложных белков на основании заранее известной последовательности аминокислот (Rosetta@Home).

Второй путь для поиска следов внеземной жизни на Луне предполагает подключение усилий самих добровольцев, а не их компьютеров. Авторы статьи предлагают отправлять по несколько фотографий астрономам-любителям, которые будут отмечать самые подозрительные места на снимках поверхности Луны и дискутировать об их, возможно, внеземном происхождении.

И эта идея также не нова: подобный подход используется НАСА для выбора самого интересного тела в поясе Койпера — самой далекой части Солнечной системы, населенной небольшими каменистыми телами.

Как считают астрономы, такой метод лучше всего подходит для обнаружения артефактов, которые их предыдущие хозяева могли оставить на Луне специально для других разумных существ. Кроме того, обе стратегии пригодны для обнаружения возможных лунных баз пришельцев в сетях из так называемых лавовых трубок — системы полых тоннелей под поверхностью спутника Земли, оставленных потоками лавы в бурном прошлом Луны.

http://news.mail.ru/society/7700698/

Два спутника NASA по программе GRAIL вышли на орбиту Луны. Только в марте начнутся первые эксперименты. Непростым был и путь кораблей. Три месяца полета вместо трех суток. Издалека зашли. Первые фото доступны уже сейчас, но не всем. В марте тысячи отфотошопленных фоток разлетятся по миру. Каждый школьник сможет заглянуть в таинственный мир волшебной планеты и попытаться найти загадочные артефакты среди профессиональной ретуши.

из Вики

"...Третьи считают, что сказание о Граале связано с тайным оккультным обществом, основанным в незапамятные времена и обладающим сокровенным знанием, которое передается из поколения в поколение "

Итак, NASA названием своей миссии недвусмысленно дает понять, сокровенное знание существует, и миссия ГРААЛЬ имеет своей целью его сокрытие..

Неожиданный комментарий:

В марте тысячи отфотошопленных фоток разлетятся по миру. Каждый школьник сможет заглянуть в таинственный мир волшебной планеты и попытаться найти загадочные артефакты среди профессиональной ретуши.

Эта информация из достоверных источников или предположение? Учитывая, что вопрос "Были ли американцы на Луне?" до сих пор обсуждается, это будет в любом случае интересно.

Уважаемый Ingus!

Я по диагонали посмотрел Ваш материал. У меня сразу возникает замечание.

Из законов небесной механики ниоткуда не следует, что линия узлов орбиты небесного тела должна быть перпендикулярна линия апсид. Орбита может быть ориентирована в пространстве произвольным образом. Это Ваше утверждение совершенно непонятно.

Второе. При внешних воздействиях на движение Луны, в основном со стороны Солнца, поворачивается и плоскость орбиты вокруг Земли, и ее линия апсид. Причем скорости этих движений разные. Например, для искусственных спутников Земли одним из основных воздействий является несферичность Земли. За счет этой несферичности поворачиваются и плоскость орбиты (т.е. долгота восходящего узла), и линия апсид (аргумент перигея), причем с разными скоростями. При этом искусственность спутников здесь никакой роли не играет. Поэтому неясно, что именно в изменениях параметров орбиты Луны Вас настораживает. Хотя теория движения Луны достаточно сложна, но выявленные Вами закономерности имеют естественную природу.

Уважаемый zhvictorm!

Я весьма благодарен Вам за выявленную мою оплошность относительно перпендикулярности линий узлов и апсид, которую Вы упорно именуете линией АСПИД.

Второе. В пертурбациях плоскости орбиты ИСЗ принято винить несферичность Земли, а в дрейфе параметров лунной орбиты-Солнце. Это логично. Луна притягивется Солнцем сильнее, чем Землей. В 2 раза. (Это шутка. Но подставновка масс и расстояний в формулу для гравитационной силы дает именно такой результат)

Поворот плоскости лунной орбиты, точнее ее эллипсоподобной незамкнутой! траектории в пространстве возможен вокруг трех осей. Не правда ли? Но по отношению к какой базовой плоскости мы должны считать эйлеровы углы? К эклиптике? Или все же к экватору? Вот главный вопрос, который я поднимаю в статье. Настораживает в изменениях парамеров орбиты Луны пожалуй их стабильность и числовая стройность, гармоничность. Как например Вы объясните период колебания размера большой полуоси в 207 суток, что составляет РОВНО 7 синодичских месяцев?

Итак, орбита Луны подвергается коррекции. Имено это факт является причиной, "достаточно сложной" теории движения Луны. Это ИСЗ. Им управляют. Управление преследует вполне разумные цели.

Уважаемый Ingus! Спасибо за указание на ошибку в написании слова апсид. Я как-то редко его ипользую, так что вкралась систематическая ошибка. На счет притяжения Солнцем Луны. Здесь никакой шутки. Солце притягивает Луну сильнее, чем Земля. Поворот плоскости орбиты за счет несферичности Земли для искусственных спутников всегда происходит вокруг оси вращения Земли, поскольку проекция момента импульса на эту ось сохраняется в поле геоида (первом приближении). Что же касается Луны, то здесь все сложнее. Но резонансность параметров орбиты и вращения Луны с параметрами вращения и орбиты Земли объясняется диссипативными процессами в недрах Луны и Земли за счет приливных сил.

Долгое время астрономы не могли понять, почему множество параметров орбит и вращательного движения отдельных планет и их спутников находятся в резонансных отношениях. Ответ был дан сравнительно недавно. Насколько я помню, где-то в 60-х годах XX века нынешним директором ГАИШ Черепащуком. Как я уже сказал, дело в диссипации энергии в недрах планет за счет приливных возмущений. Поэтому резонансность параметров Луны вызвана скорее всего теми же причинами.

Черепащук главный борец с лженаукой. А Луна вообще насквозь лженаучна. Скользкая она. Я так и не понял, есть у кого-нибудь динамическая теория ее движения? Ну хотя бы в нулевом приближении- "сферического коня в вакууме":)

Хотелось бы посмотреть его работу по диссипации однако... Поищу.

Уважаемый Ingus, меня заинтересовала ваша уверенность и настойчивость в продвижении своих идей и расчетов. При выставлении вашей статьи я не заметила продолжения темы

РЕКУРСИНУС August 20th, 1:44

Из Вики: "Рекурсия — процесс повторения чего-либо самоподобным способом. Например, вложенные отражения, производимые двумя точно параллельными друг другу зеркалами, являются одной из форм бесконечной рекурсии."
Колебания нелинейного маятнка нелегко выразить аналитическими функциями... Появляются Синусы Якоби, не всем понятные.
Предлагаю аппроксимировать полученные численные решения нелинейного дифура математического маятника раскачанного почти до 180 гр, т.е. крайне нелинейного, рекурентной тригонометрической функцией вложенного синуса ("рекурсинуса" - автор термина Колков И.Е.). Например, угол отклонения маятника раскачанного до 173 гр. аппроксимируется семикратно вложенным синусом с амплитудой А=5.41 и частотой w=1.166, при этом погрешность не привысит по модулю 0.025 .

НЕЛИНЕЙЩИНА July 31st, 1:01

Возьмем математический маятник и раскачаем его градусов на 80... Дифур нелинейный. Траектория отличается от синуса. Для описания нужен синус Якоби (якобы синус)..Тот же синус только более крутой) и более тупой вершинами)

Если тень от маятника подвергнем быстрому Фурье получим спектр, в котором вместо одной несущей частоты 3,13 классического кило-метрового маятника с периодом 2 с появятся две - 2.7 и 8.345. Вот она нелинейщина во всей красе -две резонансные частоты вместо одной собственной.

Луна — спутник нашей планеты, с незапамятных времен притягивающий взоры ученых и просто любопытных людей. В древнем мире и астрологи, и астрономы посвящали ей внушительные трактаты. От них не отставали и поэты. Сегодня в этом смысле мало что изменилось: орбита Луны, особенности ее поверхности и недр тщательно изучаются астрономами. Составители гороскопов также не сводят с нее глаз. Влияние спутника на Землю изучается и теми и другими. Астрономы исследуют, как взаимодействие двух космических тел отражается на движении и других процессах каждого. За время изучения Луны знания в этой области значительно увеличились.

Происхождение

По исследованиям ученых, Земля и Луна образовались примерно в одно время. Возраст обоих тел составляет 4,5 миллиарда лет. Существует несколько теорий происхождения спутника. Каждая из них объясняет отдельные особенности Луны, но оставляет несколько нерешенных вопросов. Наиболее близкой к истине сегодня считается теория гигантского столкновения.

Согласно гипотезе, планета, по своим размерам сходная с Марсом, столкнулась с молодой Землей. Удар пришелся по касательной и стал причиной выброса в космос большей части вещества этого космического тела, а также некоторого количества земного «материала». Из этого вещества и сформировался новый объект. Радиус орбиты Луны первоначально составлял шестьдесят тысяч километров.

Гипотеза гигантского столкновения хорошо объясняет многие особенности строения и химического состава спутника, большинство характеристик системы Луна-Земля. Однако, если брать теорию за основу, все же остаются непонятными некоторые факты. Так, дефицит железа на спутнике можно объяснить лишь тем, что ко времени столкновения на обоих телах произошла дифференциация внутренних слоев. На сегодняшний день нет доказательств, что подобное имело место. И тем не менее, несмотря на подобные контраргументы, гипотеза гигантского столкновения считается основной во всем мире.

Параметры

Луна, как и большинство других спутников, не имеет атмосферы. Обнаружены лишь следы кислорода, гелия, неона и аргона. Температура поверхности на освещенных и затемненных участках поэтому сильно отличается. На солнечной стороне она может подниматься до +120 ºС, а на темной опускаться до -160 ºС.

Среднее расстояние между Землей и Луной составляет 384 тысячи км. По форме спутник — практически идеальный шар. Разница между экваториальным и полярным радиусом небольшая. Они составляют 1738,14 и 1735,97 км соответственно.

Полный оборот Луны вокруг Земли занимает чуть больше 27 дней. Движение спутника по небу для наблюдателя характеризуется сменой фаз. Время от одного полнолуния до другого несколько больше указанного периода и составляет примерно 29,5 дней. Разница возникает потому, что Земля и спутник также движутся вокруг Солнца. Луне, чтобы оказаться в первоначальном положении, приходится преодолевать чуть больше одного круга.

Система «Земля-Луна»

Луна — спутник, несколько отличающий от остальных подобных объектов. Главная его особенность в этом смысле — это масса. Она оценивается в 7,35*10 22 кг, что составляет примерно 1/81 от аналогичного параметра Земли. И если сама масса не является чем-то из ряда вон выходящим на космических просторах, то ее соотношение с характеристикой планеты нетипично. Как правило, отношение масс в системах «спутник-планета» несколько меньше. Аналогичным соотношением могут похвастаться только Плутон и Харон. Эти два космические тела некоторое время назад стали характеризовать как систему двух планет. Похоже, что такое обозначение справедливо и в случае с Землей и Луной.

Движение Луны по орбите

Спутник совершает один оборот вокруг планеты относительно звезд за сидерический месяц, который длится 27 дней 7 часов и 42,2 минуты. Орбита Луны по форме представляет собой эллипс. В разные периоды спутник располагается то ближе к планете, то дальше от нее. Расстояние между Землей и Луной при этом изменяется от 363 104 до 405 696 километров.

С траекторией движения спутника связано еще одно доказательство в пользу предположения о том, что Землю со спутником необходимо рассматривать как систему, состоящую из двух планет. Орбита Луны располагается не вблизи экваториальной плоскости Земли (как это свойственно большинству спутников), а практически в плоскости вращения планеты вокруг Солнца. Угол между эклиптикой и траекторией движения спутника составляет чуть больше 5º.

Орбита движения Луны вокруг Земли подвержена влиянием многих факторов. В связи с этим определение точной траектории спутника — задача не самая простая.

Немного истории

Теория, объясняющая, как движется Луна, была заложена еще в 1747 году. Автором первых расчетов, приблизивших ученых к пониманию особенностей орбиты спутника, стал французский математик Клеро. Тогда, в далеком восемнадцатом веке, обращение Луны вокруг Земли часто выдвигалось в качестве аргумента против теории Ньютона. Расчеты, сделанные с использованием сильно расходились с видимым перемещением спутника. Клеро разрешил эту задачу.

Исследованием вопроса занимались такие известные ученые, как Даламбер и Лаплас, Эйлер, Хилл, Пюизо и другие. Современная теория обращения Луны фактически началась с работ Брауна (1923 г.). Исследования британского математика и астронома помогли устранить расхождения между расчетами и наблюдением.

Непростая задача

Движение Луны заключается в двух основных процессах: вращение вокруг оси и обращение вокруг нашей планеты. Вывести теорию, объясняющую перемещение спутника, было бы не так уж и сложно, если бы его орбита не подвергалась воздействию различных факторов. Это и притяжение Солнца, и особенности формы Земли, и других планет. Подобные воздействия возмущают орбиту и предсказать точное положение Луны в конкретный период становится трудной задачей. Для того чтобы понять, в чем тут дело, остановимся на некоторых параметрах орбиты спутника.

Восходящий и нисходящий узел, линия апсид

Как уже говорилось, орбита Луны наклонена к эклиптике. Траектории движения двух тел пересекаются в точках, названных восходящим и нисходящим узлами. Располагаются они на противоположных сторонах орбиты относительно центра системы, то есть Земли. Воображаемая прямая, которая соединяет две эти точки, обозначается как линия узлов.

Ближе всего к нашей планете спутник оказывается в точке перигея. Максимальное расстояние разделяет два космических тела, когда Луна оказывается в апогее. Прямая, соединяющая две эти точки, называется линией апсид.

Возмущения орбиты

В результате влияния на перемещение спутника сразу большого числа факторов по сути оно представляет собой сумму нескольких движений. Рассмотрим наиболее заметные из возникающих возмущений.

Первая из них — это регрессия линии узлов. Прямая, соединяющая две точки пересечения плоскости лунной орбиты и эклиптики, не зафиксирована на одном месте. Она очень медленно перемещается в направлении, противоположном (потому и называется регрессией) движению спутника. Другими словами, плоскость орбиты Луны поворачивается в пространстве. На один полный оборот ей требуется 18,6 лет.

Движется и линия апсид. Перемещение прямой, соединяющий апоцентр и перицентр, выражается в повороте плоскости орбиты в ту же сторону, куда движется Луна. Происходит это гораздо быстрее, чем в случае линии узлов. Полный оборот занимает 8,9 лет.

Кроме того, лунная орбита испытывает колебания определенной амплитуды. С течением времени изменяется угол между ее плоскостью и эклиптикой. Диапазон значений — от 4°59" до 5°17". Так же, как и в случае с линией узлов, период таких колебаний составляет 18,6 лет.

Наконец, орбита Луны меняет свою форму. Она немного вытягивается, затем снова возвращается к первоначальной конфигурации. При этом меняется эксцентриситет орбиты (степень отклонения ее формы от окружности) от 0,04 до 0,07. Изменения и возвращение в первоначальное положение занимают 8,9 лет.

Не все так просто

В сущности, четыре фактора, которые необходимо учитывать во время расчетов, — это не так уж и много. Однако ими не исчерпываются все возмущения орбиты спутника. На самом деле, каждый параметр движения Луны испытывает постоянное воздействие большого числа факторов. Все это усложняет задачу по прогнозированию точного расположения спутника. А учет всех этих параметров часто представляет собой важнейшую задачу. Например, расчет траектории движения Луны и его точность влияет на успешность миссии космического аппарата, отправленного к ней.

Влияние Луны на Землю

Спутник нашей планеты сравнительно мал, однако его воздействие хорошо заметно. Пожалуй, всем известно, что именно Луна формирует приливы на Земле. Тут сразу нужно оговориться: Солнце также вызывает похожий эффект, но из-за гораздо большего расстояния приливное воздействие светила мало ощутимо. Кроме того, изменение уровня воды в морях и океанах связано и с особенностями вращения самой Земли.

Гравитационное воздействие Солнца на нашу планету примерно в двести раз больше, чем аналогичный параметр Луны. Однако приливные силы в первую очередь зависят от неоднородности поля. Расстояние, разделяющее Землю и Солнце, сглаживает их, поэтому воздействие близкой к нам Луны более мощное (в два раза значительнее, чем в случае светила).

Приливная волна образуется на той стороне планеты, которая в данный момент обращена к ночному светилу. На противоположной стороне также возникает прилив. Если бы Земля была неподвижной, то волна двигалась бы с запада на восток, располагаясь точно под Луной. Ее полный оборот завершался бы за 27 с небольшим дней, то есть за сидерический месяц. Однако период вокруг оси составляет чуть меньше 24 ч. В результате волна бежит по поверхности планеты с востока на запад и один оборот завершает за 24 часа и 48 минут. Поскольку волна постоянно встречается с материками, она смещается вперед по направлению движения Земли и опережает в своем беге спутник планеты.

Удаление орбиты Луны

Приливная волна вызывает перемещение огромной массы воды. Это непосредственным образом влияет на движение спутника. Внушительная часть массы планеты смещается с линии, соединяющей двух тел, и притягивает к себе Луну. В результате спутник испытывает воздействие момента силы, который ускоряет ее движение.

При этом материки, набегающие на приливную волну (они движутся быстрее волны, поскольку Земля вращается с большей скоростью, чем обращается Луна), испытывают воздействие силы, тормозящей их. Это приводит к постепенному замедлению вращения нашей планеты.

В результате приливного взаимодействия двух тел, а также действия и момента импульса, спутник переходит на более высокую орбиту. При этом уменьшается скорость Луны. По орбите она начинает двигаться медленнее. Нечто похожее происходит и с Землей. Она замедляется, следствием чего является постепенное увеличение длительности суток.

Луна удаляется от Земли примерно на 38 мм в год. Исследования палеонтологов и геологов подтверждают расчеты астрономов. Процесс постепенного замедления Земли и удаления Луны начался примерно 4,5 миллиарда лет назад, то есть с момента образования двух тел. Данные исследователей свидетельствуют в пользу предположения, что раньше лунный месяц был короче, а Земля вращалась с большей скоростью.

Приливная волна возникает не только в водах мирового океана. Похожие процессы происходят и в мантии, и в земной коре. Однако они менее заметны, поскольку эти слои не столь податливы.

Удаление Луны и замедление Земли не будет происходить вечно. В конце концов, период вращения планеты сравняется с периодом обращения спутника. Луна «зависнет» над одним участком поверхности. Земля и спутник будут всегда повернуты одной и той же стороной друг к другу. Тут уместно вспомнить, что часть этого процесса уже завершена. Именно приливное взаимодействие привело к тому, что на небе всегда видна одна и та же сторона Луны. В космосе есть пример системы, пребывающей в подобном равновесии. Это уже называвшиеся Плутон и Харон.

Луна и Земля находятся в постоянном взаимодействии. Нельзя сказать, какое из тел больше влияет на другое. При этом оба подвергаются и воздействию Солнца. Значительную роль играют и другие, более удаленные, космические тела. Учет всех подобных факторов делает довольно трудной задачу точного построения и описания модели движения спутника по орбите вокруг нашей планеты. Однако огромное количество накопленных знаний, а также постоянно совершенствующая аппаратура позволяют более или менее точно спрогнозировать положение спутника в любое время и предсказать будущее, которое ожидает каждый объект в отдельность и систему Земля-Луна в целом.

Естественным спутником Земли является Луна — несветящееся тело, которое отражает солнечный свет.

Изучение Луны началось в 1959 г., когда советский аппарат «Луна-2» впервые сел на Луну, а с аппарата «Луна-3» впервые были сделаны из космоса снимки обратной стороны Луны.

В 1966 г. аппарат «Луна-9» совершил посадку на Луну и установил прочную структуру грунта.

Первыми, кто побывал на Луне, стали американцы Нейл Армстронг и Эдвин Олдрин. Это произошло 21 июля 1969 г. Советские ученые для дальнейшего изучения Луны предпочли использовать автоматические аппараты — луноходы.

Общие характеристики Луны

Средняя удаленность от Земли, км

  • а. е.
  • 363 104
  • 0,0024
  • а. е.
  • 405 696
  • 0,0027

Среднее расстояние между центрами Земли и Луны, км

Наклон орбиты к плоскости ее орбиты

Средняя орбитальная скорость

  • 1,022

Средний радиус Луны, км

Масса, кг

Экваториальный радиус, км

Полярный радиус, км

Средняя плотность, г/см 3

Наклон к экватору, град.

Масса Луны составляет 1/81 массы Земли. Положение Луны на орбите соответствует той или иной фазе (рис. 1).

Рис. 1. Фазы Луны

Фазы Луны — различные положения относительно Солнца — новолуние, первая четверть, полнолуние и последняя четверть. В полнолуние виден освещенный диск Луны, так как Солнце и Луна находятся на противоположных сторонах от Земли. В новолуние Луна находится на стороне Солнца, поэтому сторона Луны, обращенная к Земле, не освещается.

К Земле Луна обращена всегда одной стороной.

Линию, которая отделяет освещенную часть Луны от неосвещенной, называют терминатором.

В первой четверти Луна видна на угловом расстоянии 90" от Солнца, и солнечные лучи освещают лишь правую половину обращенной к нам Луны. В остальных фазах Луна видна нам в виде серпа. Поэтому, чтобы отличить растущую Луну от старой, надо помнить: старая Луна напоминает букву «С», а если Луна растущая, то можно мысленно перед Луной провести вертикальную линию и получится буква «Р».

Из-за близости Луны к Земле и ее большой массы они образуют систему «Земля-Луна». Луна и Земля вращаются вокруг своих осей в одну сторону. Плоскость орбиты Луны наклонена к плоскости орбиты Земли под углом 5°9".

Места пересечения орбит Земли и Луны называют узлами лунной орбиты.

Сидерический (от лат. сидерис — звезда) месяц — это период вращения Земли вокруг своей оси и одинакового положения Луны на небесной сфере по отношению к звездам. Он составляет 27,3 земных суток.

Синодическим (от греч. синод — соединение) месяцем называют период полной смены лунных фаз, т. е. период возвращения Луны в первоначальное положение относительно Луны и Солнца (например, от новолуния до новолуния). Он составляет в среднем 29,5 земных суток. Синодический месяц на двое суток длиннее сидерического, так как Земля и Луна вращаются вокруг своих осей в одну сторону.

Сила тяжести на Луне в 6 раз меньше силы тяжести на Земле.

Рельеф спутника Земли хорошо изучен. Видимые темные участки на поверхности Луны названы «морями» — это обширные безводные низменные равнины (самая крупная — «Оксан Бурь»), а светлые участки — «материками» — это гористые, возвышенные участки. Основные же планетарные структуры лунной поверхности — кольцевые кратеры диаметром до 20-30 км и многокольцевые цирки диаметром от 200 до 1000 км.

Происхождение у кольцевых структур различное: метеоритное, вулканическое и ударно-взрывное. Кроме этого, на поверхности Луны имеются трещины, сдвиги, купола и системы разломов.

Исследования космических аппаратов «Луна-16», «Луна-20», «Луна-24» показали, что поверхностные обломочные породы Луны сходны с земными магматическими породами — базальтами.

Значение Луны в жизни Земли

Хотя масса Луны в 27 млн раз меньше массы Солнца, она в 374 раза ближе к Земле и оказывает на нес сильное влияние, вызывая поднятия воды (приливы) в одних местах и отливы в других. Это происходит каждые 12 ч 25 мин, так как Луна делает полный оборот вокруг Земли за 24 ч 50 мин.

Из-за гравитационного воздействия Луны и Солнца на Землю возникают приливы и отливы (рис. 2).

Рис. 2. Схема возникновения приливов и отливов на Земле

Наиболее отчетливы и важны по своим следствиям прилив- но-отливные явления в волной оболочке. Они представляют собой периодические подъемы и опускания уровня океанов и морей, вызываемые силами притяжения Луны и Солнца (в 2,2 раза меньше лунной).

В атмосфере приливно-отливные явления проявляются в полусуточных изменениях атмосферного давления, а в земной коре — в деформации твердого вещества Земли.

На Земле наблюдаются 2 прилива в ближайшей и удаленной от Луны точке и 2 отлива в точках, находящихся на угловом расстоянии 90° от линии Луна — Земля. Выделяют сигизийные приливы, которые возникают в новолуние и полнолуние и квадратурные — в первой и последней четверти.

В открытом океане приливно-отливные явления невелики. Колебания уровня воды достигает 0,5-1 м. Во внутренних морях (Черное, Балтийское и др.) они почти не ощущаются. Однако в зависимости от географической широты и очертаний береговой линии материков (особенно в узких заливах) вода во время приливов может подниматься до 18 м (залив Фанди в Атлантическом океане у берегов Северной Америки), 13 м на западном побережье Охотского моря. При этом образуются приливно-отливные течения.

Основное значение приливных волн заключается в том, что, перемешаясь с востока на запад вслед за видимым движением Луны, они тормозят осевое вращение Земли и удлиняют сутки, изменяют фигуру Земли с помощью уменьшения полярного сжатия, вызывают пульсацию оболочек Земли, вертикальные смещения земной поверхности, полусуточные изменения атмосферного давления, изменяют условия органической жизни в прибрежных частях Мирового океана и, наконец, влияют на хозяйственную деятельность приморских стран. В целый ряд портов морские суда могут заходить только во время прилива.

Через определенный промежуток времени на Земле повторяются солнечные и лунные затмения. Увидеть их можно, когда Солнце, Земля и Луна находятся на одной линии.

Затмение — астрономическая ситуация, при которой одно небесное тело заслоняет свет от другого небесного тела.

Солнечное затмение происходит, когда Луна попадает между наблюдателем и Солнцем и загораживает его. Поскольку Луна перед затмением обращена к нам неосвещенной стороной, перед затмением всегда бывает новолуние, т. е. Луна не видна. Создается впечатление, что Солнце закрывается черным диском; наблюдающий с Земли видит это явление как солнечное затмение (рис. 3).

Рис. 3. Солнечное затмение (относительные размеры тел и расстояния между ними условны)

Лунное затмение наступает, когда Луна, находясь на одной прямой с Солнцем и Землей, попадает в конусообразную тень, отбрасываемую Землей. Диаметр пятна тени Земли равен минимальному расстоянию Луны от Земли — 363 000 км, что составляет около 2,5 диаметра Луны, поэтому Луна может быть затенена целиком (см. рис. 3).

Лунные ритмы — это повторяющиеся изменения интенсивности и характера биологических процессов. Существуют лунно-месячные (29,4 сут) и лунно-суточные (24,8 ч) ритмы. Многие животные, растения размножаются в определенную фазу лунного цикла. Лунные ритмы свойственны многим морским животным и растениям прибрежной зоны. Так, у людей замечено изменение самочувствия в зависимости от фаз лунного цикла.

Здравствуйте дорогие читатели сайта! Еще 4 года назад, зимними ночами разглядывая Луну, пришел к выводу что она весьма забавно движется по небосклону. Тогда я не был знаком с небесной механикой, и понятия не имел о том что ее орбита наклонена к эклиптике на 5.6 градуса, да и вообще астрономия в худ лицее была включена в физику и ей отвели 4 часа. Но уже тогда стало ясно что орбитальное движение Луны вовсе не идет по кругу, как мы упрощено себе представляем. Позже потрясли снимки с луноходов, и окончательно заставили уделить внимание теме Луны. Сейчас я уже учусь на планетолога, параллельно поглощая тонны информаций сопутствующих. Хочу поделится с читателем весьма интересными информациями по небесной механике в частности нашего спутника Луны. Современные астрономы склонны рассматривать систему земля-луна как единый конгломерат, высказывается обоснованное мнение считать систему двойной планетой. Весьма обоснованно, невозможно движение и взаимодействие с пространством и другими небесными телами хозяйки ночи рассматривать обособленно от ее владычицы Земли. Что бы лучше понимать вопрос приведу схемы движения Луны вокруг Земли, движения системы вокруг солнца, а также опишу в вкратце 13 движений земли в которых участвует Луна, и причиной некоторых она является.

Существует больше чем 13 движений земли, в данном вопросе мы коснемся даже не всех 13-ти. Первое что следует знать это то, что периоды обращения Луны вокруг своей оси и период обращения вокруг Земли синхронизированы и мы всегда видим одну сторону Луны. Второе заключается в том что строго говоря вокруг солнца по орбите системы земля-луна летит центр масс, а субъекты системы кружат вокруг него.

Итак движения Земли по порядку, в них участвует и Луна. В той или иной степени все факторы обоих субъектов системы земля-луна взаимоотражаются. 1) Первое движение Земли - вращение планеты вокруг собственной оси
2) Второе движение Земли - обращение планеты по орбите около Солнца 3) Третье движение Земли - прецессия 4) Четвертое движение Земли - нутация 5) Пятое движение Земли - изменение наклона эклиптики 6) Шестое движение Земли - изменение эксцентриситета земной орбиты 7) Седьмое движение Земли - вековое изменение перигелия 8) Восьмое движение Земли - параллактическое неравенство Солнца 9) Девятое движение Земли - "парад планет" 10) Десятое движение Земли - действия притяжения планет: "возмущения" или "пертурбации" 11) Одиннадцатое движение Земли - вызвано поступательным движением Солнца в сторону Веги 12) Двенадцатое движение Земли - движение вокруг галактического ядра 13) Тринадцатое движение Земли - движение относительно центра скопления ближайших галактик. Безусловно коснемся лишь самых выраженных аспектов влияющих на непростое движение по орбите. Астрономы знают о так называемых 13 движениях Земли и учитывают их в уточнении орбиты Луны. Напомню современная наука рассматривает движение системы луна-земля по орбите как единое целое. Луна участвует силой обстоятельств во всех 13 движениях Земли, являясь причиной некоторых из них, но и Земля заставляет Луну "плясать под свою дудку". При чем именно она и солнце заставляют Луну либрировать, ускорятся к перигею и замедлятся к аппогею по орбите. Менять положение большой полуоси орбиты Луны по отношению к солнцу, что меняет качество затмений-полные и кольцевые. Если в момент затмения Луна в перигее тогда мы видим полное затмение в центре ее тени. Напротив когда Луна в узлах орбиты ближе афелия, и конус ее тени не касается земли, мы в центре полутени увидим кольцевое затмение. Орбита Луны не является строго круговой имея легкий эксцентритет что является причиной изменения ее орбитальной скорости и суперлуний. Такие ускорения и торможения по орбите являются причиной либраций физических и оптических, благодаря чему мы видим 59% поверхности Луны. Различают либрации по широте и долготе, действительно кружа в пространстве Луна покачивается. Если бы глаза стороннего наблюдателя были в плоскости эклиптики, он бы увидел странный "пьяный" танец Луны и Земли. Старушка Земля странно покачиваясь пришлепывала бы в этом вальсе, в то время как бледная подруга описывала бы восьмерки неправильной формы вокруг нее. Покачиваясь и убыстряясь в малой петле восьмерки и замедляясь в большой. Середина восьмерки точно совпадает с узлами лунной орбиты. Узлы орбиты-точки прохождения лунной орбиты сквозь плоскость эклиптики. Если наблюдатель будет глядеть например с северного полюса увидит не менее странную картину. Условный эллипс орбиты будет нарисован несколько волнистой зигзагообразной линией со сглаженными волнами в перигее и выраженными в апогее, а описанная фигура Луной будет несколько напоминать грушу, где широкая часть плода апогей орбиты. Впрочем фигура будет иметь особенности в зависимости от того приходится ли точка перигея например на новолуние или полнолуние, солнце своей гравитацией дорисует странностей в описанную фигуру. Все во вселенной находится в непрерывном движении и все взаимосвязано, на рисунок Лунной орбиты также окажет влияние такое движение, как парад планет в сочетании с положением относительно солнца. Тоже касается перигея и афелия земной орбиты относительно солнца и множества описанных здесь сочетаний. Надеюсь читателю понравится данная астрономическая зарисовка.

Сорок лет назад - 20 июля 1969 года - человек в первый раз ступил на поверхность Луны. Корабль НАСА "Аполлон-11" с экипажем из трех астронавтов (командир Нейл Армстронг, пилот лунного модуля Эдвин Олдрин и пилот командного модуля Майкл Коллинз) стал первым, достигшим Луны, в космической гонке СССР и США.

Каждый месяц Луна, двигаясь по орбите, проходит примерно между Солнцем и Землей и обращена к Земле своей темной стороной, в это время происходит новолуние. Через один - два дня после этого на западной части неба появляется узкий яркий серп «молодой» Луны.

Остальная часть лунного диска бывает в это время слабо освещена Землей, повернутой к Луне своим дневным полушарием; это слабое свечение Луны - так называемый пепельный свет Луны. Через 7 суток Луна отходит от Солнца на 90 градусов; наступает первая четверть лунного цикла, когда освещена ровно половина диска Луны и терминатор, т. е. линия раздела светлой и темной стороны, становится прямой - диаметром лунного диска. В последующие дни терминатор становится выпуклым, вид Луны приближается к светлому кругу и через 14-15 суток наступает полнолуние. Затем западный край Луны начинает ущербляться; на 22-е сутки наблюдается последняя четверть, когда Луна опять видна полукругом, но на сей раз обращенным выпуклостью к востоку. Угловое расстояние Луны от Солнца уменьшается, она опять становится суживающимся серпом и через 29,5 суток вновь наступает новолуние.

Точки пересечения орбиты с эклиптикой, называются восходящим и нисходящим узлами, имеют неравномерное попятное движение и совершают полный оборот по эклиптике за 6794 суток (около 18,6 года), вследствие чего Луна возвращается к одному и тому же узлу через интервал времени - так называемый драконический месяц, - более короткий, чем сидерический и в среднем равный 27,21222 суток; с этим месяцем связана периодичность солнечных и лунных затмений.

Визуальная звездная величина (мера освещенности, создаваемой небесным светилом) полной Луны на среднем расстоянии равна - 12,7; она посылает в полнолуние на Землю в 465 000 раз меньше света, чем Солнце.

В зависимости от того, в какой фазе находится Луна, количество света уменьшается гораздо быстрее, чем площадь освещенной части Луны, таким образом, когда Луна находится в четверти и мы видим половину ее диска светлой, она посылает на Землю не 50%, а лишь 8% света от полной Луны.

Показатель цвета лунного света равен +1,2, т. е. он заметно краснее солнечного.

Луна вращается относительно Солнца с периодом, равным синодическому месяцу, поэтому день на Луне длится почти 15 суток и столько же продолжается ночь.

Не будучи защищена атмосферой, поверхность Луна нагревается днем до +110° С, а ночью остывает до -120° С, однако, как показали радионаблюдения, эти огромные колебания температуры проникают вглубь лишь на несколько дм вследствие чрезвычайно слабой теплопроводности поверхностных слоев. По той же причине и во время полных лунных затмений нагретая поверхность быстро охлаждается, хотя некоторые места дольше сохраняют тепло, вероятно, вследствие большой теплоемкости (так называемые «горячие пятна»).

Рельеф Луны

Даже невооруженным глазом на Луны видны неправильные темноватые протяженные пятна, которые были приняты за моря: название сохранилось, хотя и было установлено, что эти образования ничего общего с земными морями не имеют. Телескопические наблюдения, которым положил начало в 1610 году Галилео Галилей (Galileo Galilei), позволили обнаружить гористое строение поверхности Луны .

Выяснилось, что моря - это равнины более темного оттенка, чем другие области, иногда называют континентальными (или материковыми), изобилующие горами, большинство которых имеет кольцеобразную форму (кратеры).

По многолетним наблюдениям были составлены подробные карты Луны. Первые такие карты издал в 1647 году Ян Гевелий (нем. Johannes Hevel, польск. Jan Heweliusz,) в г. Данциге (современный - Гданьск, Польша). Сохранив термин «моря», он присвоил названия также и главнейшим лунным хребтам - по аналогичным земным образованиям: Апеннины, Кавказ, Альпы.

Джованни Риччоли (Giovanni Batista Riccioli) из г. Феррары (Италия) в 1651 году дал обширным темным низменностям фантастические названия: Океан Бурь, Море Кризисов, Море Спокойствия, Море Дождей и так далее, меньшие примыкающие к морям темные области он назвал заливами, например, Залив Радуги, а небольшие неправильные пятна - болотами, например Болото Гнили. Отдельные горы, главным образом кольцеобразные, он назвал именами выдающихся ученых: Коперник, Кеплер, Тихо Браге и другие.

Эти названия сохранились на лунных картах и поныне, причем добавлено много новых имен выдающихся людей, ученых более позднего времени. На картах обратной стороны Луны, составленных по наблюдениям, выполненным с космических зондов и искусственных спутников Луны, появились имена Константина Эдуардовича Циолковского, Сергея Павловича Королева, Юрия Алексеевича Гагарина и других. Подробные и точные карты Луны были составлены по телескопическим наблюдениям в 19 веке немецкими астрономами Иоганном Медлером (Johann Heinrich Madler), Иоганном Шмидтом (Johann Schmidt) и другими.

Карты составлялись в ортографической проекции для средней фазы либрации, т. е. примерно такими, какой Луна видна с Земли.

В конце 19 века начались фотографические наблюдения Луны. В 1896?1910 большой атлас Луны был издан французскими астрономами Морисом Леви (Morris Loewy) и Пьером Пьюзе (Pierre Henri Puiseux) по фотографиям, полученным на Парижской обсерватории; позже фотографический альбом Луны был издан Ликской обсерваторией в США, а в середине 20 века голландский астроном Джерард Койпер (Gerard Copier) составил несколько детальных атласов фотографий Луны, полученных на крупных телескопах разных астрономических обсерваторий. С помощью современных телескопов на Луны можно заметить кратеры размером около 0,7 килметров и трещины шириной в первые сотни метров.

Кратеры на лунной поверхности имеют различный относительный возраст: от древних, едва различимых, сильно переработанных образований до очень четких в очертаниях молодых кратеров, иногда окруженных светлыми «лучами». При этом молодые кратеры перекрывают более древние. В одних случаях кратеры врезаны в поверхность лунных морей, а в других - горные породы морей перекрывают кратеры. Тектонические разрывы то рассекают кратеры и моря, то сами перекрываются более молодыми образованиями. Абсолютный возраст лунных образований известен пока лишь в нескольких точках.

Ученым удалось установить, что возраст наиболее молодых крупных кратеров составляет десятки и сотни млн. лет, а основная масса крупных кратеров возникла в «доморской» период, т.е. 3-4 миллиарда лет назад.

В образовании форм лунного рельефа принимали участие как внутренние силы, так и внешние воздействия. Расчеты термической истории Луны показывают, что вскоре после ее образования недра были разогреты радиоактивным теплом и в значительной мере расплавлены, что привело к интенсивному вулканизму на поверхности. В результате образовались гигантские лавовые поля и некоторое количество вулканических кратеров, а также многочисленные трещины, уступы и другое. Вместе с этим на поверхность Луны на ранних этапах выпадало огромное количество метеоритов и астероидов - остатков протопланетного облака, при взрывах которых возникали кратеры - от микроскопических лунок до кольцевых структур диаметром от нескольких десятков метров до сотен км. Из-за отсутствия атмосферы и гидросферы значительная часть этих кратеров сохранилась до наших дней.

Сейчас метеориты выпадают на Луну гораздо реже; вулканизм также в основном прекратился, поскольку Луна израсходовала много тепловой энергии, а радиоактивные элементы были вынесены во внешние слои Луны. Об остаточном вулканизме свидетельствуют истечения углеродосодержащих газов в лунных кратерах, спектрограммы которых были впервые получены советским астрономом Николаем Александровичем Козыревым.

Изучение свойств Луны и ее окружающей среды началось в 1966 году - был запущена станция «Луна-9», передавшая на Землю панорамные снимки поверхности Луны.

Исследованиями окололунного пространства занимались станции «Луна-10» и «Луна-11» (1966 год). «Луна-10» стала первым искусственным спутником Луны.

В это время в США также разрабатывалась программа изучения Луны, получившая название «Аполлон» (The Apollo Program). Именно американский астронавты первыми ступили на поверхность планеты. 21 июля 1969 года в рамках лунной экспедиции корабля «Аполлон 11» Нил Армстронг (Neil Alden Armstrong) и его напарник Эдвин Олдрин (Edwin Eugene Aldrin) провели на Луне 2,5 часа.

Дальнейшим этапом в исследованиях Луны стала отправка на планету радиоуправляемых самоходных аппаратов . В ноябре 1970 году на Луну был доставлен «Луноход-1», который за 11 лунных дней (или 10,5 месяцев) прошел расстояние в 10 540 м и передал большое количество панорам, отдельных фотографий поверхности Луны и другую научную информацию. Установленный на нем французский отражатель позволил с помощью лазерного луча измерить расстояние до Луны с точностью до долей метра.

В феврале 1972 года станция «Луна-20» доставила на Землю образцы лунного грунта, впервые взятые в труднодоступном районе Луны .

В феврале того же года был совершен последний пилотируемый полет на Луну . Полет осуществил экипаж корабля «Аполлон-17». Всего на Луне побывало 12 человек.

В январе 1973 года «Луна-21» доставила в кратер Лемонье (Море Ясности) «Луноход-2» для комплексного исследования переходной зоны между морским и материковым районами. «Луноход-2» работал 5 лунных дней (4 месяца), прошел расстояние около 37 километров.

В августе 1976 года станция «Луна-24» доставила на Землю образцы лунного грунта с глубины 120 сантиметров (образцы были получены путем бурения).

С этого времени изучение естественного спутника Земли практически не велось.

Лишь через два десятка лет, в 1990 году, свой искусственный спутник «Хитен» (Hiten) послала к Луне Япония, ставшая третьей «лунной державой». Затем было еще два американских спутника - «Клементина»(Clementine, 1994 год) и «Лунный разведчик» (Lunar Prospector, 1998 год). На этом полеты к Луне были приостановлены .

27 сентября 2003 года Европейское космическое агентство с космодрома Куру (Гвиана, Африка) запустило зонд SMART-1. 3 сентября 2006 года зонд завершил свою миссию и совершил пилотируемое падение на поверхность Луны. За три года работы аппарат передал на Землю много информации о лунной поверхности, а также провел картографию Луны с высоким разрешением.

В настоящее время изучение Луны получило новый старт . Программы освоения земного спутника действуют в России, США, Японии, Китае, Индии .

По заявлению руководителя Федерального космического агентства (Роскосмос) Анатолия Перминова, концепция развития российской пилотируемой космонавтики предусматривает программу освоения Луны в 2025-2030 годах .

Правовые вопросы освоения Луны

Правовые вопросы освоения Луны регулирует «Договор о космосе» (полное название «Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела»). Он был подписан 27 января 1967 года в Москве, Вашингтоне и Лондоне государствами-депозитариями - СССР, США и Великобританией. В тот же день началось присоединение к договору других государств.

Согласно ему исследование и использование космического пространства, включая Луну и другие небесные тела, осуществляются на благо и в интересах всех стран, независимо от степени их экономического и научного развития, а космос и небесные тела открыты для всех государств без какой-либо дискриминации на основе равенства.

Луна, в соответствии с положениями «Договора по космосу», должна использоваться «исключительно в мирных целях», на ней исключается любая деятельность военного характера . Перечень видов деятельности, запрещенных на Луне, приведенный в статье IV Договора, включает размещение ядерного оружия или любых других видов оружия массового уничтожения, создание военных баз, сооружений и укреплений, испытание любых видов оружия и проведение военных маневров.

Частная собственность на Луне

Продажа участков территории естественного спутника Земли началась в 1980 году, когда американец Денис Хоуп обнаружил калифорнийский закон от 1862 года, по которому ничья собственность переходила во владение того, кто первым предъявил претензии на нее.

В подписанном 1967 году «Договоре о космосе» было прописано, что «космическое пространство, включая Луну и другие небесные тела, не подлежит национальному присвоению», но пункта о том, что космический объект не может быть приватизирован в частном порядке, не было, что и позволило Хоуп оформить право собственности на Луну и все планеты Солнечной системы, исключая Землю.

Хоуп открыл в США Лунное посольство и организовал оптово-розничную торговлю лунной поверхностью. Он успешно ведет свой «лунный» бизнес, продавая участки на Луне желающим.

Чтобы стать гражданином Луны надо приобрести себе участок, получить нотариально заверенное свидетельство о праве собственности, лунную карту с обозначением участка, его описание и даже «Лунный билль о конституционных правах». Оформит лунное гражданство можно за отдельные деньги, приобретя лунный паспорт.

Право собственности регистрируется в Лунном посольстве в Рио-Виста, Калифорния, США. Процесс оформления и получения документов занимает от двух до четырех дней.

В данный момент мистер Хоуп занимается созданием Лунной республики и продвижением ее в ООН. У еще несостоявшейся республики есть свой национальный праздник - день лунной независимости, который отмечается 22 ноября.

В настоящее время стандартный участок на Луне имеет площадь 1 акра (чуть больше 40 соток). С 1980 года продано около 1.300 тысяч участков из тех приблизительно 5 миллионов, что были «нарезаны» на карте освещенной стороны Луны.

Известно, что среди владельцев лунных участков - американские президенты Рональд Рейган и Джимми Картер, члены шести королевских семейств и около 500 миллионеров, в основном из числа голливудских звезд - Том Хенкс, Николь Кидман, Том Круз, Джон Траволта, Харрисон Форд, Джордж Лукас, Мик Джаггер, Клинт Иствуд, Арнольд Шварценеггер, Деннис Хоппер и другие.

Лунные представительства открылись в России, Украине, Молдавии, Белоруссии, и владельцами лунных земель стали более 10 тысяч жителей СНГ. Среди них Олег Басилашвили, Семен Альтов, Александр Розенбаум, Юрий Шевчук, Олег Гаркуша, Юрий Стоянов, Илья Олейников, Илья Лагутенко, а также космонавт Виктор Афанасьев и другие известные деятели.

Материал подготовлен на основе информации РИА Новости и открытых источников



Просмотров